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Introduction: why algebraic
number theory?

Consider the following statement, today known as Fermat’s last theorem:

Theorem 0.0.1. Let n > 3 be an integer. Then the Diophantine equation

xn + yn = zn

has no nontrivial solution, i.e.

xn + yn = zn, x, y, z ∈ Z =⇒ xyz = 0.

In 1847, while this theorem still had not been proved, the French math-
ematician Gabriel Lamé had an idea for the case where n is an odd prime.
Suppose we have xn + yn = zn with x, y and z all nonzero integers, which
we may assume are relatively prime. Let ζ = e2πi/n, so that ζn = 1, and
consider

Z[ζ] = {P (ζ), P ∈ Z[x]},

the smallest subring of C containing ζ. Then, in this ring, we have

xn = zn − yn =
n∏
k=1

(z − ζky).

Lamé claimed that to conclude that each factor z − ζky is an nth power, it
suffices to show that these factors are pairwise coprime. If this were true,
then we would be able to find integers x′, y′ and z′, smaller than x,y and z
but all nonzero, such that x′n + y′n = z′n; this would lead to an “infinite
descent” and thus prove the theorem.
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Unfortunately, Lamé’s claim relied on the supposition that factorisation
into irreducibles is unique, and while this is true in Z, we now know that it
need not be true in more general rings such as Z[ζ]. For instance, in the ring

Z[
√
−5] = {a+ b

√
−5, a, b ∈ Z}

where
√
−5 means i

√
5, we have the two different factorisations

6 = 2× 3 = (1 +
√
−5)× (1−

√
−5),

where each factor is irreducible. Lamé was thus unable to justify his claim,
and the theorem remained unproved for almost 150 years.

The numbers ζ and
√
−5 are examples of algebraic numbers. The goal

of this course is to study the property of such numbers, and of rings such
that Z[ζ], so as to know what we are allowed to do with them, and what
we are not. As an application, we will see how to solve certain Diophantine
equations.

References

This module is based on the book Algebraic Number Theory and Fermat’s
Last Theorem, by I.N. Stewart and D.O. Tall, published by A.K. Peters
(2001). The contents of the module forms a proper subset of the material in
that book. (The earlier edition, published under the title Algebraic Number
Theory, is also suitable.)

For alternative viewpoints, students may also like to consult the books A
Brief Guide to Algebraic Number Theory, by H.P.F. Swinnerton-Dyer (LMS
Student Texts # 50, CUP), or Algebraic Number Theory, by A. Fröhlich and
M.J. Taylor (CUP). Finally, students interested in the algorithmic side of
things should consult A course in computational algebraic number theory by
H. Cohen (Graduate Texts in Mathematics # 138, Springer).
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Chapter 1

Number fields

1.1 Resultants

Before we actually get started with number theory, let us introduce a tool
which will turn out to be very valuable.

Definition 1.1.1. Let K be a field, and let A =
∑m

j=0 ajx
j and B =∑n

k=0 bkx
k be two polynomials with coefficients in K. The resultant of A

and B is the (m+ n)× (m+ n) determinant

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 · · · a0 0 · · · 0

0 am am−1 · · · a0
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 am am−1 · · · a0

bn bn−1 · · · b0 0 · · · 0

0 bn bn−1 · · · b0
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 bn bn−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the first n rows contain the coefficients of A and the m last ones contain
those of B.

The main properties of the resultant are the following:
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Theorem 1.1.2.

• Res(A,B) ∈ K, and in fact, if the coefficients of both A and B lie in a
subring R of K, then Res(A,B) ∈ R.

• If we can factor (over K or over a larger field) A and B as

A = a

degA∏
j=1

(x− αj) and B = b

degB∏
k=1

(x− βk),

then

Res(A,B) = adegB

degA∏
j=1

B(αj) = adegBbdegA

degA∏
j=1

degB∏
k=1

(αj − βk)

= (−1)degAdegBbdegA

degB∏
k=1

A(βk) = (−1)degAdegB Res(B,A).

• Res(A,B) = 0 if and only if A and B have a common factor in K[x].

Example 1.1.3. Take K = Q, A = x2 − 2 ∈ Q[x] and B = x2 + 1 ∈ Q[x].
Since actually A and B lie in Z[x], we have Res(A,B) ∈ Z; this is simply
because by definition,

Res(A,B) =

∣∣∣∣∣∣∣∣
1 0 −2 0
0 1 0 −2
1 0 1 0
0 1 0 1

∣∣∣∣∣∣∣∣ .
Besides, since we have

A = (x−
√

2)(x+
√

2) and B = (x− i)(x+ i)

over C, we find that

Res(A,B) = B(
√

2)B(−
√

2) = A(i)A(−i) = (
√

2−i)(
√

2+i)(−
√

2−i)(−
√

2+i) = 9.

Example 1.1.4. Suppose we have A = BQ + R in K[x], and let b be the
leading coefficient of B. Then

Res(A,B) = (−1)degA degBbdegA−degR Res(B,R).

This gives a way to compute Res(A,B) by performing successive Euclid-
ian divisions, which is more efficient (at least for a computer) than computing
a large determinant when the degrees of A and B are large.
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1.2 Field extensions

1.2.1 Notation

Let K and L be fields such that K ⊆ L. One says that K is a subfield of L,
and that L is an extension of K.

In what follows, whenever α ∈ L (resp. α1, α2, · · · ∈ L), we will write
K(α) (resp. K(α1, α2, · · · )) to denote the smallest subfield of L containing
K as well as α (resp. α1, α2, · · · ). For example, we have C = R(i), and
K(α) = K if anf only if α ∈ K.

Also, when R is a subring of K, we will write

R[α] = {P (α), P ∈ R[x]}

to denote the smallest subring of L containing R as well as α, and similarly

R[α1, · · · , αn] = {P (α1, · · · , αn), P ∈ R[x1, · · · , xn]}.

Example 1.2.1. The ring K[α] is a subring of the field K(α).

1.2.2 Algebraic elements, algebraic extensions

Definition 1.2.2. Let α ∈ L. Then set of polynomials P ∈ K[x] such that
P (α) = 0 is an ideal Vα of K[x], and one says that α is algebraic over K
if this ideal is nonzero, that is to say if there exists a nonzero P ∈ K[x]
which vanishes at α. Else one says that α is transcendental over K, or just
transcendental (for short) when K = Q.

In the case when α is algebraic over K, the ideal Vα can be generated by
one polynomial since the ring K[x] is a PID. This polynomial is unique up
to scaling, so there is a unique monic polynomial mα(x) that generates Vα.
This polynomial mα(x) is called the minimal polynomial of α over K. One
then says that α is algebraic over K of degree n, where n = degmα ∈ N, and
one writes degK α = n. When K = Q, one says for short that α is algebraic
of degree n.

If every element of L is algebraic over K, one says that L is an algebraic
extension of K.
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Theorem 1.2.3. Let L/K be a field extension, and let α ∈ L be algebraic
over K of degree n. Then K[α] is a field, so it agrees with K(α). It is also
a vector space of dimension n over K, with basis

1, α, α2, · · · , αn−1,

which we write as

K(α) = K[α] =
n−1⊕
j=0

Kαj.

Remark 1.2.4. On the other hand, if α ∈ L is transcendental over K, then
it is not difficult to see that

K(α) = {r(α), r ∈ K(x)}

is isomorphic to the field K(x) of rational fractions over K, whence the
notation K(α); in particular, it is infinite-dimensional as a K-vector space,
and K[α] is a strict subring of K(α).

Proof of theorem 1.2.3. Let us begin with the second equality. Let m(x) =
mα(x) ∈ K[x] be the minimal polynomial of α over K, an irreducible poly-
nomial of degree n. For all P (x) ∈ K[x], euclidian division in K[x] tells us
that we may write

P (x) = m(x)Q(x) +R(x)

where Q(x), R(x) ∈ K[x] and degR(x) < n. Evaluating at x = α, we find
that P (α) = R(α), so that

K[α] =

{
n−1∑
j=0

λjα
j, λj ∈ K

}
.

Besides, if we had a relation of the form

n−1∑
j=0

λjα
j = 0

with the λj in K and not all zero, this would mean that the nonzero poly-
nomial

n−1∑
j=0

λjx
j ∈ K[x]
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vanishes at x = α, and since its degree is < n, this would contradict the
definition of the minimal polynomial.

Therefore, the (αj)06j<n span K[α] as a K-vector space and are linearly
independent over K, so they form a K-basis of K[α].

For the first equality, we must prove that the ring K[α] is actually a field.
Let us thus prove that any nonzero β ∈ K[α] is invertible in K[α]. We know
from the above that β = P (α) for some nonzero P (x) ∈ K[x] of degree < n.
Since m(x) is irreducible over K and degP (x) < degm(x) = n, it follows
that P (x) and m(x) are coprime, so that there exist U(x) and V (x) in K[x]
such that

U(x)P (x) + V (x)m(x) = 1.

Evaluating at x = α, we find that U(α)P (α) + 0 = 1, which proves that
U(α) ∈ K[α] is the inverse of β = P (α).

Example 1.2.5. Let α =
√

2. Then α is a root of x2 − 2 ∈ Q[x]. SInce
this polynomial is of degree only 2, if it were reducible, it would split into
fsctors of degree 1; since α 6∈ Q, we conclude that x2 − 2 is irreducible, so
it is the minimal polynomial of α, which is thus is algebraic of degree 2. In
particular, we have

Q(
√

2) = Q[
√

2] = Q⊕Q
√

2,

which means that every element of Q(
√

2) can be written in a unique way as
a+ b

√
2 with a, b ∈ Q.

Similarly, since i2 = −1, i is algebraic of degree 2, and its minimal poly-
nomial is x2+1. It is also algebraic of degree 2 over R, with the same minimal
polynomial x2 + 1, but which is this time seen as lying in R[x]. We deduce
that

Q(i) = Q[i] = Q⊕Qi

and that
C = R(i) = R[i] = R⊕ Ri.

We thus recover the well-known fact that every complex number can be
written uniquely as a+ bi with a, b ∈ R.

On the contrary, one can prove that π is transcendental (but it is not
easy). In particular, R is not an algebraic extension of Q.

Finally, one can prove that
√

3 is algebraic of degree 2 over Q(
√

2). This
amounts to say that x2 − 3, which is irreducible over Q, remains irreducible
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over Q(
√

2). It follows that

Q(
√

2)(
√

3) = Q(
√

2)⊕Q(
√

2)
√

3

as a vector space over Q(
√

2), so that every element of Q(
√

2,
√

3) can be
written in a unique way as a+ b

√
3 with a, b ∈ Q(

√
2).

Theorem 1.2.6. Let L/K be a field extension. The sum, difference, product,
and quotient1 of two elements of L which are algebraic over K are algebraic
over K.

Proof. Let α (resp. β) be algebraic over K, so that there exists a nonzero
polynomial A(x) ∈ K[x] (resp. B(x) ∈ K[x]) such that A(α) = 0 (resp.
B(β) = 0). Factor A(x) and B(x) in some algebraic closure of K,

A(x) =
m∏
j=1

(x− αj), B(x) =
n∏
k=1

(x− βk),

with α = α1 and β = β1, and consider the polynomials A(y) and B(x − y)
as polynomials in y over the field K(x). Their resultant

C(x) = Res
(
A(y), B(x− y)

)
lies in K(x), and actually even in K[x] according to theorem 1.1.2, since the
coefficients of A(y) and B(x− y) (still seen as polynomials in y) lie in K[x].
Besides, still according to theorem 1.1.2, we have

C(x) =
m∏
j=1

B(x− y)|y=αj =
m∏
j=1

B(x− αj) =
m∏
j=1

n∏
k=1

(x− αj − βk),

so that α + β is a root of C(x) and is thus algebraic over K.
The cases of α− β, αβ and α/β can be dealt with similarly.

A consequence of this theorem is that the set of complex numbers which
are algebraic over Q is actually a subfield of C.

Example 1.2.7. According to this theorem, α =
√

2 +
√

3 is algebraic.
However, the computations needed to exhibit a nonzero polynomial vanishing
at α require a bit of effort. We will actually determine the degree and the
minimal polynomial of α by another method in example 1.2.24 below.

1Not by 0, of course.
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1.2.3 The degree of an extension

Let L be an extension of a field K. If we forget temporarily about the
multiplication on L, so that only addition is left, then L can be seen as a
vector space over K.

Definition 1.2.8. The degree of L over K is the dimension (finite or infinite)
of L seen as a K-vector space. It is denoted by [L : K].

If this degree is finite, one says that L is a finite extension of K.

Example 1.2.9. Let α ∈ L. If α is algebraic over K with minimal polyno-
mial mα(x) ∈ K[x] of degree n, then theorem 1.2.3 tells us that

K(α) =

{
n−1∑
k=0

λkα
k, λk ∈ K

}
= K ⊕Kα⊕ · · · ⊕Kαn−1,

so [K(α) : K] = n = degK α. On the other hand, if α is transcendental over
K, then K(α) is isomorphic to the rational fraction field K(x), so [K(α) :
K] =∞.

Remark 1.2.10. Clearly, the only extension L of a field K such that [L :
K] = 1 is L = K itself.

Proposition 1.2.11 (Multiplicativity of the degree). Let K ⊆ L ⊆ M be
finite extensions, let (li)16i6[L:K] be a K-basis of L, and let (mj)16j6[M :L] be
an L-basis of M . Then (limj)16i6[L:K]

16j6[M :L]

is a K-basis of M . In particular,

[M : K] = [M : L][L : K].

Proof. Let m ∈M . Since (mj)16j6[M :L] is an L-basis of M , we have

m =

[M :L]∑
j=1

λjmj

for some λj ∈ L, and since (li)16i6[L:K] is a K-basis of L, each λj can be
written

λj =

[L:K]∑
i=1

µi,jli.
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Thus we have

m =

[M :L]∑
j=1

[L:K]∑
i=1

µi,jlimj,

which proves that the limj span M over K.
Besides, if we had a linear dependency relation

[M :L]∑
j=1

[L:K]∑
i=1

µi,jlimj = 0

with µi,j ∈ K, then we would have

[M :L]∑
j=1

λjmj = 0

where

λj =

[L:K]∑
i=1

µi,jli ∈ L.

Since (mj)16j6[M :L] is an L-basis of M , this would imply that

0 = λj =

[L:K]∑
i=1

µi,jli ∈ L

for all j; and since (li)16i6[L:K] is a K-basis of L, this means that the µi,j are
all zero. Thus the limj are linearly independent over K.

Example 1.2.12. According to example 1.2.5 above,

[Q(
√

2) : Q] = 2,

and
[Q(
√

2,
√

3) : Q(
√

2)] = 2.

It then follows from proposition 1.2.11 that

[Q(
√

2,
√

3) : Q] = 2× 2 = 4.
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1.2.4 The trace, norm, and characteristic polynomial

Definition 1.2.13. Let L be a finite extension of K, and let α ∈ L. Then
multiplication by α induces a K-endomorphism of L, denoted by

µα : L −→ L
ξ 7−→ αξ.

The trace, norm, and characteristic polynomial of α (with respect to the
extension L/K) are, respectively, the trace, determinant, and characteris-
tic polynomial of this endomorphism. They are denoted respectively by
TrLK(α) ∈ K, NL

K(α) ∈ K, and χLK(α) ∈ K[x]. When the extension L/K
is clear from the context, we will just write Tr(α), N(α) and χ(α).

Remark 1.2.14. Note that, as K-endomorphisms of L, µα+β = µα + µβ
and µαβ = µα ◦ µβ for all α, β ∈ L; this translates respectively into the
identities Tr(α + β) = Tr(α) + Tr(β) and N(αβ) = N(α)N(β). Thus the
trace is an additive group homomorphism from L to K, whereas the norm is
a multiplicative group homomorphism from L× to K×.

Also note that N(α) = 0 if and only if α = 0.

Example 1.2.15. Let L = Q(
√

2,
√

3), seen for now as an extension of Q,
and let α =

√
2 +
√

3 ∈ L. With respect to the Q-basis (1,
√

2,
√

3,
√

2
√

3)
of L, the matrix of µα is 

0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0

 ;

therefore TrLQ(α) = 0, NL
Q(α) = 1, and χLQ(α) = x4 − 10x2 + 1.

On the other hand, if we have the extension L/K in mind, where K =
Q(
√

2), then we find that the matrix of µα with respect to the K-basis (1,
√

3)
of L is (√

2 3

1
√

2

)
,

so that TrLK(α) = 2
√

2, NL
K(α) = −1, and χLQ(α) = x2 − 2

√
2x− 1.

Proposition 1.2.16. Let L/K be a finite extension, let α be an element
of L, and let χ = χLK(α) ∈ K[x] be its characteristic polynomial. Then χ
vanishes at α.
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Proof. Since χ is the characteristic polynomial of the endomorphism µα, we
have χ(µα) = 0 by Cayley-Hamilton. But P (µα) = µP (α) for every poly-
nomial P ∈ K[x], so in particular 0 = χ(µα) = µχ(α), which means that
χ(α) = 0.

Corollary 1.2.17. If an extension is finite, then it is algebraic.

The converse does not hold; for instance Q is an algebraic extension of Q,
but it is not a finite extension.

Definition 1.2.18. A number field is a finite extension of Q.

Thus every element of a number field is algebraic, and conversely every
algebraic number α spans a number field Q(α). In a nutshell, it can be said
that this course is about the arithmetic properties of number fields.

Example 1.2.19. The fields Q, Q(
√

2), Q(i) and Q(
√

2,
√

3) are number
fields, of respective degrees 1, 2, 2, and 4. On the contrary, neither R nor C
are number fields, for instance because π ∈ R so that Q(π) ⊂ R ⊂ C
so [R : Q] and [C : Q] are infinite because [Q(π) : Q] = ∞ since π is
transcendental. Similarly, the finite fields are not number fields, since they
are not extensions of Q.

Proposition 1.2.16 above tells us in particular that the characteristic poly-
nomial is a multiple of the minimal polynomial. In fact, more is true:

Proposition 1.2.20 (Characteristic poly. vs. minimal poly.). Let L/K be
a finite extension of degree n. Let α ∈ L, let m(x) be its minimal polynomial
over K, and let χ(x) be its characteristic polynomial (with respect to the
extension L/K). Let d = degm(x). Then d divides n, and χ(x) = m(x)n/d.

Proof. We have a double extension K ⊂ K(α) ⊂ L. By hypothesis, [L : K] =
n; besides, we have [K(α) : K] = degm(x) = d. Therefore, [L : K(α)] = n/d
is an integer.

Next, multiplication by α defines a K-endomorphism of K(α). The
characteristic polynomial of this endomorphism is monic, has degree d =
degm(x), and vanishes at α by proposition 1.2.16; therefore, this polynomial
agrees with m(x).

Let now Mα ∈ Matd×d(K) be the matrix of this endomorphism on a K-
basis (ej)16j6d of K(α), and let (fk)16k6n/d be a K(α)-basis of L. Then,
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by proposition 1.2.11, (ejfk) 16j6d
16k6n/d

is a K-basis of L, and in this basis, the

matrix of the multiplication-by-α endomorphism of L isMα 0
. . .

0 Mα

 ,

a diagonal of n/d copies of Mα. Since m(x) is the characteristic polynomial
of Mα and χ(x) is the characteristic polynomial of this big block-diagonal
matrix, the result follows.

1.2.5 Primitive elements

Definition 1.2.21. Let L/K be a field extension, and let α ∈ L, so that
K(α) ⊆ L. One says that α is a primitive element for L over K (or just a
primitive element, when K = Q) if K(α) = L.

Remark 1.2.22. A primitive element for L/K, when it exists, has no reason
to be unique (and in fact it is never unique).

By looking at the degrees and in view of proposition 1.2.20, one immedi-
ately gets the following

Proposition 1.2.23. Let L/K be a finite extension, and let α ∈ L. Then
the following are equivalent:

• α is a primitive element for L/K,

• degK α = [L : K],

• the characteristic polynomial χLK(α) is irreducible over K,

• the characteristic polynomial χLK(α) is squarefree over K,

• the characteristic polynomial χLK(α) agrees with the minimal polynomial
of α over K.

Example 1.2.24. Let L = Q(
√

2,
√

3), and let α =
√

2 +
√

3 ∈ L. We know
from example 1.2.15 above that α is a root of

P (x) = x4 − 10x2 + 1 ∈ Q[x].
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Since gcd
(
P (x), P ′(x)

)
= 1, P (x) is squarefree. It follows that it is irre-

ducible over Q, and that [Q(α) : Q] = 4, so that Q(α) = Q(
√

2,
√

3). Thus α
is a primitive element for the number field Q(

√
2,
√

3). Besides, it follows
that the degree of α is 4, and that its minimal polynomial is P (x). Fur-
thermore, since (for instance)

√
2 ∈ L, this also means that there exists a

polynomial F (x) ∈ Q[x] such that F (
√

2 +
√

3) =
√

2, a fact which was not
obvious.

On the other hand, neither
√

2 nor
√

3 are primitive elements for Q(
√

2,
√

3),
since they span strictly smaller fields over Q.

However,
√

3 is a primitive element for L over Q(
√

2).

Example 1.2.25. i is a primitive element for C over R, but certainly not
over Q since Q(i) is much smaller than C.

The following theorem guarantees the existence of primitive elements in
many cases.

Theorem 1.2.26 (Primitive element theorem). Let K be a field of char-
acteristic 0. If L is a finite extension of K, then there exists a primitive
element for L/K.

In fact, one can even prove that with these hypotheses, “most” elements
of L are primitive elements.

Remark 1.2.27 (Technical, feel free to skip this). Without the character-
istic 0 hypothesis, this theorem is false. A classical counterexample is the
extension L/K, where K is the 2-variable rational fraction field K = Fp(x, y)
over the finite field Fp ' Z/pZ with p elements, where p ∈ N is prime, and
L = Fp( p

√
x, p
√
y).

In particular, every number field K has primitive elements, so it can be
written in the form K = Q(α), where α ∈ K is an algebraic number of
the same degree as K. This means that K can be seen as the quotient
Q(α) ' Q[x]/m(x) where m(x) = mα(x) is the minimal polynomial of α
over Q. Thus K is “Q adjoined some abstract element α, which is entirely
characterised by the relation m(α) = 0”. In particular, we can (and should)
think of K abstractly, as opposed to as a subfield of C.

Conversely, a convenient way of specifying a number field up to isomor-
phism is to give it in the form Q(α), where α is a root of some irreducible
polynomial m(x), which is thus the minimal polynomial of α up to scaling.
It is important that m(x) be irreducible over Q, since otherwise the number
field is not well-defined.
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1.3 Complex embeddings

1.3.1 Extension of complex embeddings

Let K be a number field, and let L be a finite extension of K. Let α ∈ L
be a primitive element of the extension L/K, and let m(x) ∈ K[x] be its
minimal polynomial over K. Then m(x) is irreducible over K; in particular,
it is coprime with m′(x). Suppose that we have field embeddings σ : K ↪→ C
and τ : L ↪→ C. If τ |K = σ, we say that τ extends σ.

Since m(x) ∈ K[x], we may apply σ to its coefficients, which yields a
polynomial mσ(x) ∈ C[x]. If τ extends σ, then τ(α) ∈ C must be a root
of mσ(x); conversely, for each complex root z ∈ C of mσ(x), we can define
an embedding of L into C which extends σ, by the formula

L ↪→ C∑
k λkα

k 7−→
∑

k σ(λk)z
k,

where the λk lie in K. The polynomial mσ(x) is of degree [L : K]; besides, it
is coprime with m′σ(x) (apply σ to a relation U(x)m(x) + V (x)m′(x) = 1),
so it has no multiple roots in C. We thus get the following result.

Theorem 1.3.1 (Extension of complex embeddings). Let K be a number
field, σ : K ↪→ C an embedding of K into C, and L a finite extension of K.
Then there are exactly [L : K] embeddings of L into C that extend σ.

Corollary 1.3.2. Let K be a number field. Then K can be embedded into C
in exactly [K : Q] different ways.

Proof. Apply the previous theorem to the extension K/Q, and note that Q
can be embedded into C only in one way.

In particular, every number field K can be embedded into C in at least
one way, so it may be seen as a subfield of C. However, if K 6= Q, then
there are several embeddings into C, so there are several inequivalent ways
of seeing K as a subfield of C, none of which is better than the other ones.
As a consequence, it is better to think of number fields as abstract extensions
of Q rather than as subfields of C whenever possible.

Example 1.3.3. Let K = Q(α) where α2− 3 = 0. This is a number field of
degree 2, so there are 2 distinct ways of seeing K as a subfield of C, namely
by interpreting α as

√
3 or as −

√
3.
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Let L = K(β), where β2 − 4 − α = 0. One can prove that [L : K] = 2,
so for each embedding of K into C there are 2 embeddings of L into C that
extend it.

Namely, the [K : Q] = 2 embeddings of K into C are

σ1 : a+ bα 7→ a+ b
√

3 and σ2 : a+ bα 7→ a− b
√

3

where (a, b ∈ Q); each of them can be extended to L in [L : K] = 2 ways,
respectively by

c+ dβ 7→ σ1(c)± σ1(d)

√
4 +
√

3 and by c+ dβ 7→ σ2(c)± σ2(d)

√
4−
√

3

where c, d ∈ K. We thus recover all [L : Q] = 4 embeddings of L into C.

1.3.2 The signature of a number field

Definition 1.3.4. An embedding of a number field into C is real if its image
is contained in R. Nonreal embeddings come in conjugate pairs, so we can
define the signature of a number field K to be the pair (r1, r2), where r1 is
the number of real embeddings of K, and r2 is the number of conjugate pairs
of nonreal embeddings of K.

A number field is said to be totally real if r2 = 0, and totally complex if
r1 = 0.

Obviously, one has the relation [K : Q] = r1 + 2r2.

Example 1.3.5. The number field Q(
√

2) has signature (2,0) and is thus
totally real, whereas Q(i) has signature (0,1) and is thus totally complex.

On the other hand, Q( 3
√

2) has signature (1,1), and is thus neither totally
real nor totally complex.

More generally, the signature of Q(α) is (r1, r2), where r1 (reps. r2) is
the number of real roots (resp. the number of conjugate pairs of complex
nonreal roots) of the minimal polynomial of α.

1.3.3 Traces and norms vs. complex embeddings

The trace, norm, and characteristic polynomial are related to the complex
embeddings by the following formulae:
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Theorem 1.3.6. Let K be a number field, σ : K ↪→ C an embedding of K
into C, and let L a finite extension of K. If Σ denotes the set of the [L : K]
embeddings of L into C that extend σ, then we have

σ
(

TrLK(α)
)

=
∑
τ∈Σ

τ(α),

σ
(
NL
K(α)

)
=
∏
τ∈Σ

τ(α),

and
χLK(α)σ(x) =

∏
τ∈Στ

(
x− τ(α)

)
.

Corollary 1.3.7 (Transitivity of traces and norms). Suppose we have a dou-
ble extension K ⊂ L ⊂M , and let α ∈M . Then we have

TrMK (α) = TrLK
(

TrML (α)
)

and
NM
K (α) = NL

K

(
NM
L (α)

)
.

Proof. Let σ : K ↪→ C be an embedding. Then we have

σ
(

TrMK (α)
)

=
∑

ρ : M↪→C
ρ|K=σ

ρ(α)

=
∑

τ : L↪→C
τ|K=σ

∑
ρ : M↪→C
ρ|L=τ

ρ(α)

=
∑

τ : L↪→C
τ|K=σ

τ
(

TrML (α)
)

= σ
(

TrLK(TrML (α))
)
,

whence the result for traces since σ, being an embedding, is one-to-one. The
proof for the norms is the same, with products instead of the sums.

Corollary 1.3.8. Let K be a number field, and let Σ be the set of all its
embeddings into C. Then for all α ∈ K, we have

TrKQ (α) =
∑
σ∈Σ

σ(α),
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NK
Q (α) =

∏
σ∈Σ

σ(α),

and
χKQ (α)(x) =

∏
σ∈Σ

(
x− σ(α)

)
.

Example 1.3.9. Let K = Q(
√
−7) = {a + b

√
−7, a, b ∈ Q}. Then [K :

Q] = 2, so K has 2 embeddings into C, namely

a+ b
√
−7 7−→ a+ bi

√
7

and
a+ b

√
−7 7−→ a− bi

√
7.

Thus we have

TrKQ (a+ b
√
−7) = (a+ bi

√
7) + (a− bi

√
7) = 2a,

NK
Q (a+ b

√
−7) = (a+ bi

√
7)(a− bi

√
7) = a2 + 7b2,

and

χKQ (a+ b
√
−7) =

(
x− (a+ bi

√
7)
)(
x− (a− bi

√
7)
)

= x2 − 2ax+ a2 + 7b2.
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Chapter 2

Algebraic integers

2.1 The ring of integers

In the previous chapter, we have defined number fields, which can be seen
as generalisations of Q. In order to perform arithmetic there, we would now
like to study subrings of number fields which are the analogue of Z ⊂ Q.
The question we are asking is thus: what is the generalisation of the notion
of integer to number fields?

2.1.1 Monic polynomials

Definition 2.1.1. Let α be an algebraic number. One says that α is an
algebraic integer if its monic minimal polynomial, which a priori lies in Q[x],
actually lies in Z[x].

Recall that Z[x] is a UFD. Clearly, the factorisation in Z[x] of a monic
polynomial can only involve monic factors (up to sign); besides, this factori-
sation is the same as in Q[x]. This and proposition 1.2.20 imply the following
characterisation of integers:

Theorem 2.1.2. Let K be a number field, and let α ∈ K. The following are
equivalent:

• α is an algebraic integer,

• There exists a nonzero monic polynomial P ∈ Z[x] such that P (α) = 0,

• The characteristic polynomial of α lies in Z[x].
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Example 2.1.3. In Q(
√
−7), α =

√
−7 is an algebraic integer, because it

is a root of the monic polynomial x2 + 7 (actually, this polynomial happens
to be the minimal polynomial of α, but we do not need that here!). On
the contrary, 1

2

√
−7 is not an algebraic integer, because its characteristic

polynomial x2 + 7
4

does not lie in Z[x]; we could prove this by noticing that
its monic minimal polynomial (which in this case is also x2 + 7

4
) does not

lie in Z[x]. Finally, 1+
√
−7

2
is an algebraic integer, since its characteristic

polynomial x2 − x+ 2 lies in Z[x].

2.1.2 The ring of integers

The main point of this definition is that algebraic integers form a ring, just
like classical integers.

Theorem 2.1.4. The sum, difference, and product of two algebraic integers
is an algebraic integer. As a consequence, the set of elements of a number
field K which are algebraic integers forms a subring of K.

This can be proved just like theorem 1.2.6, by considering resultants of
polynomials in Z[x][y].

Remark 2.1.5 (Sanity check). The reason why the same proof fails (as
it should !) to show that the quotient two algebraic integers α and β is
an algebraic integer is that although we can use resultants to produce a
polynomial in Z[x] which vanishes at α/β, this polynomial is not monic in
general.

Definition 2.1.6. The subring of a number field K formed by the elements
which are algebraic integers is called the ring of integers of K. It is denoted
by ZK (some people use the notation OK).

Proposition 2.1.7. We have ZK ∩Q = Z.

Proof. Let α ∈ K. If α happens to lie in Q, then its characteristic polynomial
is (x− α)[K:Q], which lies in Z[x] if and only if α ∈ Z.

It is clear that the image of an algebraic integer by a complex embedding
is an algebraic integer: just look at its minimal polynomial. In view of
theorem 1.3.6, we deduce the following:
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Proposition 2.1.8 (Integrality vs. trace and norm, relative). Let L/K
be a finite extension of number fields, and let α ∈ L. If α ∈ ZL, then
TrLK(α) ∈ ZK, NL

K(α) ∈ ZK, and χLK(α) ∈ ZK [x].

Corollary 2.1.9 (Integrality vs. trace and norm, absolute). Let K be a
number field. For all α ∈ ZK, we have TrKQ (α) ∈ Z, NK

Q (α) ∈ Z, and
χKQ (α) ∈ Z[x].

Note that we already knew that for the characteristic polynomial.

2.2 Orders and discriminants

2.2.1 Linear algebra over Z
Definition 2.2.1. Let K = Q or R, so that Z ⊂ K, and let V be a K-vector
space of finite dimension n. A lattice in V is a sub-additive-group of V of
the form

I =
{ n∑
j=1

λjvj, λj ∈ Z
}
,

where (vj)16j6n is a K-basis of V . We thus have

I =
{ n∑
j=1

λjvj, λj ∈ Z
}
( V =

{ n∑
j=1

λjvj, λj ∈ K
}
.

We will write

I =
n⊕
j=1

Zvj = Zv1 ⊕ · · · ⊕ Zvn,

and call (vj)16j6n a Z-basis of I.

Example 2.2.2. Here is an example of a lattice in dimension n = 2:
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The red vectors form a K-basis of K2, so they span a lattice, and form a
Z-basis of this lattice. You should keep this picture in mind, and try to
imagine what a lattice looks like in dimension 3 and higher.

Just as a vector space, a lattice has many different bases. Any two Z-bases
of the lattice differ by an element of

GLn(Z) = {A ∈ GLn(Q) | A,A−1 ∈Mn(Z)},

and it is not difficult to prove that

GLn(Z) = {A ∈ GLn(Q) | detA = ±1}.

Suppose now that in Kn, we have a lattice J which is contained in another
lattice I; we then say that J is a sublattice of I. In particular, J is an
additive subgroup of I, so it makes sense to consider the quotient group I/J ;
the cardinal of this quotient is then called the index of J in I, and we write
it [I : J ].
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Remark 2.2.3. This is the same notation as for the degree of a field ex-
tension, although these are rather different notions ! Unfortunately, these
notations are well-established, so we cannot change them.

Theorem 2.2.4. [Computation of the index] Suppose we have a lattice I
in Kn, and a sublattice J ⊆ I be a sublattice. Fix a Z-basis v1, · · · , vn of I,
and a Z-basis w1, · · ·wn of J , and form the n × n matrix A expressing the
wj in terms of the vi. Since J ⊂ I, the entries of A all lie in Z; besides,
detA 6= 0 since the vi and the wj are two K-bases of the vector space Kn.
The index of J in I is then given by [I : J ] = | detA|; in particular, it is
always finite.

We thus recover the fact that I = J if and only if detA = ±1.

Example 2.2.5. Let I be the lattice in the previous picture, and let us pick
two linearly independent vectors (in blue) in I:
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Since this vectors are linearly independent, they form another K-basis K2, so
they span another lattice J . Besides, since these vectors lie in I, the lattice J
is contained in I, so J is a sublattice of J .

In order to know whether J agrees I or is a strict sublattice, and more
generally to compute the index of J in I, we form the matrix A expressing
the Z-basis of J in terms of the Z-basis of I, in other words the blue vectors
in terms of the red vectors:

A =

(
1 1
1 −1

)
,

and we compute
| detA | = | − 2| = 2.

This result means that J vectors has index 2 in I; in particular, the contain-
ment J ( I is proper. The fact that the index is 2 expresses that precisely
half of the points I actually lie J , which becomes clear if we colourise the
points of J in blue as on the picture above.

2.2.2 Orders

Definition 2.2.6. Let K be a number field of degree n. An order in K is a
subring O of K which is also a lattice in the Q-vector space K.

In particular, if O ⊂ K is an order, then for all α ∈ K there exists an
n ∈ N such that nα ∈ O. Thus the fraction field of O is K itself.

Example 2.2.7. For example, Z[
√

5] is an order in Q(
√

5), whereas Z[1
2

√
5]

is not because it is not a lattice, and neither is Z ⊕ Z1
2

√
5 because it is not

a subring. Finally, Z[
√

2] is not an order in K = Q(
√

2,
√

3), because it does
not span all of K over Q.

Lattices provide yet another characterisation of algebraic integers.

Proposition 2.2.8. Let α be an algebraic number. The following are equiv-
alent:

1. α is an algebraic integer,

2. Z[α] is an order in Q(α),
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3. There exist a number field K containing α and a lattice I in K which
is stable under multiplication by α, i.e. such that αI ⊆ I.

Proof.

• 1 =⇒ 2: Let m(x) = xn+
∑n−1

j=0 λjx
j ∈ Q[x] be the minimal polynomial

of α over Q. If α is an algebraic integer, then the λj lie in fact in Z,
and the relation m(α) = 0 shows that

Z[α] = Z⊕ Zα⊕ Zα2 ⊕ · · · ⊕ Zαn−1.

Since Z[α] is also a ring, it is thus an order in

Q(α) = Q⊕Qα⊕Qα2 ⊕ · · · ⊕Qαn−1.

• 2 =⇒ 3: Simply take K = Q(α) and I = Z[α].

• 3 =⇒ 1: If αI ⊂ I, then the matrix of the multiplication-by-α map µα
of L with respect to a Z-basis of I is a matrix with coefficients in Z,
so by definition χKQ (α) lies in Z[x], which implies that α is an algebraic
integer.

Corollary 2.2.9. Let O be an order in a number field K. Every element
of O is an algebraic integer, so O ⊆ ZK.

Corollary 2.2.10. Let α be an element of a number field K. The subring
Z[α] of K is an order in K if and only if α is both a primitive element
for K/Q and an algebraic integer.

2.2.3 Discriminants, part I

Definition 2.2.11. Let K be a number field of degree n. The trace pairing
is the bilinear form

Tr: K ×K −→ Q
(α, β) 7−→ TrKQ (αβ)

.

Let α1, · · · , αn be n elements of K. Their discriminant is the determinant

disc(α1, · · · , αn) = det
(

TrKQ (αiαj)
)

16i,j6n
∈ Q.
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Proposition 2.2.12. disc(α1, · · · , αn) 6= 0 if and only if the αj are Q-
linearly independent, that is to say if and only if they form a Q-basis of K.

Proof. Let T ∈ Matn×n(Q) be the matrix such that Ti,j = TrKQ (αiαj), so that
disc(α1, · · · , αn) = detT .

If the αj are Q-linearly dependent, then we get a relation of linear depen-
dency on the columns (and also on the rows) of T , so detT = 0.

Conversely, suppose that the αj form a Q-basis of K. If we had detT = 0,
we would deduce a linear dependency relation between the columns of T ; in
other words, we would have TrKQ (αiα) = 0 for all i for some α =

∑n
j=1 λjαj

with λj ∈ Q not all zero. Since the αj form a Q-basis of K, this means that
α 6= 0, and that TrKQ (βα) = 0 for all β ∈ K. But this is absurd (take β = 1

α
,

and note that TrKQ (1) = n 6= 0).

Definition 2.2.13. Let O be an order in a number field K, and let (ωj)16j6n

be a Z-basis of O. The discriminant of O is

discO = disc(ω1, · · · , ωn) ∈ Z,

a non-zero integer. Since using another Z-basis of O amounts to conjugating
by a matrix in GLn(Z), whose determinant will be ±1, this does not depend
on the choice of the basis of O.

We now arrive to the central result of this chapter:

Theorem 2.2.14. The ring of integers of a number field is an order in this
number field.

Example 2.2.15. Let us continue with example 1.3.9. An element α =
a+ b
√
−7, a, b ∈ Q of K = Q(

√
−7) lies in ZK if and only if its characteristic

polynomial x2−2ax+a2 +7b2 lies in Z[x], that is to say if and only if 2a ∈ Z
and a2 + 7b2 ∈ Z. One checks easily that this condition is equivalent to
2a ∈ Z, 2b ∈ Z, and a+ b ∈ Z; thus

ZK = Z⊕ Z
1 +
√
−7

2
= Z

[
1 +
√
−7

2

]
.

The middle term makes it apparent that ZK is a lattice, with Z-basis {1, 1+
√
−7

2
};

the right term makes it clear that ZK is a ring.
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In order to prove theorem 2.2.14, we need the following lemma, which is
important in its own right:

Lemma 2.2.16. Let K be a number field, and let α in K. There exists an
integer d ∈ N such that dα is an algebraic integer.

Proof. Let χ(x) ∈ Q[x] be the characteristic polynomial of α, and let d ∈ N
be a common denominator for the coefficients of χ(x), so that we may write

0 = χ(α) = αn +
n−1∑
j=0

λj
d
αj

where n = [K : Q] and the λj are integers. Multiplying by dn, we get

0 = dnχ(α) = (dα)n +
n−1∑
j=0

dn−jλj(dα)j,

which proves that dα is an algebraic integer.

Note that this implies in particular that the fraction field of ZK is K
itself.

Proof of theorem 2.2.14. We already know that ZK is a subring, and we must
show that it is also a lattice. According to the lemma, we can find a Q-basis
(ωj)16j6n of K formed of algebraic integers; let

Ω = Zω1 ⊕ · · · ⊕ Zωn

be the lattice it spans. Let now α ∈ ZK . We may write

α =
n∑
j=1

λjωj

where the λj are rational numbers. Multiplying by ωk, 1 6 k 6 n, and taking
the trace yields the n× n system of linear equations

n∑
j=1

λj Tr(ωjωk) = Tr(αωk) (1 6 k 6 n)
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over Z, of which the λj form a solution. The determinant of this system is
∆ = disc(ω1, · · · , ωn), which is a nonzero integer since the ωj are algebraic
integers and form a Q-basis of K. By inverting the matrix of the system, we
thus see that the λj lie in 1

∆
Z. We thus have

Ω ⊂ ZK ⊂
1

∆
Ω,

which shows that ZK , being cornered between two lattices, is itself a lattice.

Definition 2.2.17. In view of corollary 2.2.10, the ring of integers ZK of K
is thus an order which contains all the other orders of K as sublattices; it is
therefore sometimes called the maximal order of K.

Definition 2.2.18. By theorem 2.2.4, every order is contained in ZK with
a finite index, and this index is called the index of the order.

Definition 2.2.19. The discriminant of K is defined as the discriminant of
its ring of integers seen as an order, i.e.

discK = discZK ∈ Z,

a nonzero integer.

Example 2.2.20. Let us continue with example 2.2.15. We now know that
the ring of integers of K = Q(

√
−7) is

ZK = Z[α] = Z⊕ Zα,

where α = 1+
√
−7

2
. As a consequence, we find that

discK = discZK =

∣∣∣∣ TrKQ (1) TrKQ (1 · α)
TrKQ (α · 1) TrKQ (α2)

∣∣∣∣ =

∣∣∣∣2 1
1 −3

∣∣∣∣ = −7.

We will soon see a much more efficient way to get to the same result.

To conclude this section, let us mention a famous result of Hermite’s:

Theorem 2.2.21 (Hermite-Minkowski). Up to isomorphism, there are finitely
many number fields of given discriminant.

31



2.3 Computing the maximal order

Given a number field K, it is (usually) not difficult to find orders in K. For
instance, if it is given in the form K = Q(α), we may assume without loss of
generality that the primitive element α is integral thanks to lemma 2.2.16,
and then O = Z[α] is clearly an order in K. It may not, however, be the full
ring of integers of K.

2.3.1 Denominators vs. the index

Here is a consequence of the definition of the index of an order.

Proposition 2.3.1. Let O be an order in a number field K of degree n, let
f ∈ N be its index, and let (ωj)16j6n be any Z-basis of O. In particular,
(ωj)16j6n is also a Q-basis of K, so every element of K can be uniquely

written in the form
∑n

j=1 λjωj with λj ∈ Q. Let denomO

(∑n
j=1 λjωj

)
denote

the lcm of the denominators of the λj. Then denomO

(∑n
j=1 λjωj

)
depends

on O, but not on the choice of the Z-basis (ωj)16j6n of O. Furthermore, for
all p ∈ N prime, the following are equivalent:

1. p | f,

2. ∃ β ∈ ZK : p | denomO (β),

3. ∃ β ∈ ZK : denomO (β) = p.

In other words, when the elements of ZK are put in the form
∑

j λjωj,
the primes p ∈ N that divide the denominator of one (or more) of the λj are
exactly the ones that divide f . For example, if O is of the form Z[α], we may
consider the Z-basis 1, α, · · ·αn−1 of O, and denomO(β) is then the common
denominator of the coefficients of β expressed as a polynomial of degree < n
in α.

Proof. (Non examinable) Think of O, ZK and K as additive groups. Then
for every β ∈ K, denomO (α) is the order of this element in the quotient
group K/O, since

∀n ∈ N, nβ = 0 in K/O ⇐⇒ nβ ∈ O ⇐⇒ denomO(β).

Therefore, denomO(β) depends on O but not on the choice of a Z-basis of O.
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Besides, ZK/O is an Abelian group whose order is by definition f , so the
order of every element of ZK divides f by Lagrange’s theorem; conversely,
for all p | f prime, Cauchy’s theorem tells us that there exists an element of
ZK/O of order exactly p.

Example 2.3.2. In K = Q(
√
−7), the order O = Z[

√
−7] is not the full ring

of integers of K; in fact, we know from example 2.2.20 that ZK = Z[1+
√
−7

2
],

so O is a non-maximal order of index 2. By the theorem, if we express the
elements of K in the form a+ b

√
−7 with a, b ∈ Q, then the denominator of

every element of ZK is a power of 2; for instance, ZK 3 1+
√
−7

2
= 1

2
+ 1

2

√
−7.

2.3.2 Discriminants, part II

The general approach to compute ZK consists in starting with an order of the
form Z[α], and enlarging it until it becomes maximal. We need to know when
we can stop, that is to say when the order is maximal. For this, the following
relation between the discriminant of and order and its index is primordial.

Theorem 2.3.3. Let K be a number field, and let O be an order in K of
index f ∈ N. Then

discO = f 2 discK.

Proof. Let (ωj)16j6n be a Z-basis of ZK , and let T be the matrix of the
TrKQ (ωiωj), so that detT = discK. If P ∈ Matn×n(Z) is the change of basis
matrix expressing a Z-basis of O on the ωi, then we have detP = ±f by
theorem 2.2.4, so discO = det(tPTP ) = f 2 discK.

Definition 2.3.4. For prime p ∈ N, let us say that O is p-maximal if p does
not divide the index of O.

Corollary 2.3.5. Let O be an order in a number field K. If O is not p-
maximal, then p2| discO. In particular, if discO is squarefree, then O = ZK
and discK = discO.

This allows us to compute the ring of integers when the discriminant of
the field is squarefree; unfortunately, it is usually not the case. We will see
other criteria for the p-maximality of orders in the next chapter.

To use theorem 2.3.3, we need to be able to compute discriminants of
orders of the form Z[α]. In this view, we introduce the discriminant of a
polynomial.
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Definition 2.3.6. Let R be an integral domain, and let A(x) ∈ R[x] be
a monic polynomial of degree n ∈ N and leading coefficient a ∈ R. The
discriminant of A(x) is

discA =
(−1)n(n−1)/2

a
Res(A,A′).

Remark 2.3.7. It can be easily seen on the definition of the resultant as a
determinant that Res(A,A′) must be divisible by a, so discA lies in R.

Example 2.3.8. Let A(x) = ax2 + bx+ c, a 6= 0. Then A′(x) = 2ax+ b, so
that

Res(A,A′) =

∣∣∣∣∣∣
a b c
2a b 0
0 2a b

∣∣∣∣∣∣ = 4a2c− ab2,

so we recover the well-known formula

discA =
−1

a
Res(A,A′) = b2 − 4ac.

Theorem 2.3.9. Let K be a field, A(x) ∈ K[x] a polynomial of degree n ∈ N
and leading coefficient a ∈ K, and let α1, . . . , αn be the roots of A(x) (repeated
with multiplicity) in some algebraically closed field Ω containing K. Then

discA = (−1)n(n−1)/2an−2

n∏
j=1

P ′(αj)

= (−1)n(n−1)/2a2n−2
∏
j 6=k

(αj − αk)

= a2n−2
∏
j<k

(αj − αk)2.

In particular, discA 6= 0 if and only if A(x) has no multiple roots in Ω.

Proof. The first equality is just an application of theorem 1.1.2. Then, since

A(x) = a
n∏
j=1

(x− αj),

we have

P ′(x) = a

n∑
j=1

∏
k 6=j

(x− αk)
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so
P ′(αj) = a

∏
k 6=j

(αj − αk),

whence the result.

As discriminants can be tedious to compute explicitly, we establish once
and for all the following formula.

Proposition 2.3.10. (Non examinable) For all n ∈ N and b, c ∈ Q, we have

disc(xn + bx+ c) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
.

Proof. Let us introduce ζ = e2πi/(n−1), and β ∈ C such that βn−1 = −b/n.

According to theorem 1.1.2, the resultant of P and P ′ can be computed
in two ways: as the product of the values of P at the roots of P ′ (essentially),
and vice versa. Here, the first way is easier, because the roots of P ′ are easy
to express and manipulate. Explicitly, we have P ′(x) = nxn−1 + b, whose
complex roots are the ζkβ, 0 6 k < n− 1, and

P (ζkβ) = ζknβn + bζkβ + c = ζk
(
−β
n

)
+ bζkβ + c =

(
1− 1

n

)
βζkb+ c.

Therefore,

Res(P, P ′) = nn
n−2∏
k=0

P (ζkβ) because the leading coefficient of P ′ is n

= nn
n−2∏
k=0

((
1− 1

n

)
βζkb+ c

)

= nn(−1)n−1

n−2∏
k=0

(
−c− ζk

(
1− 1

n

)
βb

)

= nn(−1)n−1
((
− c
)n−1 −

(
(1− 1/n)βb

)n−1
)

as
n−2∏
k=0

(x− ζky) = xn−1 − yn−1

= nncn−1 − nnβn−1bn−1(1/n− 1)n−1

= nncn−1 − n
(
− b
n

)
(1− n)n−1bn−1

= nncn−1 + (1− n)n−1bn.

The result then follows since discP = (−1)n(n−1)/2 Res(P, P ′).
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Corollary 2.3.11. (Examinable) In particular, we obtain the important for-
mula

disc(x3 + bx+ c) = −4b3 − 27c2,

which you should learn by heart.

So far, we have introduced two notions of discriminants, one for orders,
and one for polynomials. We now show that these notions coincide.

Theorem 2.3.12. Let K = Q(α) be a number field, where α is integral, and
let m(x) ∈ Z[x] be the minimal polynomial of α over Q. Then

discZ[α] = discm.

Proof. Let α1, · · · , αn be the complex roots of m(x) where n = [K : Q], and
consider the matrix

A =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...

...
...

...
1 αn α2

n · · · αn−1
n

 .

Vandermonde tells us that detA =
∏

j<k(αk − αj). Besides, if B = tAA,
then we have

Bi,j =
n∑
k=1

Ak,iAk,j =
n∑
k=1

αi−1
k αj−1

k =
n∑
k=1

αi+j−2
k = TrKQ (αi+j−2) = TrKQ (αi−1αj−1)

according to corollary 1.3.8. Since 1, α, α2, · · · , αn−1 is a Z-basis of Z[α], we
conclude that

discZ[α] = detB = (detA)2 =
∏
j<k

(αj − αk)2 = discm.

We immediately deduce the following consequence:

Proposition 2.3.13. Let K be a number field of signature (r1, r2). Then the
sign of discK is (−1)r2.
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Proof. Again, write K = Q(α) where α is integral, let m(x) ∈ Z[x] be the
minimal polynomial of α, and let α1, · · · , αn be its complex roots, ordered
so that α1, · · · , αr1 are real and αr1+j = αr1+r2+j for 1 6 j 6 r2. We have

discZ[α] = discm =
∏
j<k

(αj − αk)2.

When j and k are both less than r1, (αj−αk)2 is the square of a real number
and is thus positive. The other terms can be grouped in conjugate pairs

and produce factors
(
± |αj − αk|2

)2
, which are also positive, except when

j, k > r1 and k = j + r2, in which case we get (αj − αk)2 = (αj − αj)2 < 0.
As a result, the sign of discm is (−1)r2 . Since discK differs of discZ[α] by
a square (thus positive) factor, the result follows.

Example 2.3.14. Let K = Q(α), where α is a root of the polynomial
f(x) = x3 + x2 − 2x + 8 = 0. Since f(x) is irreducible, this number field is
well-defined and has degree 3, so its signature is either (3, 0) or (1, 1). One
may compute that

disc(x3 + x2 − 2x+ 8) = −2012 = −22 · 503.

Since this is negative, we can conclude that the signature of K is (1, 1), which
means that the polynomial f(x) has one real root and one pair of complex
conjugate nonreal roots.

Besides, as 503 is prime, theorem 2.3.3 implies that the order O = Z[α]
is p-maximal for all p except maybe p = 2, and that the index of O divides
2. As a result, either O = ZK and discK = −2012, or O has index 2 and
discK = −503.

In fact, since it can be checked that β = α2+α
2

is an algebraic integer,
O′ = Z[α, β] is an order in which O has index 2 (if this is not obvious to
you, write down the matrix expressing a Z-basis of O on a Z-basis of O′, and
check that its determinant is ±2), so ZK = O′ and discK = −503.

This example has the particularity that no order of the form Z[γ] is 2-
maximal, whatever the algebraic integer γ ∈ ZK is; we will see why in the
next chapter (example 3.7.5). In particular, ZK cannot be written in the
form Z[γ] in the case of this number field.

2.4 The case of quadratic fields

Definition 2.4.1. A quadratic field is a number field of degree 2.

37



The classical formulae used to solve equations of degree 2 show that every
quadratic field is of the form Q(

√
d), where d ∈ Z is squarefree and different

from 0 and 1.
Quadratic fields are small enough that their ring of integers can be de-

termined explicitly.

Theorem 2.4.2. Let d ∈ Z, d 6= 1 be a squarefree integer, and let K =

Q(
√
d). If d ≡ 1 mod 4, then ZK = Z

[
1+
√
d

2

]
and discK = d, whereas if

d 6≡ 1 mod 4, then ZK = Z[
√
d] and discK = 4d.

Proof. First, note that the discriminant of the order O = Z[
√
d] is

discO = disc(x2 − d) = 4d,

so O is maximal except maybe at p = 2 since d is squarefree.
In fact, an element a + b

√
d of K (where a, b ∈ Q) is an integer if and

only if its characteristic polynomial

x2 − 2ax+ a2 − b2d

has coefficient in Z, thus if and only if 2a ∈ Z and a2−b2d ∈ Z. In particular,
a and b must be half-integers. Since the squares of Z/4Z are 0 and 1, we see
that a and b must be integers except when d ≡ 1 mod 4, in which case they
must be half-integers such that a + b ∈ Z. The claim on ZK follows, and
theorem 2.3.3 allows us to compute discK.

Example 2.4.3. The ring of integers of Q(i) is Z[i], and its discriminant
is −4. Similarly, the ring of integers of Q(

√
2) is Z[

√
2], and its discriminant

is 8, but the ring of integers of Q(
√

5) is Z
[

1+
√

5
2

]
, and its discriminant is 5.

2.5 The case of cyclotomic fields

Cyclotomic fields are another important class of number fields whose ring of
integers is easily described.

Definition 2.5.1. An algebraic number ζ satisfying ζn = 1 for some n ∈ N
is called an nth root of unity. If ζm 6= 1 for m < n, then it is a primitive nth

root of unity. Thus in C the nth roots of unity are the e2kπi/n, 0 6 k < n,
and the primitive ones are the ones for which k and n are coprime.
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The nth cyclotomic polynomial is

Φn(x) =
∏

ζ primitive nth

root of unity∈C

(x− ζ) =
∏

k∈(Z/nZ)×

(x− e2kπi/n).

It has degree ϕ(n) = n
∏

p|n

(
1− 1

p

)
(Euler’s phi function). Moreover, it lies

in Z[x], and it is irreducible over Z (and hence over Q).
The nth cyclotomic field is Q(ζ), where ζ is any primitive nth root of

unity. It is thus a number field of degree ϕ(n).

Theorem 2.5.2. Let K = Q(ζ), where ζ is a primitive nth root of unity,
n ∈ N. Then

1. ZK = Z[ζ], and

2. (Non examinable) discK =
(−1)ϕ(n)/2nϕ(n)∏

p|n p
ϕ(n)/(p−1)

, where the product ranges

over the prime divisors p of n. In particular, when n = pv is a prime
power, then discK = ±ppv−1(pv−v−1).
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Chapter 3

Ideals and factorisation

In the previous chapter, we have defined the ring of integers ZK of a number
field K. We are now going to investigate the properties of this ring.

In general, it is not a UFD, as demonstrated by the following example.

Example. Take K = Q(
√
−5), so that ZK = Z[

√
−5] by theorem 2.4.2.

In ZK , a number α = a+ b
√
−5 (a, b ∈ Z) is invertible if and only if its norm

NK
Q (α) = a2 + 5b2 is 1, as can be easily seen from the formulae NK

Q (αβ) =
NK

Q (α)NK
Q (β) and α−1 = ᾱ

NK
Q (α)

. In particular two associate elements must

have the same norm.
Consider the two factorisations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

No factor of the first one is associate to a factor of the second one, because the
norms of these factors are respectively 4, 9, 6 and 6. Besides, these factors are
irreducible: if they were not, by taking norms, we would get integer solutions
to a2 + 5b2 = 2 or 3, which is clearly impossible. We thus have two complete
and yet distinct factorisations of 6 in ZK .

A great insight came from Kummer, who imagined that there should exist
what he called “ideal numbers” p1, p2, p3 and p4 such that 2 = p1p2, 3 = p3p4,
1+
√
−5 = p1p3, and 1−

√
−5 = p2p4. Indeed, this would allow us to recover

a unique factorisation

6 = (p1p2)(p3p4) = (p1p3)(p2p4).

We will see that the ring of integers is what is called a Dedekind domain,
which means that it enjoys very nice properties (in some sense, a nice fac-
torisation theory of those “ideal numbers”) which make it almost as good as
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a UFD. The failure of this ring to be a UFD is measured by the so-called
class group, which we will study in chapter 4.

3.1 Reminder on finite fields

Recall that any two finite fields of the same cardinal are isomorphic, and
that a finite field of size n ∈ N exists if and only if n is a prime power. This
justifies the notation Fq for “the” finite field of size q when q ∈ N is a prime
power. For instance, we have Fp ' Z/pZ for all prime p ∈ N.

Besides, when q and r are prime powers, Fq is isomorphic to a subfield
of Fr if and only if r is a power of q. In particular, if q = pf with p ∈ N prime
and f ∈ N, then Fq contains a copy of Fp, and is thus of characteristic p.

Finally, recall that the multiplicative group of every finite field is cyclic,
i.e. F×q ' Z/(q − 1)Z.

3.2 Reminder on ideals

Throughout this section, we let R be a commutative ring. When α1, · · · , αm
are elements of a R, we will denote by (α1, · · · , αm) the ideal of R generated
by these elements. We will say that an ideal of R is nonzero if it is not
reduced to {0}, and that it is nontrivial if it is not the whole of R.

Definition 3.2.1. Let a1, · · · , am be ideals of R. Their sum and product
are defined to be

a1 + · · ·+ am = {a1 + · · ·+ am | a1 ∈ a1, · · · , am ∈ am}

and

a1 · · · am =

{
n∑
j=1

a1,j · · · am,j | n ∈ N, and ∀j, a1,j ∈ a1, · · · , am,j ∈ am

}
.

Both are ideals of R, and a1 · · · am ⊂ ai ⊂ a1 + · · ·+ am for all 1 6 i 6 m.

Example 3.2.2. We have

(α1, · · · , αm) = α1R+ · · ·+ αmR = (α1) + · · ·+ (αm),

and
(α1 · · ·αm) = (α1) · · · (αm).
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Theorem 3.2.3 (Chinese remainders). Let a1, · · · , am be ideals of R which
are pairwise coprime, i.e. such that ai + aj = R for all i 6= j, and let
b = a1 · · · an. The canonical projections induce a ring isomorphism

R/b '
m∏
i=1

R/ai.

Definition 3.2.4. Let a ⊂ R be a nontrivial ideal of R.

1. One says that a is a prime ideal (or just a prime, for short) of R if for
all r, s ∈ R, rs ∈ R implies r ∈ R or s ∈ R.

2. One says that a is a maximal ideal of R if whenever b is an ideal such
that a ⊂ b ⊂ R, then b = a or b = R.

Theorem 3.2.5. Let a ⊂ R be a nontrivial ideal of R.

1. a is prime if and only if the quotient ring R/a is an integral domain.

2. a is maximal if and only if the quotient ring R/a is a field.

Proof. Whenever x ∈ R, let x denote the class of x in R/a.

1. a is prime if and only if rs ∈ a ⇒ r ∈ a or s ∈ a, if and only if
rs = 0⇒ r = 0 or s = 0, if and only if R/a is an integral domain.

2. Suppose a is maximal, and let r ∈ R/a be nonzero. Then r 6∈ a, so
the ideal spanned by r and a must be the whole of R. In particular
this ideal contains 1, so that there exist s ∈ R and a ∈ a such that
1 = rs+ a. But then we have rs = 1, which proves that R/a is a field.

Conversely, suppose that R/a is a field, and let b be an ideal such that
a ( b, and let us prove that b = R. There exists r ∈ b, r 6∈ a. We
then have r 6= 0, so there exists s ∈ R such that rs = 1 since R/a is a
field. This means that rs = 1 + a for some a ∈ a, so 1 = rs − a ∈ b,
which proves that b = R.

Corollary 3.2.6. Every maximal ideal is prime.

Example 3.2.7. Let R = Z[x], and let p ∈ Z be a prime number. Then
the ideals (p) and (x) are prime but are not maximal, because the respective
quotients, Fp[x] and Z, are integral domains but are not fields. On the
contrary, the ideal (p, x) is maximal, because the corresponding quotient
is Fp, which is a field.
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3.3 Integral closure

Definition 3.3.1. Let R ⊂ S be integral domains, and let s ∈ S. One says
that s is integral over R if there exists a nonzero monic polynomial P ∈ R[x]
such that P (s) = 0.

If every s ∈ S is integral over R, one says that S is an integral extension
of R.

Conversely, if every element of S which is integral over R lies in fact in R,
one says that R is integrally closed in S.

In particular, one says for short thatR is integrally closed if it is integrally
closed in its fraction field FracR.

Thus, for example, the set of the elements of a number field K which are
integral over Z is precisely ZK . Also, Z is integrally closed.

Example 3.3.2. The ring R = Z[
√

5] is not integrally closed. Indeed,

α = 1+
√

5
2

lies in FracR, and satisfies α2 − α− 1 = 0 so α is integral over R
(and even over Z), yet α 6∈ R.

Proposition 3.3.3. Every UFD is integrally closed.

Proof. LetR be a UFD, and let F = FracR be its field of fractions. We must
show that if α ∈ F satisfies P (α) = 0 for some nonzero monic polynomial

P (x) = xn +
n−1∑
j=0

rjx
j ∈ R[x],

then α lies in fact in R.
Since R is a UFD, we may write α = a/d, where a, d ∈ R are coprime.

Clearing denominators, we get

an + d

n−1∑
j=0

rja
jdn−1−j = 0,

which implies that d divides an. Therefore, d must be invertible in R.

Unfortunately, the converse does not hold.

Theorem 3.3.4. Let K be a number field, and let ZK be its ring of integers.
Then ZK is integrally closed.
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Proof. Let α ∈ K be such that there exists a nonzero monic polynomial
P (x) ∈ ZK [x] such that P (α) = 0. For each embedding σ of K into C, let
P σ(x) ∈ C[x] be the polynomial obtained by applying σ to the coefficients
of P (x). Then the coefficients of

Q(x) =
∏

σ : K↪→C

P σ(x)

lie in Q and are algebraic integers, so that Q(x) ∈ Z[x]. Besides, Q(x) is
clearly monic, and furthermore, if we embed K into C, we see that Q(α) = 0.
Therefore, α is an algebraic integer.

Corollary 3.3.5. Let O be an order in a number field K. Then O is inte-
grally closed if and only if O = ZK.

Remark 3.3.6. This proof, which I admit is not great, is not the standard
one. The usual way of proving this theorem consists in proving that when
we have integral domains R ⊂ S ⊂ T such that S is integral over R and T
is integral over S, then T is integral over R; unfortunately, the proof of this
fact requires using the notion of module over a ring, which is beyond the
scope of this course. For those of you who do know this theory, here is the
(of course non examinable) proof:

First, if R ⊂ S are two commutative rings, given finitely many elements
s1, · · · , sn ∈ S we have the equivalence

s1, · · · , sn integral over R ⇐⇒ R[s1, · · · , sn] is a finitely generated R-module.

Indeed, ⇒ is immediate from the definition of integrality, and ⇐ follows
from Cayley-Hamilton (cf. the proof of proposition 2.2.8). As a result, if we
suppose that R ⊂ S ⊂ T are such that S is integral over R and T is integral
over S, then for all t ∈ T , we have a relation tn +

∑n−1
i=0 sit

i = 0 for some
si ∈ S; if we let M = R[s0, · · · , sn−1], then M is a finitely generated R-
module, and M [t] is a finitely generated M -module, so that
M [t] = R[s0, · · · , sn−1, t] is a finitely generated R-module, which proves
that t is integral over R.
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3.4 Dedekind domains

Proposition 3.4.1. Let O be an order in a number field K, and let a be a
nonzero ideal of O. Then a is a lattice in K; in particular, the index [O : a]
is finite.

Proof. Let α ∈ a, α 6= 0, so that αZK ⊂ a ⊂ ZK . We know that ZK is
a lattice in K; let ω1, · · · , ωn be a Z-basis of it, where n = [K : Q]. Then
αω1, · · · , αωn is a Z-basis of αZK , which is thus also a lattice in K. Since a
is an additive subgroup of K which is cornered between the two lattices αZK
and ZK , it is itself a lattice.

This prompts the following definition.

Definition 3.4.2. Let O be an order in a number field K, and let a be a
nonzero ideal of O. The norm of a is the index [O : a]. It is denoted by
N(a) ∈ N. By convention the norm of the zero ideal is 0.

Proposition 3.4.3. Let O be an order in a number field K, and let a ⊂ O
be an ideal. Then N(a) ∈ a.

Proof. By definition, N(a) is the order of the finite additive group O/a, so
the image of the integer N(a) in O/a is 0 by Lagrange’s theorem.

Theorem 3.4.4. Let O be an order in a number field K, let α ∈ O, and
let a be the ideal αO of O. Then

N(a) = |NK
Q (α)|.

Proof. Let (ωj)16j6[K:Q] be a Z-basis of O. Then (αωj)16j6[K:Q] is a Z-basis
of a, and the change-of-basis matrix between these two bases is the matrix
of the multiplication-by-α map with respect to the basis (ωj)16j6[K:Q]. The
index [O : a] is the absolute value of the determinant of this matrix, but by
definition this determinant is NK

Q (α).

Lemma 3.4.5. Let O be an order in a number field K and let a ⊂ b ⊂ O
be ideals. Then N(b) divides N(a), with equality if and only if a = b.

Proof. Since a ⊂ b ⊂ O we have [O : a] = [O : b][b : a], that is N(a) =
N(b)[b : a]. This proves the divisibility, and there is equality if and only
if [b : a] = 1, if and only if a = b.
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Proposition 3.4.6. Let O be an order in a number field K, a ⊂ O an ideal,
and let α ∈ a, α 6= 0. Then N(a) divides |NK

Q (α)|, with equality if and only
if a = αO.

Proof. This follows immediately from Theorem 3.4.4 and Lemma 3.4.5.

Proposition 3.4.7. Let O be an order in a number field K. Then O is a
Noetherian ring.

Proof. Consider a chain of ideals a1 ⊂ a2 ⊂ · · · . The norms of these ideals
form a nondecreasing sequence of positive integers, hence stabilises, so by
Lemma 3.4.5 the chain of ideals must stabilise.

Lemma 3.4.8. Every finite integral domain is a field.

Proof. Let R be a finite integral domain, let r ∈ R be nonzero, and consider
the multiplication-by-r map

µr : R −→ R
x 7−→ rx

.

Since R is a domain, µr is injective. In addition R is finite, so µr is a
bijection. In particular, the element 1 has a preimage, which proves that r
is invertible.

Proposition 3.4.9. Let O be an order in a number field K. Then every
nonzero prime ideal of O is maximal.

Proof. Let p ⊂ O be a nonzero prime ideal. Then R = O/p is an integral
domain, and by Proposition 3.4.1 the ring R is finite. Lemma 3.4.8 proves
that R is a field and therefore p is a maximal ideal.

Definition 3.4.10. An integral domain R is called a Dedekind domain if
it is Noetherian, integrally closed, and if every nonzero prime ideal of R is
maximal.

Theorem 3.4.11. The ring of integers of a number field is a Dedekind do-
main.

Proof. This is the conjunction of Proposition 3.4.7, Theorem 3.3.4 and Propo-
sition 3.4.9.
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3.5 Factorisation theory in Dedekind domains

The reason why we introduced the notion of Dedekind domain is the following
major result.

Theorem 3.5.1. Let R be a Dedekind domain. Every ideal a of R is a
product of prime ideals,

a =
m∏
j=1

pj.

Furthermore, this factorisation is unique1.

Thanks to this theorem, we can perform arithmetic in a Dedekind domain,
but on ideals, not on numbers. The usual notions of divisibility, gcd, lcm...
can be translated in terms of operations on ideals:

Theorem 3.5.2. Let R be a Dedekind domain.

1. Let a, b be two ideals of R. Then a divides b (meaning there exists an
ideal c such that b = ac) if and only if a ⊃ b.

2. If a1, · · · , am are ideals of R, then

gcd(a1, · · · , am) = a1 + · · ·+ am

and
lcm(a1, · · · , am) = a1 ∩ · · · ∩ am.

Example 3.5.3. For R = Z, this translates into the following more familiar
statements:

a | b⇐⇒ aZ ⊃ bZ,
gcd(a1, · · · , am)Z = a1Z + · · ·+ amZ,

and
lcm(a1, · · · , am)Z = a1Z ∩ · · · ∩ amZ.

Example 3.5.4. Let p, p′ be two prime ideals. If p and p′ are distinct, then
they are coprime, which means that p + p′ = ZK and that p ∩ p′ = pp′. On
the other hand, if p = p′, then we have p + p = p and p ∩ p = p. Note
that p2 is an indeal contained in p; in fact, this containment is strict by the
uniqueness of the factorisation of ideals.

1Up to the order of the terms, of course.
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In fact, it can be shown that the factorisation property presented in the-
orem 3.5.1 characterises Dedekind domains. Briefly,

• because containment means divisibility, the fact that ideals factor into
primes implies that the domain is Noetherian,

• if a domain is not integrally closed, then using elements of the field
of fractions which are integral but not in the domain, one can exhibit
ideals which do not factor properly,

• in view of the equivalence between containment and divisibility, the
fact that nonzero prime ideals play the role of irreducibles means that
they are maximal.

As a first application of this, we can prove that although Dedekind do-
mains are not in general principal, every ideal can be generated by at most
two elements. In fact, even more is true:

Proposition 3.5.5. Let a be an ideal in a Dedekind domain R, and let
α ∈ a, α 6= 0. Then there exists β ∈ a such that a = (α, β).

Proof. Since α ∈ a, we have αR ⊂ a, so in the factorisations

αR =
m∏
j=1

p
aj
j , a =

m∏
j=1

p
ej
j ,

we have ej 6 aj for all j. By uniqueness of the factorisation, for each j there

exists βj ∈ p
ej
j \ p

ej+1
j , and by Chinese remainders we may find β ∈ R such

that for all j, β ≡ βj mod p
ej+1
j . In particular, for all j we have β ∈ p

ej
j \p

ej+1
j ,

so we have the factorisation

βR = b

m∏
j=1

p
ej
j ,

where b is coprime to the pj. As a result, we have

(α, β) = αR+ βR = gcd(αR, βR) =
m∏
j=1

p
ej
j = a,

as wanted.
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We now take R = ZK to be the ring of integers of some number field K.

Theorem 3.5.6 (Multiplicativity of the norm). Let a, b ⊂ ZK be ideals of
the ring of integers of a number field K. Then N(ab) = N(a)N(b).

Proof. It is enough to prove that

N

(
m∏
j=1

p
ej
j

)
=

m∏
j=1

N(pj)
ej

whenever the pj are pairwise distinct nonzero primes and the ej are positive
integers.

By uniqueness of factorisation we have peii + p
ej
j = ZK , i.e. the pj are

pairwise coprime. The Chinese remainder theorem 3.2.3 then tells us that

N

(
m∏
j=1

p
ej
j

)
=

m∏
j=1

N(p
ej
j ),

so to conclude we must show that N(p
ej
j ) = N(pj)

ej .
Let p ⊂ ZK be a nonzero prime. By uniqueness of the factorisation of

ideals, there exists π ∈ p \ p2. The factorisation of the ideal πZK must then
be πZK = pa, where the ideal a is coprime to p (else π would lie in p2), i.e.
a + p = ZK . Fix n ∈ N, and consider the homomorphism of additive groups

ZK/p
∼−→ pn/pn+1

x 7−→ πnx.

The kernel of this map is{
x ∈ ZK : πnx ∈ pn+1

}
/p =

{
x ∈ ZK : pn+1 | (πnx)

}
/p = p/p = {0}

so this homomorphism is injective, and its image is

(πnZK + pn+1)/pn+1 =
(
pn(a + p)

)
/pn+1 = pn/pn+1

so it is also surjective. It is thus an isomorphism, so that

[pn : pn+1] = #pn/pn+1 = #ZK/p = N(p)

for all n ∈ N. As a result, for all e ∈ N, in view of the chain ZK ) p ) · · · ) pe

we have

N(pe) = [ZK : pe] = [ZK : p][p : p2] · · · [pe−1 : pe] = N(p)e,

so the proof is complete.
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Example 3.5.7 (Failure of multiplicativity for a non-maximal order).
Let O = Z[α] where α =

√
−3 and let a = (2, α + 1) = 2Z + (α + 1)Z ⊂ O.

Then N(a) =

∣∣∣∣det

(
2 1
0 1

)∣∣∣∣ = 2 but a2 = (2, α + 1)2 = (4, 2α + 2, 2α − 2) =

4Z + (2α + 2)Z so N(a2) =

∣∣∣∣det

(
4 2
0 2

)∣∣∣∣ = 8.

3.6 Decomposition of primes

Since the primes (meaning the prime ideals) of ZK are the building blocks of
all the nonzero ideals, they deserve particular attention.

Lemma 3.6.1. Let a ⊂ ZK be a nonzero ideal. Then a ∩ Z is an ideal of Z
of the form aZ for some nonzero a ∈ N. Besides, if a is a prime ideal, then a
is a prime number.

Proof. Let f : Z→ ZK/a be the canonical ring homomorphism. Then a∩Z =
ker f , so it is an ideal of Z. Since Z is a PID, this ideal is of the form aZ
with a ∈ Z, and we can assume a ≥ 0.

Now f induces an injective ring homomorphism f̄ : Z/aZ ↪→ ZK/a. Since
the ring ZK/a is finite by Proposition 3.4.1, the ring Z/aZ is also finite
so a > 0.

If a is prime, then ZK/a is an integral domain, so the subring Z/aZ is
also an integral domain and therefore aZ is prime.

Remark 3.6.2. Another way to see this is that a is the characteristic of the
finite ring ZK/a, and is therefore nonzero; moreover it is a prime number
when ZK/a is an integral domain.

Definition 3.6.3. Let p be a prime of ZK , and let p ∈ N be the prime
number such that p∩Z = pZ. One says that p is the prime number below p,
and that p is a prime ideal above p.

By Lemma 3.4.8, for all nonzero prime p, the quotient ZK/p is a finite
field, called the residue field of p. The characteristic of this field is by defi-
nition the prime number p below p, so this field is isomorphic to Fq, where
q = pf for some f ∈ N called the residue degree (some people say inertial
degree) of p.
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Remark 3.6.4. The prime number below a prime ideal p is the unique p
such that N(p) is a power of p.

By definition, an integer is a prime if it does not factor in Z. It may
very well, however, factor in the larger ring ZK . The following results tells
us what kind of decompositions occur.

Theorem 3.6.5. Let p ∈ N be prime, and let K be a number field. Then we
have the factorisation

pZK =

g∏
j=1

p
ej
j ,

where the pj are exactly the primes of ZK above p and ej > 1 for all j.
Besides, if we let fj be the inertial degree of pj, we have the identity

g∑
j=1

ejfj = [K : Q].

Proof. Let p be an ideal above p. Then by definition p ⊃ pZK , so p divides
pZK . This proves that the integers ej are all nonzero.

Next, by definition, we have N(pj) = pfj , so

N

(
g∏
j=1

p
ej
j

)
=

g∏
j=1

N(pj)
ej =

g∏
j=1

pejfj

by theorem 3.5.6. On the other hand, we also have

N(pZK) = |NK
Q (p)| = |p[K:Q]|

by theorem 3.4.4, so the identity follows.

Definition 3.6.6. The ramification index of a prime p is the exponent e > 1
of p in the decomposition of pZK , where p is the prime below p. If e > 2, we
say that p is ramified ; otherwise we say that p is unramified. Let n = [K : Q].

• If there exists at least one ramified prime p above p, we say that p
ramifies in K (or that K ramifies at p).

• If pZK = pn (so that the ramification index of p is e = n and its residue
degree is f = 1), then we say that p is totally ramified in K (or that K
is totally ramified at p).
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• When pZK is a prime ideal, so that the above decomposition is simply
pZK = p, then we say that p is inert in K (or that K is inert at p).

• If p is neither inert nor ramified, we say that p splits in K (or that K
splits at p).

• If we have a decomposition pZK =
∏n

j=1 pj with the pj all distinct (so
that their residue degrees are all 1), we say that p splits completely
in K (or that K splits completely at p).

3.7 Practical factorisation

We are now going to see how to factor ideals explicitly. Let us start with the
ideals pZK , where p ∈ N is prime.

Theorem 3.7.1. Let K be a number field, p ∈ N be prime, O be an order
in K of the form Z[α] for some α ∈ ZK, and let m(x) ∈ Z[x] be the minimal
polynomial of α over Q. If O is p-maximal, and if

m(x) =

g∏
j=1

mj(x)ej

is the full factorisation of m(x) = m(x) mod p (that is to say, in Fp[x]), then
the full factorisation of pZK is

pZK =

g∏
j=1

p
ej
j ,

where pj =
(
p,mj(α)

)
and mj(x) denotes any lift of mj(x) to Z[x]. Besides,

the residue degree of pj is degmj(x).

Proof. (non-examinable) First, the prime divisors of pZK are in one-to-one
correspondence with quotients of ZK/pZK that are integral domains. The
correspondence is given by

p 7→ (ZK/pZK → ZK/p)

and
(ZK/pZK → A) 7→ ker(ZK → ZK/pZK → A).
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Since O is maximal at p, if we expressed a Z-basis of ZK in terms of a
Z-basis of O, we would get coefficients which are rational numbers whose de-
nominators are all coprime with p. As a result, the map O/pO −→ ZK/pZK
induced by the inclusion O ⊂ ZK is an isomorphism.

We have
O = Z[α] ∼= Z[x]/

(
m(x)

)
,

and therefore

ZK/pZK ∼= O/pO ∼= Z[x]/
(
p,m(x)

)
∼= Fp[x]/

(
m(x)

)
= Fp[x]/

g∏
j=1

(
mj(x)ej

)
∼=

g∏
j=1

Fp[x]/
(
mj(x)ej

)
.

In every quotient of ZK/pZK we have the relation
∏g

j=1 mj(x)ej = 0, so
in every such quotient that is an integral domain one of the mj(x) is zero,
that is, every such quotient is of the form Fj = Fp[x]/

(
mj(x)

)
for some j.

Such an Fj is indeed a field since mj(x) is irreducible, and the corresponding
prime ideal is the kernel pj = (p,mj(α)) of the morphism ZK → Fj. The
residue field Fj has degree degmj(x) over Fp, which proves the claim about
the residue degree.

Finally we must prove that the ramification indices are the ej. First write

pZK =

g∏
j=1

p
e′j
j .

Then we have an isomorphism

g∏
j=1

ZK/p
e′j
j
∼= ZK/pZK ∼=

g∏
j=1

Fp[x]/
(
mj(x)ej

)
,

hence for all j we get an isomorphism of the minimal quotient in which the
image of mj(α) is nilpotent:

ZK/p
e′j
j
∼= Fp[x]/

(
mj(x)ej

)
,

and we get e′j = ej by comparing cardinalities.
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In general, to factor an integral ideal a, we can use the fact that the
norm is multiplicative, and that every prime ideal having norm a power of
a prime p appears in the factorisation of pZK . The method consists in first
factoring N(a) in Z; then, for each prime p that appears in the factorisation,
decomposing pZK ; and finally collecting the prime ideals that divide a.

Example 3.7.2. Let us come back to the problem of factoring 6 in
Z[
√
−5] = ZK , where K = Q(

√
−5). Since

x2 + 5 ≡ (x+ 1)2 mod 2

we have
2ZK = (2, 1 +

√
−5)2,

and 2 is totally ramified in K.
Since

x2 + 5 ≡ (x− 1)(x+ 1) mod 3,

we have
3ZK = (3, 1 +

√
−5)(3, 1−

√
−5),

and 3 is totally split in K.
We obtain

6ZK = (2ZK)(3ZK) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

Furthermore, since the ideals (1 ±
√
−5)ZK are of norm 6, they must each

factor into the product of a prime of norm 2 times a prime of norm 3, namely

(1±
√
−5)ZK = (2, 1 +

√
−5)(3, 1±

√
−5).

Thus the factorisations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

lead to the same decomposition into primes, as they should. Kummer’s
insight about “ideal numbers” was right!

Example 3.7.3. Consider the number field K = Q(α) where α is a root
of f(x) = x3 − x + 1. For K to be well-defined, we need to prove that x3 −
x + 1 is irreducible; in fact it is already irreducible modulo 2 as we will see
below. The discriminant of f(x) is −4(−1)3 − 27 · 12 = −23, and this is also
the discriminant of Z[α]. Since the index f = [ZK : Z[α]] satisfies −23 =
discZ[α] = f 2 discK, we must have f = 1: we have ZK = Z[α]. Let us look
at some decompositions of primes that can occur.
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• at 2: the polynomial x3 − x+ 1 has no root in F2. If it were reducible
over F2, it would have a linear factor. So f(x) mod 2 is irreducible
and 2ZK is prime: it has residue degree 3 and ramification index 1: the
prime 2 is inert in K.

• at 5: the polynomial x3 − x + 1 has 3 as a root modulo 5, yielding a
factorisation f(x) ≡ (x−3)(x2 +3x+3) mod 5. Since x2 +3x+3 has no
root modulo 5 and has degree 2, it is irreducible. We obtain 5ZK = pp′

where p = (5, α − 3) has residue degree 1 and ramification index 1
and p′ = (5, α2 + 3α+ 3) has residue degree 2 and ramification index 1:
the prime 5 is split but not totally split in K.

• at 23: we have f(x) = (x+10)2(x+3) mod 23. We obtain 23ZK = q2q′

where q = (23, α + 10) has residue degree 1 and ramification index 2,
and q′ = (23, α+ 3) has residue degree 1 and ramification index 1: the
prime 23 is ramified but not totally ramified in K.

• at 59: we have f(x) = (x + 4)(x + 13)(x + 42) mod 59. We ob-
tain 59ZK = p1p2p3 where p1 = (59, α + 4) has residue degree 1 and
ramification index 1, p2 = (59, α+13) has residue degree 1 and ramifica-
tion index 1, and p3 = (59, α+42) has residue degree 1 and ramification
index 1: the prime 59 is totally split in K.

Example 3.7.4. Let K = Q(
√
−7) and let α =

√
−7+13

2
. Let us compute the

factorisation of the ideal a = (α) in ZK . Since −7 ≡ 1 mod 4 we have ZK =

Z[ω] where ω = 1+
√
−7

2
. Since α = ω + 6 ∈ ZK , a is an integral ideal of ZK .

We compute the norm of this ideal using Theorem 3.4.4:

N(a) =
∣∣NK

Q (α)
∣∣ =

1

4
(7 + 132) = 44 = 22 · 11.

From this we get that a is a product of some primes above 2 (one prime of
norm 4 or two primes of norm 2, possibly equal) and one prime above 11.
We therefore decompose the primes 2 and 11 in K. The minimal polynomial
of ω is m(x) = x2 − x+ 2 and ZK = Z[ω], so we can apply Theorem 3.7.1.

• p = 2: we have m(x) ≡ x(x − 1) mod 2, so 2 splits completely in K
and 2ZK = pp′ where p = (2, ω) and p′ = (2, ω − 1).

• p = 11: we have m(x) ≡ (x+ 4)(x+ 6) mod 11, so 11 splits completely
in K and 11ZK = qq′ where q = (11, ω + 4) and q′ = (11, ω + 6).
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Now we know that a is a product of two primes above 2 (since they both
have norm 2) and one prime above 11, and we must determine which ones.

We clearly have α = ω+2 ·3 ∈ p. On the other hand we have α = ω+6 ≡
1 mod p′ since ω ≡ 1 mod p′, so α /∈ p′, in other words p′ does not divide a.
So p divides a with exponent 2. In addition we have α = ω + 6 ∈ q′. We
conclude that a = p2q′.

Example 3.7.5. Letf(x) = x3 + x2 − 2x + 8, and let K = Q(α) where
f(α) = 0. We saw in example 2.3.14 that the order Z[α] is p-maximal for all
p 6= 2, so for instance we may compute that since f(x) remains irreducible
mod 3, the ideal 3ZK is prime, so that 3 is inert in K. Similarly, the full
factorisation of f(x) mod 5 is

f(x) ≡ (x+ 1)(x2 + 3) mod 5,

so
5ZK = (5, α + 1)(5, α2 + 3)

splits as the product of a prime of degree 1 times another prime of degree 2.
With the help of a computer, we can try increasing the value of p until we

find one which is totally split. We find that the smallest totally split p > 3
is p = 59, because

f(x) ≡ (x+ 11)(x+ 20)(x+ 29) mod 59

splits completely mod 59 but does not for any smaller p. In particular, we
have

59ZK = (59, α + 11)(59, α + 20)(59, α + 29),

a product of three distinct primes of degree 1.
Finally, we know from example 2.3.14 that discK = −503, so 503 is the

only prime p ∈ N which ramifies in K. More precisely, we can check that

f(x) = (x+ 354)2(x+ 299) mod 503,

so that
503ZK = (503, α + 354)2(503, α + 299).

However, we cannot see how 2ZK factors in ZK by factoring f(x) mod
2, because Z[α] is not maximal at 2. In principle, we could look for another
primitive element β ∈ ZK such that the order Z[β] is maximal at 2, and then
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determine the decomposition of 2ZK by factoring the minimal polynomial
of β mod 2. This approach usually works, but unfortunately it does not in
this particular case; indeed it can be proved that 2 splits completely in K,
so if Z[β] were maximal at 2, then the minimal polynomial of β would be
completely split and squarefree mod 2, which is impossible since the only
possible linear factors mod 2 are x and x + 1. Therefore, an order in this
field of the form Z[β] is never maximal at 2.

Remark 3.7.6. In the case when for some p ∈ N, no order of the form Z[β]
and maximal at p exists (or is known), it is still possible to determine explic-
itly the decomposition of pZK , but the method is much more complicated.

3.8 Ramification

Ramification is an important type of behaviour that can occur when decom-
posing rational primes in a number field. In this section we give a few more
properties of ramification.

Proposition 3.8.1. Let K ⊂ L be two number fields, and let p be a prime
number. If p ramifies in K then p ramifies in L.

Proof. Let

pZK =

g∏
i=1

peii

be the decomposition of pZK in prime ideals of ZK , and let, for each i,

piZL =

gi∏
j=1

P
ei,j
i,j

be the decomposition of the ideal piZL of ZL in prime ideals of ZL. We have
the decomposition

pZL =

g∏
i=1

(
gi∏
j=1

P
ei,j
i,j

)ei

=

g∏
i=1

gi∏
j=1

P
eiei,j
i,j .

In particular, if p ramifies in K, then one of the ei is at least 2, and hence Pi,1

appears with an exponent at least 2, so p ramifies in L.
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The case when p is totally ramified is a very special one, which allows
us in particular to take a nice shortcut when computing the ring of integers
of K.

Definition 3.8.2. Let P (x) = xn+
∑n−1

j=0 λjx
j ∈ Z[x] be a monic polynomial,

and let p ∈ N be a prime. We say that P (x) is Eisenstein at p if p divides
all the λj, but p2 - λ0.

Example 3.8.3. P (x) = x2−84x+90 is Eisenstein at 2, but not at 5 because
5 - 84, nor at 7 because 7 - 90, nor at 3 because 32 | 90.

Theorem 3.8.4 (Eisenstein’s criterion). Let p be a prime number, and
let P (x) ∈ Z[x] be a monic polynomial. If P (x) is Eisenstein at p, then it is
irreducible over Q (and thus also over Z). Moreover, let K = Q(α) where α
is an algebraic number such that P (α) = 0; then K is totally ramified at p
and the order Z[α] is maximal at p.

Remark 3.8.5 (non-examinable). Conversely, if K is a number field which
is totally ramified at p, then there exists a primitive element α ∈ ZK whose
minimal polynomial over Q is Eisenstein at p.

The proof of this theorem being a bit more technical than the rest of this
section, we only give it here for reference; it is not examinable.

Proof. Suppose that P (x) ∈ Z[x] is Eisenstein at p, and let n be its degree.
If P (x) = Q(x)R(x) were reducible over Z, then we would have Q(x)R(x) =
P (x) ≡ xn mod p, so that Q(x) ≡ xq and R(x) ≡ xr mod p for some nonzero
integers q, r. But this would mean that p divides the constant terms of
Q(x) and R(x), so that p2 would divide the constant term of P (x), which
contradicts the fact that P is Eisenstein at p. Therfore, P (x) is irreducible
over Z (and thus also over Q).

In particular, K = Q(α) is a well-defined number field of degree n. If the
order Z[α] were not maximal at p, then by Proposition 2.3.1 there would exist

integers λj not all divisible by p such that
∑n−1

j=0
λj
p
αj ∈ ZK is an integer.

Then, if j0 is the smallest integer such that p - λj, then after subtract an
element of Z[α] ⊂ ZK and multiplying by αn−1−j0 , we would get

λj0
p
αn−1 +

αn

p

n−j0−2∑
k=0

λj0+1+kα
k ∈ ZK .
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However, the relation P (α) = 0 and the fact that p divides the coefficients of

P (x) imply that αn

p
∈ Z[α] ⊂ ZK , so we would have

λj0
p
αn−1 ∈ ZK . Taking

the norm, this would mean that
λnj0

NK
Q (α)n−1

pn
∈ Z. Now, NK

Q (α) is, up to sign,

the constant coefficient of P (x), so it is of the form pq for some integer q ∈ Z
which is coprime to p. We would then have

λnj0
qn−1

p
∈ Z, a contradiction.

It follows that the order Z[α] is maximal at p, so we may apply theorem
3.7.1 below and deduce that since P (x) ≡ xn mod p, the decomposition of p
in K is pZK = pn, p = (p, α). In particular, p is totally ramified in K.

Conversely, suppose now that K is a number field in which p ∈ N is
totally ramified, say pZK = pn where n = [K : Q]. For nonzero x ∈ ZK , let
vp(x) be the largest nonnegative integer such that pvp(x) | xZK (i.e vp(x) is
the exponent of p in the factorisation of the ideal xZK), and set vp(0) = +∞.
Clearly, for every finite family of algebraic integers xi ∈ ZK , we have

vp

(∏
i

xi

)
=
∑
i

vp(xi) and vp

(∑
i

xi

)
> min

i
vp(xi).

Besides, if
∑

i xi = 0, then the minimum mini vp(xi) must be attained for at
least two values of i, for if not, say vp(x1) < vp(xi) for all i > 2 for instance,
then we would have

vp(x1) = vp

(
−
∑
i>2

xi

)
> min

i>2
vp(xi) > vp(x1),

a contradiction. Note that for all m ∈ Z, we have vp(m) = n · vp(m), where
vp(m) denotes the exponent of p in the factorisation of m in Z; in particular,
vp(p) = n.

Since p ∈ p, according to proposition 3.5.5 there exists α ∈ ZK such that
p = (p, α). This means that gcd(pZK , αZK) = p, so we must have vp(α) = 1.
Let P (x) = xm +

∑
i<m λix

i ∈ Z[x] be the minimal polynomial of α, where
m 6 n is the degree of α. Then, in the relation

αm +
∑
i<m

λiα
i = 0,

the minimum of vp must be attained at least twice; but since
vp(α

i) = i · vp(α) = i and p | vp(λi) for all i, this forces m = n and p | λi

59



for all i. In particular, this shows that α is a primitive element for K/Q.
Finally, the constant coefficient λ0 is, up to sign, the norm of α, which is, up
to sign, the norm of the ideal αZK by theorem 3.4.4. Since vp(α) = 1 and p
is the only prime above p, this proves that p2 - λ0, so that P (x) is Eisenstein
at p.

The following theorem is important but we will not prove it.

Theorem 3.8.6. The primes p ∈ Z which ramify in K are exactly the ones
which divide the discriminant of K. In particular, there are only finitely
many of them.

Remark 3.8.7. Theorem 3.7.1 yields a special case of this theorem. As-
sume ZK = Z[α] for some α ∈ ZK with minimal polynomial m(x) ∈ Z[x].
In this case, p is ramified in ZK if and only if m(x) has repeated fac-
tors modulo p, if and only if discm = 0 mod p. On the other hand we
have discm = discZ[α] = discK.

To conclude, we should mention the following result of Minkowski’s.

Theorem 3.8.8. If K 6' Q is a number field, then | discK| > 1, so there is
at least one ramified prime p ∈ N.

This can be rephrased by saying that there is no nontrival unramified
number field. We postpone the proof of this result to the next chapter.

3.9 The case of quadratic fields

In this section, we let K = Q(
√
d), where d ∈ Z is a squarefree integer

different from 0 and 1, and we let p ∈ N be an odd prime.
Recall that the Legendre symbol is defined by

(
d

p

)
=


0 if p | d,
+1 if d is a nonzero square mod p,
−1 if d is a nonzero nonsquare mod p.

The Legendre symbols tells us exactly how odd primes split in quadratic
field.

Theorem 3.9.1. Let p ∈ N, p 6= 2 be a prime.
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• If
(
d
p

)
= 0, then pZK = p2 is totally ramified in K.

• If
(
d
p

)
= +1, then pZK = p1p2 splits completely in K.

• If
(
d
p

)
= −1, then pZK = p is inert in K.

Proof. Since p 6= 2, the order Z[
√
d] is p-maximal, so theorem 3.7.1 applies,

and tells us that the decomposition of pZK is governed by the splitting be-

haviour of x2 − d mod p. When
(
d
p

)
= 0, +1, or −1, x2 − d mod p is

respectively a square, a product of two distinct linear factors, or irreducible,
hence the result.

Remark 3.9.2. For the case
(
d
p

)
= 0, we could also have used Eisentein’s

criterion (theorem 3.8.4).

The case of p = 2 is special and must be stated separately.

Theorem 3.9.3.

• If d ≡ 2 or 3 mod 4, then 2ZK = p2 is totally ramified in K.

• If d ≡ 1 mod 8, then 2ZK = p1p2 splits completely in K.

• If d ≡ 5 mod 8, then 2ZK = p is inert in K.

Proof. If d ≡ 2 or 3 mod 4, then theorem 2.4.2 tells us that ZK = Z[
√
d], so

we may apply theorem 3.7.1. Furthermore, we have x2−d ≡ (x−d)2 mod 2,
so 2 is totally ramified in K.

Let us now suppose that d ≡ 1 mod 4. Then ZK = Z
[

1+
√
d

2

]
, so the-

orem 3.7.1 does not apply to Z[
√
d]; on the other hand, it does apply to

Z
[

1+
√
d

2

]
. The minimal polynomial of 1+

√
d

2
is x2 − x − d−1

4
, which reduces

mod 2 to x(x− 1) when d ≡ 1 mod 8, and to x2 + x+ 1 which is irreducible
over F2 when d ≡ 5 mod 8.

The point of this is that, thanks to quadratic reciprocity, the decompo-
sition type of p can be read off the class of p modulo 4d. If you have not
seen quadratic reciprocity, do not worry: we will not ask you to use it in
assignments or exams.
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Example 3.9.4. In K = Q(
√
−5), for all prime p ∈ N we have

• p is (totally) split in K if and only if p ≡ 1, 3, 7 or 9 mod 20,

• p is inert in K if and only if p ≡ 11, 13, 17 or 19 mod 20,

• p is (totally) ramified in K if and only if p ≡ 2 or 5 mod 20.

3.10 The case of cyclotomic fields

In this section, we fix an integer n > 3, and we let K = Q(ζ), where ζ is a
primitive nth root of unity. The law governing the splitting of primes in K
is the following.

Theorem 3.10.1. Let p ∈ N be a prime number, let pv be the largest power
of p which divides n (so in particular v = 0 if p - n), let m = n/pv, and let
f ∈ N be the smallest nonzero integer such that pf ≡ 1 mod m, i.e. the order
of p in the group (Z/mZ)×. Then the decomposition of pZK is

pZK = (p1 · · · pg)ϕ(pv),

where the pj are distinct primes which are all of inertial degree f . In partic-
ular, g = ϕ(m)/f .

Proof. (Non examinable) We know from theorem 2.5.2 that ZK = Z[ζ], so
by theorem 3.7.1 the decomposition of pZK corresponds to the factorisation
of the cyclotomic polynomial Φn(x) mod p. When ξi (resp. ηj) ranges over
the set of primitive mth (resp. (pv)th) roots of unity, then the products ξiηj
range over the set of primitive nth roots of unity2, so

Φn(x) =
∏
i,j

(x− ξiηj).

Note that this factorisation takes place in ZK [x], so it makes sense to reduce
it modulo ideals of ZK . Let p be a prime of ZK above p. Since Φpv(x) |
(xp

v − 1) ≡ (x− 1)p
v

mod p and thus also mod p, we have Φpv(x) =
∏

j(x−

2This is just the isomorphism (Z/nZ)× ' (Z/mZ)×× (Z/pvZ)× from Chinese remain-
ders in disguise.
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ηj) ≡ (x− 1)ϕ(pv) mod p, and so ηj ≡ 1 mod p for all j since ZK/p is a field.
As a result,

Φn(x) ≡
∏
i,j

(x− ξi · 1) = Φm(x)ϕ(pv) mod p,

so the coefficients of the difference Φn(x)−Φm(x)ϕ(pv) lie in p ∩ Z = pZ, i.e.

Φn(x) ≡ Φm(x)ϕ(pv) mod p.

We are thus led to studying how Φm(x) factors mod p. Now, Φm(x) divides
xm − 1, which is coprime mod p with its derivative mxm−1 since p - m;
therefore xm − 1 is squarefree mod p, and so is Φm(x). In other words,
reduction mod p is injective on mth roots of unity, and in particular primitive
mth roots remain primitive mod p.

Since the multiplicative group of a finite field is cyclic, the field Fpa con-
tains a primitive mth root of unity if and only if m | pa − 1, if and only if
pa ≡ 1 mod m, if and only if f | a.

On the other hand, if Φm(x) ≡ f1(x) . . . fk(x) mod p is the factorisation
of Φm into irreducibles over Fp[x], then Φm has a root in Fpa if and only if
one of the fi has a root in Fpa , if and only if there is an i such that deg fi | a.

Putting these together, we obtain that for all i, f | deg fi. Moreover, the
field Fpf contains a primitive m-th root of unity, and therefore contains all
of them, so Φm splits completely over Fpf , and therefore we have deg fi = f
for all i. As a result, the primes above p all have inertial degree f . The fact
that g = ϕ(m)/f follows from Theorem 3.6.5 since

[K : Q] = ϕ(pvm) = ϕ(pv)ϕ(m)

as pv and m are coprime.

Example 3.10.2. Let n = 15 and K = Q(ζn). Let us compute the decom-
position of some small primes.

• p = 2: we have m = 15, and by computing the powers of 2 mod 15 we
see that it has order f = 4. We therefore have g = ϕ(m)/f = 8/4 = 2.
The decomposition of 2 is

2ZK = p2p
′
2,

and both these primes have residue degree 2 and ramification index 1.
The prime 2 splits in K but is not totally split.
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• p = 3: we have m = 5, and 3 mod 5 has order f = 4. We therefore
have g = ϕ(m)/f = 4/4 = 1. The decomposition of 3 is

3ZK = p2
3 since ϕ(3) = 2,

and p3 has residue degree 4 and ramification index 2. The prime 3 is
ramified but not totally ramified in K.

• p = 5: we have m = 3, and 5 ≡ −1 mod 3 has order f = 2. We
therefore have g = ϕ(m)/f = 2/2 = 1. The decomposition of 5 is

5ZK = p4
5 since ϕ(5) = 4,

and p5 has residue degree 2 and ramification index 4. The prime 5 is
ramified but not totally ramified in K.

Corollary 3.10.3. A prime p ∈ N splits completely in K if and only if
p ≡ 1 mod n.

Corollary 3.10.4. A prime p ∈ N ramifies in K if and only if it divides n,
except for p = 2, which ramifies in K if and only if 4 | n.

This last point was already more or less obvious from the formula for
discK from theorem 2.5.2. In the case when n = pv is itself a prime power,
we can say a little more:

Theorem 3.10.5. If n = pv, then pZK = (ζ − 1)ϕ(n). In particular, p is
totally ramified in K. Moreover, the minimal polynomial Φn(x+ 1) of ζ − 1
is Eisenstein at p.

Proof. We already know that p is totally ramified by Theorem 3.10.1, and
that pZK = pϕ(n) where p = (p, ζ − 1), since Φn(x) ≡ (x− 1)ϕ(n) mod p. We
have

Φn(x+ 1) ≡ xϕ(n) mod p.

Besides,

Φn =
xp

v − 1

xpv−1 − 1
=

p−1∑
j=0

xp
v−1j,

so the constant term of Φn(x + 1) is Φn(1) = p, so that NK
Q (ζ − 1) = ±p.

Therefore, Φn(x+1) is indeed Eisenstein at p. In addition, the inertial degree
of the prime p is 1 so its norm is p, and since ζ − 1 ∈ p has norm ±p, we can
conclude that p = (ζ − 1).
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Chapter 4

The class group

4.1 UFDs. vs. PID. vs. Dedekind domains

Dedekind domains are in general not principal ideal domains. In fact,

Proposition 4.1.1. A Dedekind domain is a PID if and only if it is a UFD.

Proof. Every PID is a UFD. Conversely, let R be a Dedekind domain which
is a UFD, let a be a nonzero ideal of R, and let α ∈ a, α 6= 0. Factor α into
irreducibles

α =
m∏
j=1

π
aj
j .

Since the πj are irreducible and R is a UFD, the ideals (πj) are prime, so

m∏
j=1

(πj)
aj

is the decomposition of the ideal (α) into primes. Since a divides (α), we
have

a =
m∏
j=1

(πj)
ej

for some ej 6 aj. It follows that

a =

(
m∏
j=1

π
ej
j

)
is principal. Therefore R is a PID as claimed.
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As we saw in Example 3.7.2, there are number fields whose ring of integers
is not a PID. We would like to be able to decide whether such a ring of integers
is a PID. In fact, we would like to have a way of deciding whether, in certain
situations where we are not working with a PID, we can use factorisation
techniques to prove results about algebraic integers. In this chapter we will
introduce a tool to do this: the class group.

4.2 Ideal inversion

Definition 4.2.1. Let K be a number field. A fractional ideal of K (or of
ZK) is a lattice in K of the form 1

d
a =

{
α
d
, α ∈ a

}
for some ideal a ⊂ ZK .

To avoid confusion, ideals of ZK in the usual sense are also called integral
ideals.

Example 4.2.2. The fractional ideals of Q are the xZ, x ∈ Q×.

The sum and product of a finite family of fractional ideals are defined
the same way as for integral ideals, and are fractional ideals. More generally,
the notations (α) = αZK and (α1, · · · , αm) = (α1) + · · ·+ (αm) initially used
for integral ideals (so for α, α1, · · · , αm ∈ ZK) can be extended to fractional
ideals, i.e. to α, α1, . . . , αm ∈ K×. For instance, the fractional ideal generated
by an element α ∈ K× is

(α) = αZK ⊂ K.

Indeed, it is clear by lemma 2.2.16 that (α1, . . . , αm) is a fractional ideal for
all α1, . . . , αm ∈ K×. It is also clear that this ideal is an integral ideal if and
only if α1, . . . , αm lie all in ZK .

Theorem 4.2.3. Let K be a number field. Every fractional ideal a of K is
invertible, meaning there exists a fractional ideal b such that ab = ZK. This
ideal b is unique, and is denoted by a−1.

Proof. It is enough to show that every nonzero integral ideal is invertible as
a fractional ideal. Indeed, every fractional ideal b is by definition of the form
1
d
a for some nonzero integer d ∈ N and nonzero integral ideal a ⊆ ZK , but

if a−1 is an inverse of a, then clearly da−1 is an inverse of b. So let a be a
nonzero integral ideal. Then N(a) ∈ a by proposition 3.4.3, so a | N(a)ZK ,
which means that there exists an ideal b such that ab = N(a)ZK . As a result,

1
N(a)

b is an inverse of a. The fact that inverses are unique follows from the
associativity of ideal multiplication.
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Remark 4.2.4. One can prove that

a−1 = {x ∈ K | xa ⊂ ZK}.

Remark 4.2.5. Clearly, the inverse of an integral ideal contains ZK , and
vice versa.

Definition 4.2.6. LetK be a number field. The group of fractional ideals IK
is the set of fractional ideals of K, equipped with ideal multiplication.

Proposition 4.2.7. Let K be a number field. Every fractional ideal a of K
admits a unique factorisation

a =
∏
i

peii

where ei ∈ Z and pi are prime ideals of ZK.

Proof. Let a = 1
d
b where d ∈ Z>0 and b is an integral ideal. By factoring b

and (d) we obtain a factorisation of a. The uniqueness statement follows
from uniqueness of factorisations of integral ideals.

Remarks 4.2.8.

• Proposition 4.2.7 says that we have an isomorphism of abelian groups

IK ∼=
⊕

p prime

Z.

• To compute the factorisation of a fractional ideal, just put it in the
form 1

d
a with d ∈ N and a integral, factor a and d separately, and

divide their factorisations.

4.3 The class group

Recall that in a ring R we say that an ideal a ⊂ R is principal if it is
generated by one element, i.e. if there is x ∈ R such that a = xZK .

Definition 4.3.1. Let K be a number field, and let a ⊂ K be a fractional
ideal. We say that a is principal if it is generated by one element, i.e. if there
is x ∈ K× such that a = xZK .
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Note that for an integral ideal, it is not clear that this is the same notion
as before since we allow generators that are not integers. However, we have
the following.

Lemma 4.3.2. Let K be a number field, and let a ⊂ ZK be an integral ideal.
Then a is principal as a fractional ideal if and only if it is principal in the
usual sense.

Proof. Assume that a is principal, and let x ∈ K× be a generator. Then xZK =
a ⊂ ZK , so that x is an algebraic integer. The converse is clear.

Example 4.3.3. Let K = Q(
√
−5), so that ZK = Z[

√
−5] and discK =

−20. Let p2 (resp. p5) be the unique prime above 2 (resp. above 5) com-
ing from the decomposition of those primes (Theorems 3.9.1 and 3.9.3).
Since N(p2) = 2, if p2 admitted a generator x +

√
−5y ∈ ZK then the

integers x, y have to satisfy NK
Q (x+

√
−5y) = x2 + 5y2 = 2, which is clearly

impossible. So p2 is not principal. On the other hand, p5 = (
√
−5) is princi-

pal. However, p2
2 = (2) is principal.

Example 4.3.4. Let K = Q(
√
−23), so that ZK = Z[ω] where ω = 1+

√
−23

2
,

and discK = −23. Since −23 ≡ 1 mod 8, the prime 2 = p2p
′
2 splits com-

pletely in K by Theorem 3.9.3. To see whether p2 is principal, let us compute
the norm of a generic element z = x+ ωy ∈ ZK . We have

NK
Q (z) = (x+ 1

2
y)2 +

23

4
y2 = x2 + xy + 6y2.

If NK
Q (z) = 2, then 23

4
y2 ≤ 2 so |y| ≤ 2

√
2
23
≈ 0.59. So we must have y = 0,

but then z ∈ Z cannot have norm 2. Therefore p2 is not principal.
In the same way, if p2

2 were principal, then its generator z would have
norm 4, but again |y| ≤ 2√

23
≈ 0.83 and z has to be an integer. Therefore

the only element of norm 4 are ±2, but (2) = p2p
′
2 6= p2

2 by uniqueness of
factorisation.

However, for (x, y) = (1, 1) we get an element z /∈ Z of norm 8. The
ideals of norm 8 are p3

2, p2
2p
′
2 = 2p2, p2p

′
2

2 = 2p′2 and p′2
3. Since z is not

in 2ZK (because its coefficients on the Z-basis of ZK are not divisible by 2),
the ideal (z) cannot be 2p2 or 2p′2. To determine whether (z) is p3

2 or p′2
3, we

must distinguish them by giving explicit generators.
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The minimal polynomial of ω is x2 − x + 6, which factors modulo 2
as x(x − 1) mod 2. We have p2 = (2, ω) and p′2 = (2, ω − 1). Now z =
ω + 1 = ω − 1 + 2 ∈ p′2, so that (z) = p′2

3.
Finally, (8/z) = (p2p

′
2)3/p′2

3 = p3
2 is principal.

In the last two examples, for each ideal we considered, a power of that
ideal was principal. This is a general phenomenon, and suggests that we
should look at the multiplicative structure of ideals and principal ideals.
This motivates the following definition.

Definition 4.3.5. Let K be a number field. Let IK be the group of fractional
ideals of K and PK be the subgroup of principal fractional ideals of K. The
class group of K is

Cl(K) = IK/PK .

An ideal class is a class in this quotient. We say that two ideals are equivalent
if they are in the same class. We write [a] for the ideal class of the fractional
ideal a.

With this definition, ZK is a PID if and only if Cl(K) is trivial: we
say that the class group measures the obstruction for ZK to be a PID. By
definition, a fractional ideal a is principal if and only if the class [a] is trivial.

Note that every ideal class is represented by an integral ideal: a fractional
ideal 1

d
a with a ⊂ ZK is in the same class as a.

4.4 Finiteness of the class group: the Minkowski

bound

The most important result about the class group is that it is always finite.

Theorem 4.4.1 (Minkowski). Let K be a number field of signature (r1, r2)
and degree n = r1 + 2r2. Let

MK =
n!

nn

(
4

π

)r2√
| discK|.

Then every ideal class is represented by an integral ideal of norm at most MK.

The number MK is called the Minkowski bound (or the Minkowski con-
stant). We will prove this theorem after introducing “geometry of numbers”
techniques in chapter 6.
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Corollary 4.4.2. The class group Cl(K) is finite.

Proof. It suffices to prove that there are finitely many integral ideals of a
given norm, but that follows from the factorisation theorem.

Because of this finiteness result, the following definition makes sense.

Definition 4.4.3. The class number hK of K is the order of Cl(K).

Corollary 4.4.4. The class group of K is generated by the classes of the
prime ideals of norm at most MK.

Proof. By the factorisation theorem, every integral ideal of norm at most MK

is a product of the primes of norm at most MK . Passing to the quotient gives
the result.

As claimed, we obtain that every ideal has a power that is principal.

Corollary 4.4.5. For every fractional ideal a of K, the fractional ideal ahK

is principal.

Proof. Since the group Cl(K) is finite, every element has finite order, and
that order is a divisor of the order hK of the group.

Corollary 4.4.6. For every fractional ideal a of K and every integer m
coprime to hK, if am is principal then a is principal.

Proof. Since m is coprime to hK , there exists integers u, v ∈ Z such that um+
vhK = 1. We get

[a] = [a]um+vhK = ([a]m)u([a]hK )v = 1,

where [a]m = 1 by hypothesis and [a]hK = 1 by Corollary 4.4.5. This says
exactly that a is principal.

Theorem 3.8.8 is now a consequence of

Corollary 4.4.7. If K is a number field of degree n ≥ 2 and discrimi-
nant discK, then

| discK| ≥ 4

e3

(
πe3/2

4

)n
> 1.
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Proof. Since every integral ideal has norm at least one, we have MK ≥ 1.
We can rewrite this as

| discK| ≥ n2n

(n!)2

(π
4

)2r2
≥ n2n

(n!)2

(π
4

)n
·

Let un = n2n

(n!)2

(
π
4

)n
. For all n ≥ 2 we have

un+1

un
=
π

4

(
1 +

1

n

)2n

=
π

4
exp

(
2n log

(
1 +

1

n

))
≥ π

4
exp

(
2n
( 1

n
− 1

2n2

))
=
π

4
exp
(

2− 1

n

)
≥ π

4
exp
(3

2

)
.

Since u2 = π2/4, we obtain the result.

For examples of computations of class groups, see Section 7.3.

4.5 Applications: Diophantine equations

4.5.1 Sums of two squares

The problem in this section is to determine the integers that are sums of
two squares. In other words, for each integer n ∈ Z we want to determine
whether the equation

x2 + y2 = n, x, y ∈ Z (4.1)

has a solution. An obvious necessary condition is that n ≥ 0. Moreover, since
Equation 4.1 clearly has a solution for n = 0, we can assume that n > 0. To
study this equation, we remark that we can factor it as

n = x2 + y2 = (x+ yi)(x− yi) = N
Q(i)
Q (x+ yi), x, y ∈ Z.

Since the ring of integers of K = Q(i) is ZK = Z[i], we see that Equation 4.1
is actually a special case of a norm equation:

NK
Q (z) = n, z ∈ ZK . (4.2)

What we are going to see on this particular example is a general method to
solve norm equations, although we may need to adapt it to the particular
situation.
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Note that a nice consequence of Equation 4.2 is that the set of solutions
is multiplicative: a product of solutions is again a solution. This was not
obvious from Equation 4.1.

The first step is to find which positive integers n are the norm of an
integral ideal in ZK .

Lemma 4.5.1. Let n ∈ Z>0, and let n =
∏

i p
ai
i be its factorisation into

distinct primes. Then n is the norm of an integral ideal in Z[i] if and only
if for every pi that is inert in K, the exponent ai is even.

Proof. Let a =
∏

j q
bj
j be an integral ideal of ZK , and for all j let qj be the

prime below qj and fj be the inertial degree of qj, i.e. fj = 2 if qj is inert
and fj = 1 otherwise. Then we have

N(a) =
∏
j

q
fjbj
j ,

so the condition of the lemma is necessary.
Let us prove that the condition is sufficient. By multiplicativity of the

norm, it is enough to prove it for n a prime power, say n = pa. If p is
not inert then there is a prime p above p of inertial degree 1, and hence of
norm p, so that N(pa) = pa. If p is inert, the condition says that a = 2b is
even, and N

(
(p)b

)
= pa.

Theorem 4.5.2. An integer n > 0 is a sum of two squares if and only if for
every prime p dividing n and congruent to 3 modulo 4, the exponent of p in
the factorisation of n is even.

Proof. First, note that a prime number p is inert in K if and only if
(−1
p

)
=

−1, if and only if p ≡ 3 mod 4.
By Lemma 4.5.1, the condition is necessary. Conversely, if n satisfies

the condition, then by Lemma 4.5.1 there exists an integral ideal a such
that N(a) = n. But we have seen that hK = 1, so a is principal: let z be
a generator of a, so that z ∈ ZK . Then n = N(a) = N(zZK) = |NK

Q (z)| =
NK

Q (z) is a sum of two squares.

4.5.2 Another norm equation

Proposition 4.5.3. The integers of the form x2 + xy + 5y2 are exactly the
positive integers such that for every prime p | n such that p = 2 or that −19
is not a square mod p, the exponent of p in the factorisation of n is even.
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Proof. The statement suggests to look at K = Q(
√
−19). Since −19 is

squarefree and −19 ≡ 1 mod 4, we have ZK = Z[α] with α = 1+
√
−19

2
,

and discK = −19. The norm of a generic element z = x+ yα is

NK
Q (z) = (x+ y

2
)2 + 19(y

2
)2 = x2 + xy + 5y2.

So the problem again reduces to a norm equation.

As before, a positive integer n is the norm of an integral ideal of ZK if
and only if every prime that is inert appears with an even exponent.

In order to apply the same method as before, we need to compute the
class group of K. Since the signature of K is (0, 1), the Minkowski bound
is MK = 2

π

√
19 ≈ 2.77 < 3, so the class group of K is generated by the

classes of ideals above 2. Since −19 ≡ 5 mod 19, the prime 2 is inert, so the
unique ideal above 2 is (2) which is principal, so hK = 1.

As before, since ZK is a PID, a positive integer is the norm of an integral
ideal of K if and only if it is the norm of an element of ZK .

Since 2 is inert, the condition on p in the Proposition is indeed equivalent
to p being inert.

Remark 4.5.4. The ring Z[1+
√
−19

2
] is a PID, but one can prove that it is

not Euclidean!1

4.5.3 A norm equation with a nontrivial class group

Let us see what happens when the class group is not trivial. Let us take
K = Q(

√
−23). We know from example 7.3.4 that ZK = Z[1+

√
−23

2
], that the

norm of x+ y 1+
√
−19

2
is x2 + xy+ 6y2, that 2 splits in K, say (2) = p2p

′
2, and

that Cl(K) ' Z/3Z is gnerated by the class of p2.
Because Cl(K) is not trivial, discussing which n ∈ N are of the form

x2 + xy + 6y2 is much more difficult in general, so we are going to restrict
ourselves to prime powers. So lets us fix a prime p ∈ N, and study the set of
n ∈ Z>0 such that pn is of the form x2 + xy + 6y2.

This is the case if and only if there exists an elemnt α ∈ ZK of norm pn,
and the ideal (α) is then an ideal of ZK of norm pn. Conversely, if there exits

1To see this, assume on the contrary that d is a Euclidean function, and
let α ∈ ZK \ Z×K minimizing d. Then every element of ZK/αZK can be represented by
an element of Z×K ∪{0}, whence |NK

Q (α)| = #(ZK/αZK) 6 1 + #Z×K = 3. But that is not
possible since 2 and 3 are both inert in K.
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a principal ideal of ZK of norm pn, then there exists an α ∈ ZK of norm ±pn;
but NK

Q (α) > 0 for all α ∈ K×, so the equation x2 + xy + 6y2 = pn has then
a solution. To sum up,

x2+xy+6y2 = pn has a solution ⇐⇒ ∃ ideal a ⊂ ZK principal and of norm pn.

Note that the condition N(a) = pn implies that the prime ideals dividing a
all lie above p. We now distinguish three cases.

• If p is inert in K (example : p = 5), then the only prime above p is
p = pZK , which has norm p2. So there exists an ideal of norm pn if and
only if n is even; besides, this ideal, if it exists, is always principal since
p = (p) is principal. As a conculsion, pn is of the form x2 + xy + 6y2 if
and only if n is even.

• If p splits in K, say pZK = pp′, then we have N(p) = N(p′) = p, so the
primes of norm pn are exactly the pap′b, where a and b are nonnegative
integers such that a+ b = n. We now distinguish two subcases:

– If p is principal (example: p = 59), then so is p′ since [p′] = [p]−1,
so pap′b is principal for all a and b. As a result, pn is of the form
x2 + xy + 6y2 for all n.

– If p is not principal (example: p = 2), then neither is p′ since
[p′] = [p]−1. Since Cl(K) ' Z/3Z, [p] and [p′] are inverse classes
of order 3 in Cl(K). Therefore, pap′b is principal if and only if
a ≡ b mod 3. As a result, pn is of the form x2 + xy + 6y2 if and
only if the equation {

a+ b = n
a ≡ b mod 3

has a solution with a, b ∈ Z>0. Now, if n = 1, this equation clearly
has no solution, whereas if n is even we can take a = b = n/2,
and finally if n is odd and > 3, we can write n = 2m + 3 and
take a = m + 3 and b = m. As a conculsion, pn is of the form
x2 + xy + 6y2 if and only if n 6= 1.

• If p is ramifies in K, say pZK = p2, then p | discK so p = 23. There
exits an element of norm 23 in ZK , namely

√
−23, and the ideal gen-

erated by this element, which has norm 23, can only be p. So p is
principal. Next, an ideal of norm pn can only be pn, which is principal
for all n. As a conculsion, 23n is of the form x2 + xy + 6y2 for all n.
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4.5.4 Mordell equations

A Mordell equation is a Diophantine equation of the form

y2 = x3 + k, x, y ∈ Z,

for some fixed k ∈ Z. Our plan to study these equations is to factor them in
the form

x3 = (y −
√
k)(y +

√
k),

and then hope that the factors on the right hand side must be cubes.

Lemma 4.5.5. If a and b are coprime integers, and ab is an n-th power,
then a and b are both of the form ±xn.

Proof. Up to sign, the factorisation of ab is the product of the factorisations
of a and b. Since ab is an n-th power, the exponent of every prime is a
multiple of n. Since the sets of primes dividing a and b are disjoint, the
exponents in their respective factorisation are multiples of n, so a and b are
of the form ±xn.

Example 4.5.6. Consider the Mordell equation

y2 = x3 + 16, x, y ∈ Z.

There are obvious solutions (0,±4). Are there any other ones?

We factor the equation as

x2 = (y − 4)(y + 4).

If y is odd, then a = y−4 and b = y+4 are coprime: any common divisor
would have to divide b − a = 8, but a and b are odd. By Lemma 4.5.5, a
and b are cubes, but they differ by 8. Since cubes get further and further
apart, there are no odd cubes that differ by 8. To see this, write the first few
odd cubes:

. . . ,−27,−1, 1, 27, . . .

and note that after these, the differences are larger than 8.
If y is even, then x is even, so y2 = x3 + 16 is divisible by 8 and y is

divisible by 4: y = 4y′. Then x3 = 16y′2 − 16 is divisible by 16, so x is also
a multiple of 4: x = 4x′. The equation now becomes

y′2 = 4x′3 + 1,
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so y′ is odd: y′ = 2y′′ + 1. Simplifying the equation we get

x′3 = y′′(y′′ + 1).

Since y′′ and y′′ + 1 are coprime, they are cubes. Since they differ by 1, we
must have y′′ = 0 or y′′ = −1. Again, to see this you can write down the
small cubes

. . . ,−8,−1, 0, 1, 8, . . .

and note that after these, the differences are larger than 1.
This gives y′ = ±1 and hence y = ±4, so the obvious solutions are the

only ones.

Proposition 4.5.7. Let K be a number field and let n ≥ 1 be coprime to
the class number of K. Let a, b ∈ ZK be such that the ideals (a) and (b)
are coprime and such that ab is an n-th power. Then a = uxn and b = vyn

where u, v ∈ Z×K are units and x, y ∈ ZK.

Proof. Since the ideal (ab) is the n-th power of an ideal and (a) is coprime
to (b), by the factorisation theorem 3.5.1, (a) and (b) are n-th powers of
ideals: (a) = an and (b) = bn. Now n is coprime to the class number, and
the n-th power of a and b are principal, so a and b are principal: a = (x)
and b = (y). This gives (a) = (xn) and (b) = (yn), so that a/xn and b/yn

are units in ZK .

Example 4.5.8. Consider the Mordell equation

y2 = x3 − 2, x, y ∈ Z.

Let K = Q(
√
−2). Since −2 ≡ 2 mod 4, we have ZK = Z[

√
−2] and the

discriminant of K is discK = −8. The Minkowski bound is

MK =
4

π

2!

22

√
| − 8| ≈ 1.8 < 2,

so the class group of K is trivial.

Suppose (x, y) is a solution. We have

x3 = (y −
√
−2)(y +

√
−2).

We want to prove that the ideals (y −
√
−2)ZK and (y +

√
−2)ZK are co-

prime. Let p be a prime dividing both these ideals. Then both y −
√
−2
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and y +
√
−2 belong to p, so their difference also does: p divides 2

√
−2.

Since NK
Q (2
√
−2) = 8 is a power of 2 and 2 decomposes as p2

2 in ZK , the
prime p must necessarily be p2.

We compute that p2 = (2,
√
−2). In particular,

√
−2 ∈ p2, so we

have y = (y +
√
−2) −

√
−2 ∈ p2. But y ∈ Z and p2 ∩ Z = 2Z (this

is just saying that the prime p2 lies above 2), so this implies that y is even.
The equation then implies that x is also even, but then reducing modulo 4
gives a contradiction. So p does not exist, and the ideals (y −

√
−2)ZK and

(y +
√
−2)ZK are indeed coprime.

We have Z×K = {±1} (we will see why in the next chapter), so every
element of Z×K is a cube. By Proposition 4.5.7, y +

√
−2 is thus a cube,

say (a+
√
−2b)3 with a, b ∈ Z. We have

(a+ b
√
−2)3 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2,

giving the equations

a(a2 − 6b2) = y and b(3a2 − 2b2) = 1.

By the second equation, we must have b = ±1.

• if b = 1, then 3a2 − 2b2 = 1 so 3a2 = 3 and a = ±1, giving the
solutions (x, y) = (3,±5).

• if b = −1, then 3a2 − 2b2 = −1, so 3a2 = 1, which is impossible.

In conclusion, the solutions of the equation are (x, y) = (3,±5).

4.5.5 The regular case of Fermat’s last theorem

Using Proposition 4.5.7, Kummer was able to fix Lamé’s approach to Fer-
mat’s equation. Namely he proved that if p ≥ 3 is regular, that is to say that
it does not divide the class number of Q(ζp) (which happens for all p ≤ 100
except 37, 59 and 67), then xp + yp = zp has non nontrivial solutions.
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Chapter 5

Units

As we saw in the last two chapters, using ideals we can recover a good
factorisation theory in number fields. But by going from elements to ideals,
we loose something: associate elements of ZK generate the same ideal. This
motivates the study of the unit group Z×K .

5.1 Units in a domain

In this section, we fix a commutative domain R.

Definition 5.1.1. Let u ∈ R. We say that u is a unit in R if it is invertible
in R, that is to say if there exists v ∈ R such that uv = 1.

Such a v is then necessarily unique1, and is denoted by v = u−1.
The set of units of R is denoted by R×. It is an Abelian group under

multiplication.

Example 5.1.2.

• For R = Z, we have R× = {±1}; this explains the term unit.

• If R is actually a field, then R× = R \ {0}.

• If R = k[X] is a polynomial ring over a field k, then R× = k× = k\{0}
consists of the nonzero constant polynomials.

1Indeed, if we have uv = uv′ = 1, then multiplying the identity uv = 1 by v′ yields
v = v′.
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Proposition 5.1.3. Let a, b ∈ R. Then the ideals aR and bR agree if and
only if a and b are associate in ring, that is to say if and only if there exists
a unit u ∈ R× such that b = au.

In practicular, aR = R if and only if a is a unit.

Proof. First, note that

bR ⊆ aR ⇐⇒ b ∈ aR ⇐⇒ ∃u ∈ R : b = au.

So if we have aR = bR, then there exist u, v ∈ R such that b = au and
a = bv, whence a(1− uv) = 0. If a 6= 0, this implies that uv = 1 since R is a
domain, so that u and v are units inR; and if a = 0, then b ∈ bR = aR = {0}
so b = 0, and a and b are then trivially associate.

Conversely, if b = au with u ∈ R×, then bR ⊆ aR; but we also have
a = bu−1 with u−1 ∈ R, so aR ⊆ bR.

5.2 Units in ZK
Definition 5.2.1. Let K be a number field. A unit in K is an element
of Z×K .

Note that we are slightly twisting the definition of unit here: in principle,
we should talk about units in ZK , not in K, but such is the terminology!

Proposition 5.2.2. Let K be a number field, and let α ∈ K. The following
are equivalent:

(i) α ∈ Z×K;

(ii) (α) = ZK;

(iii) α ∈ ZK and NK
Q (α) = ±1;

(iv) α ∈ ZK and the constant term of the minimal polynomial of α is ±1;

(v) α ∈ ZK and α−1 ∈ Z[α].

Proof.

• (i) ⇒ (ii). This is a special case of proposition 5.1.3.
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• (ii) ⇒ (iii). Since αZK = ZK , we have α ∈ ZK . By taking norms we
have |NK

Q (α)| = N((α)) = 1.

• (iii) ⇒ (iv). NK
Q (α) = ±1 is a power of this constant term, and both

are integers, so the constant term is also ±1.

• (iv) ⇒ (v). Let
∑n

i=0 aix
i be the minimal polynomial of α, where a0 =

±1 and an = 1. Write it as

α

(
n∑
i=1

aiα
i−1

)
= −± 1.

This proves that

α−1 = −±
n∑
i=1

aiα
i−1 ∈ Z[α],

• (v) ⇒ (i). Since α ∈ ZK and α−1 ∈ Z[α] ⊂ ZK , we have α ∈ Z×K .

Example 5.2.3.

1. φ = 1+
√

5
2
∈ Q(

√
5) is a unit of norm −1.

2. α = 3+4i
5
∈ Q(i) has norm 1 but is not a unit, since it is not an algebraic

integer.

Corollary 5.2.4. For all number fields K ⊂ L, we have

Z×K = K ∩ Z×L .

Proof. Since ZK = K ∩ ZL, this follows from (iv) of Proposition 5.2.2.

Corollary 5.2.5. Let O ⊂ ZK be an order. Then

O× = O ∩ Z×K .

Proof. The inclusion ⊂ is clear. The opposite inclusion follows from (v) of
Proposition 5.2.2.
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Proposition 5.2.6. Let K be a number field, let O be an order in K and
let f be the index of O in ZK. Then O× ⊂ Z×K is a subgroup of finite index,
and

[Z×K : O×] ≤ #(ZK/fZK)×.

Proof. Let φ : Z×K → (ZK/fZK)× be the reduction modulo f map. Let u ∈
kerφ. Then u− 1 ∈ fZK ⊂ O, so u ∈ O. This proves that

kerφ ⊂ O× ⊂ Z×K ,

so that
[Z×K : O×] ≤ [Z×K : kerφ] ≤ #(ZK/fZK)×,

where the last inequality holds because the induced map

Z×K/ kerφ→ (ZK/fZK)×

is injective.

5.3 Roots of unity

We will start by studying the simplest units: the ones that have finite order,
that is, the roots of unity.

5.3.1 Roots of unity under complex embeddings

Definition 5.3.1. Let K be a number field of signature (r1, r2). We define
the Minkowski space to be KR = Rr1 × Cr2 . Let σ1, . . . , σr1 be the real
embeddings of K, and let σr1+1, . . . , σr1+r2 be representatives of the nonreal
embeddings of K up to complex conjugation. The Minkowski embedding

Σ: K ↪→ KR

is defined by
Σ(x) =

(
σi(x)

)r1+r2

i=1
.

Example 5.3.2.

1. Let K = Q(α) where α2 = 2. The number field K has signature (2, 0),
and the two real embeddings are σ1 : α 7→

√
2 and σ2 : α 7→ −

√
2. So

the Minkowski embedding is

Σ: x+ yα 7→ (x+ y
√

2, x− y
√

2).
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2. Let K = Q(β) where β3 = 2. The number field K has signature (1, 1),
and we can choose the embeddings to be σ1 : β 7→ 21/3 and σ2 : β 7→
21/3j (where j = exp(2iπ/3)). The third complex embedding is σ3 =
σ2 : β 7→ 21/3j2. We obtain the Minkowski embedding

Σ: x+ yβ + zβ2 7→ (x+ y21/3 + z22/3, x+ y21/3j + z22/3j2).

Proposition 5.3.3. Let K be a number field, and let B ⊂ KR be a bounded
subset. Then Σ(ZK) ∩B is finite.

Proof. Let x ∈ ZK be such that Σ(x) ∈ B, so that we have a bound on every
complex embedding of x, say |σ(x)| ≤ R for all σ : K ↪→ C (where R depends
only on B, not on x). Let mx be the minimal polynomial of x, whose roots are
the σ(x) by Corollary 1.3.8. By the expression of the coefficients in terms
of the roots, we obtain a bound on the coefficients of mx (|ai| ≤

(
n
i

)
Rn−i

where n = [K : Q]).

So there are finitely many possible characteristic polynomials for elements
of Σ(ZK)∩B, and each of them has at most [K : Q] roots. So the set Σ(ZK)∩
B is finite.

For K be a number field, we write WK for the group of roots of unity
in K (other notations exist, such as µK or µ∞(K)).

Remark 5.3.4. We have WK ⊂ Z×K . Indeed, let α ∈ WK . Then α has finite
order, say n, so α is a root of xn−1 ∈ Z[x], so α ∈ ZK . Moreover the inverse
of α is also a root of unity, so α ∈ Z×K .

Theorem 5.3.5. Let K be a number field. Then WK is a finite cyclic group.
For all nonzero x ∈ ZK, the following are equivalent:

(i) x ∈ WK;

(ii) |σ(x)| = 1 for every complex embedding σ of K;

(iii) |σ(x)| ≤ 1 for every complex embedding σ of K.

Proof. Let W2 be the set of nonzero elements of ZK satsifying (ii), and let W3

be those satisfying (iii). We clearly have WK ⊂ W2 ⊂ W3 since every complex
embedding of a root of unity is of the form exp(aiπ/b) for some a, b ∈ Z.
By Proposition 5.3.3, W3 is finite, so WK is also finite. Since every finite
subgroup of the nonzero elements of a field is cyclic, WK is cyclic.
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To show that these sets are equal, let x ∈ W3. For all integers n ≥ 0,
xn ∈ W3, but W3 is finite, so some of these powers coincide, say xn = xm

with n < m. This gives xn(1 − xm−n), but x 6= 0 so xm−n = 1, and x is a
root of unity.

Example 5.3.6.

• Let K = Q(i,
√

2), and let x = 1+i√
2

. Then x2 = i, so x4 + 1 = 0, which

proves that x is an algebraic integer. Besides, |σ(x)| = 1 for every
complex embedding σ : K ↪→ C, so x is a root of unity by theorem 5.3.5.
In fact, since x4 = −1, we have x8 = 1, so x is an 8-th root of unity.
Since x4 6= 1, it is actually a primitive 8-th root of unity.

• Let x = 3+4i
5
∈ Q(i). Then |σ(x)| = 1 for all embeddings of Q(i) into C,

but x is not a root of unity since it is not an algebraic integer.

5.3.2 Bounding the size of WK

Remark 5.3.7. If K is a number field and ζ ∈ K is a primitive n-th root of
unity, then the subfield Q(ζ) of K is isomorphic to the n-th cyclotomic field.

Example 5.3.8. Let K = Q(α) where α is a root of the irreducible poly-
nomial P = x4 − x + 1. We compute that disc(Z[α]) = disc(P ) = 229 is
prime, so Z[α] is maximal and the discriminant of K is discK = 229. Sup-
pose that K contains a p-th root of unity for some odd prime p. Then K
contains the p-th cyclotomic field, which has degree p−1 over Q, so p−1 ≤ 4
and p ≤ 5. But K is unramified at 3 and 5, so it cannot contain the corre-
sponding cyclotomic fields by Proposition 3.8.1. Similarly, K cannot contain
a 4-th root of unity since it is unramified at 2. So WK = {±1}.

Proposition 5.3.9. If K is a number field that admits a real embedding,
then WK = {±1}.

Proof. Let σ : K ↪→ R be such an embedding, and let ζ be an n-th root of
unity in K. Then σ(ζ) is an n-th root of unity in R, so n | 2.

Example 5.3.10. If K is an odd degree number field, then WK = {±1}.

Proposition 5.3.11. Let K be a number field, let ζ ∈ K be a primitive
n-th root of unity and let p be a prime ideal such that n is coprime to p.
Then n | N(p)− 1.
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Proof. Let g be the reduction modulo p of ζ. If g does not have order n,
then gd = 1 for some strict divisor d of n. After replacing d by a multiple if
necessary, we may assume that n = qd with q prime. This means that ζd−1 ∈
p, but ζd is a q-th root of unity so the norm of ζd−1 is a power of q, and q | n
is coprime to N(p), which is impossible.

So there is an element of order n in the group (ZK/p)×, which has cardi-
nality N(p)− 1.

Example 5.3.12. If 2 is unramified in K and there is a prime above 2 of
inertial degree 1, then WK = {±1}. Indeed, by Proposition 5.3.11 the only
possible roots of unity would be ζ2k , but if k ≥ 2 then 2 is ramified in Q(ζ2k),
so this cyclotomic field cannot be contained in K by Proposition 3.8.1.

5.4 Dirichlet’s theorem

We will now describe the structure of the full unit group.

Definition 5.4.1. LetK be a number field of signature (r1, r2). Let σ1, . . . , σr1
be the real embeddings of K, and let σr1+1, . . . , σr1+r2 be representatives of
the nonreal embeddings of K up to complex conjugation. For all 1 ≤ i ≤
r1 + r2, let ni = 1 if σi is real and ni = 2 otherwise. The logarithmic embed-
ding

L : Z×K −→ Rr1+r2

is defined by
L(x) =

(
ni log |σi(x)|

)r1+r2

i=1
.

Theorem 5.4.2 (Dirichlet). Let K be a number field of signature (r1, r2).
Let V ⊂ Rr1+r2 be the subspace of vectors whose coordinates sum to zero.
Then L(Z×K) is a lattice in V . As an abstract abelian group, we have

Z×K ∼= WK × Zr1+r2−1.

Recall that every finitely generated abelian group is isomorphic to T×Zr,
where T is a finite group and r ≥ 0 is an integer called the rank. The second
part of the theorem says that the rank of the unit group of K is r1 + r2 − 1.

We will also prove this theorem after introducing “geometry of numbers”
techniques.
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Definition 5.4.3. Let K be a number field of signature (r1, r2), and let r =
r1 + r2 − 1. A set of fundamental units of K is a Z-basis for the unit
group Z×K/WK , that is, a set of units ε1, . . . , εr ∈ Z×K such that (L(ε1), . . . ,L(εr))
is a Z-basis of the lattice L(Z×K). Let M ∈ Matr+1,r(R) be the matrix with
columns L(ε1), . . . ,L(εr). Let M ′ be a matrix obtained by deleting a row
of M , which is an r × r matrix. The regulator of K is

RegK = | detM ′|.

Proposition 5.4.4. The regulator does not depend on the choice of a set
of fundamental units, on the ordering of the complex embeddings, or on the
choice of the deleted row.

Proof. If we change the set of fundamental units, this amounts to multiply-
ing M on the right by a matrix P ∈ GLr(Z), and similarly M ′ becomes M ′P .
Since detP = ±1, this does not change the regulator.

If we permute the rows of M ′, this amounts to multiplying it on the left
by a permutation matrix, which has determinant ±1. So this does not change
the regulator.

If we change the deleted row, since the sum of all the rows in M is zero,
this amounts to multiplying M ′ on the left by a matrix

1
. . .

−1 · · · −1 · · · −1
. . .

1

 ·

Such a matrix is block upper triangular, and its determinant is −1. So
changing the deleted row does not change the determinant.

Example 5.4.5. Let K be a real quadratic field, which we see as a subfield
of R. By Dirichlet’s theorem, the units of K have rank 1. Let ε be a
fundamental unit of K. After changing ε into ±ε±1 if necessary, we may
assume that ε > 1. Then RegK = log ε: if σ denotes the other real embedding
of K, then σ(ε) = NK

Q (ε)/ε = ±ε−1, so that

M =

(
log ε

log | ± ε−1|

)
=

(
log ε
− log ε

)
·
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5.5 The case of quadratic fields

Proposition 5.5.1. Let K be an imaginary quadratic field of discriminant discK.
Then the unit group Z×K is isomorphic to

• {±1} if discK /∈ {−3,−4};

• Z/6Z if discK = −3;

• Z/4Z if discK = −4.

Proof. By Dirichlet’s theorem we have Z×K = WK . If WK = 〈ζn〉 with n ≥ 3,
then K contains the n-th cyclotomic field, and since K is quadratic we
have K = Q(ζn). So we need to determine the quadratic cyclotomic fields.
The n-th cyclotomic field has degree ϕ(n), and it is easy to see from the
formula for ϕ(n) that we have ϕ(n) = 2 if and only if n ∈ {3, 4, 6}. Fi-
nally Q(ζ3) = Q(ζ6) has discriminant −3, and Q(ζ4) = Q(i) has discrimi-
nant −4.

Proposition 5.5.2. Let K = Q(
√
d) be a real quadratic field (d > 0 square-

free), seen as a subfield of R. Then Z×K ∼= {±1} × Z. Moreover, there exists
a fundamental unit u ∈ Z×K such that u > 1. Write u = x + y

√
d with x, y

integers or half-integers. Then u is characterized among the elements of Z×K
by any of the following properties:

(i) u > 1 is the smallest as a real number;

(ii) x > 0 is the smallest possible;

(iii) y > 0 is the smallest possible (except for d = 5 where there are two units
with y = 1/2 and the fundamental unit is the one having norm −1).

Proof. Since the signature of K is (2, 0), we have WK = {±1} by Propo-
sition 5.3.9, and Z×K ∼= {±1} × Z by Dirichlet’s theorem 5.4.2. If u is a
fundamental unit, then u,−u, u−1,−u−1 are fundamental units and among
those there is one in the interval (1,∞) since u 6= 1. Since every other unit
in (1,∞) is of the form un for some n > 0, u is the smallest one as a real
number. Let us prove that x and y are positive: we have ±u±1 = ±x± y

√
d,

and the choice giving the largest real value is x, y > 0. We now want to see
that smallest u is equivalent to smallest x or y. Let s ∈ {±1}, and consider
units x+ y

√
d > 1 of norm s, i.e. satisfying

x2 − dy2 = s, x, y > 0.
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We have x =
√
s+ dy2 and y =

√
x2−s
d

, so x is an increasing function of y,

y is an increasing function of x, and x +
√
dy is an increasing function of x

and of y. So if we sort the units of fixed norm by increasing x, y or x+
√
dy,

the resulting ordering is the same.

• If a fundamental unit has norm 1, then every unit has norm 1 and we
are done.

• If a fundamental unit u has norm −1, we need to compare it with
units of norm 1 the smallest of which is u2. But we have (x+ y

√
d)2 =

(x2 +dy2)+(2xy)
√
d and we have x2 +dy2 > x and 2xy > y, unless x =

1/2. In order to prove the proposition, we only have to eliminate the
possibility that x = 1/2. If that is the case, then 1 − dz2 = ±4
where z = 2y ∈ Z>0, so that dz2 = 5 or −3. Since dz2 > 0 we
must have dz2 = 5, so that d = 5. If the d = 5 case, there are two
units with y = 1/2, and the unit of norm 1 is the square of the unit of
norm −1.

Example 5.5.3.

1. φ = 1+
√

5
2

is a fundamental unit in Q(
√

5). By Examples 5.4.5, the
regulator is RegK = log(φ) ≈ 0.481.

2. Let K = Q(
√

6), so that ZK = Z[
√

6]. In order to find the fundamental
unit, we look for solutions of

x2 − 6y2 = ±1, x, y ∈ Z>0.

We try successive possible values for y:

• if y = 1, then x2 = ±1+6y2 = ±1+6 = 5 or 7, which is impossible.

• if y = 2, then x2 = ±1 + 6y2 = ±1 + 24 = 23 or 25, and 25 =
52, so we found the smallest solution (5, 2) and a fundamental
unit 5 + 2

√
6. The regulator of K is log(5 + 2

√
6) ≈ 2.29.

We could have enumerated the values of x, but we would have had to
try more values. This will be true in general, since x ≈

√
dy.
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3. Let K = Q(
√

13), so that ZK = Z[α] with α = 1+
√

13
2

. So we need to
look at solutions of x2 − 13y2 = ±1 with x, y positive half-integers, or
equivalently for solutions of

X2 − 13Y 2 = ±4, X, Y ∈ Z>0

by setting X = 2x, Y = 2y. We try values of Y :

• if Y = 1, then X2 = ±4 + 13Y 2 = ±4 + 13 = 9 or 17, and 9 = 32

so we find the smallest solution (3, 1) and a fundamental unit ε =
3+
√

13
2

, which has norm −1. The regulator of K is log ε ≈ 1.19.

We need to be careful that the result X+Y
√
d

2
is an algebraic integer.

But since X2− dY 2 = ±4 and d is odd, X and Y have the same parity
so this will always work.

4. Fundamental units of real quadratic fields can be very large! For in-
stance:

• In Q(
√

19), the fundamental unit is 170 + 39
√

19;

• In Q(
√

94), the fundamental unit is 2143295 + 221064
√

94;

• In Q(
√

9619), the fundamental unit is

81119022011248860398808533302046327529711431084023770643844658590226657549824152958804663041513822014290 +

827099472230816363716635228974328535731023047629801451791438952247858704503541263833471709896096965161
√
9619.

Remark 5.5.4. If you know what continued fractions are: it is also possible
to find fundamental units of real quadratic fields by computing the continued
fraction expansion of

√
d. This leads to an algorithm that is much faster than

the one we saw here, but it is outside the scope of this course.

5.6 The case of cyclotomic fields

Proposition 5.6.1. Let n ≥ 3 and K = Q(ζn). Then we have

• WK
∼= Z/(2n)Z if n is odd;

• WK
∼= Z/nZ if n is even.
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Proof. Let m = #WK . Then the m-th cyclotomic field embeds in K, so
that ϕ(m) ≤ ϕ(n). But n | m since K contains the n-th roots of unity,
so ϕ(m) = ϕ(n). Moreover, if k is a multiple of n such that ϕ(n) = ϕ(k),
then K embeds in Q(ζk) and by equality if degrees we have K = Q(ζk) so K
contains a primitive k-th root of unity. So m is the largest multiple of n such
that ϕ(m) = ϕ(n). But for all primes p, we have ϕ(pk) = (p− 1)ϕ(k) if p - k
and ϕ(pk) = pϕ(k) if p | k. So m = 2n if n is odd and m = n if n is even.

Remark 5.6.2. Since the signature of K = Q(ζn) is (0, ϕ(n)/2), the rank of
the unit group Z×K is ϕ(n)/2− 1.

5.7 The Pell–Fermat equation

Let d > 1 be a squarefree integer. The Pell–Fermat equation is:

x2 − dy2 = 1, x, y ∈ Z. (5.1)

We can immediately reinterpret it as follows: let O = Z[
√
d], which is an

order in K = Q(
√
d). Then the solutions of Equation (5.1) are the (x, y) ∈ Z2

such that u = x+ y
√
d is a solution of

NK
Q (u) = 1, u ∈ O×. (5.2)

By Proposition 5.2.6, O× has finite index in Z×K , and the index of O× in Z×K is
at most #(ZK/fZK)×, where f is the index of O in ZK . If f = 1 then O× =
Z×K . If f = 2, then 2 is unramified in K, so ZK/fZK is isomorphic to F2×F2

or F4, so #(ZK/fZK)× ≤ 3. Since ±1 ∈ O, we have

O× ∼= {±1} × Z and [O× : Z×K ] ≤ 3.

Let ε0 ∈ Z×K be a fundamental unit for Z×K . Let n ≥ 1 be the smallest
positive integer such that εn0 ∈ O, and let ε1 = εn0 . Then n ≤ 3, and ε1 is a
fundamental unit for O×. Let ε2 = ε2

1 if NK
Q (ε1) = −1 and ε2 = ε1 otherwise.

Then the solutions of Equation (5.2) are the ±εn2 , n ∈ Z, and the solutions
of Equation (5.1) are the ±(x, y) where x+ y

√
d = εn2 , n ∈ Z.

Example 5.7.1. Consider the Pell–Fermat equation

x2 − 13y2 = 1, x, y ∈ Z.
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Let K = Q(
√

13), so that ZK = Z[1+
√

13
2

], and let O = Z[
√

13]. We saw

in Example 5.5.3 that ε0 = 3+
√

13
2

is a fundamental unit of Z×K and has

norm −1. Since ε0 /∈ O and ε2
0 = 11+3

√
13

2
/∈ O, the unit ε1 = ε3

0 = 18 + 5
√

13
is a fundamental unit of O×. Since NK

Q (ε0) = −1, we have NK
Q (ε1) = −1,

so ε2 = ε2
1 = 649 + 180

√
13 is a fundamental unit for the norm 1 subgroup

of O×. The solutions of that Pell–Fermat equation are the

(x, y) where x+ y
√

13 = ±(649 + 180
√

13)n, n ∈ Z.

5.8 Class groups of real quadratic fields

In this example we will see how to use units to compute class groups.

Example 5.8.1. Let K = Q(
√

79), so that ZK = Z[
√

79] and the discrim-
inant is discK = 4 · 79. Let α =

√
79. The signature of K is (2, 0), so

the Minkowski bound is MK = 2
4

√
discK ≈ 8.89. The class group of K is

generated by the classes of prime ideals of norm up to 8. We compute the
decomposition of the small primes:

• 2 is ramified: (2) = p2
2, and [p2]2 = 1.

• 79 ≡ 1 ≡ (±1)2 mod 3, so 3 splits: (3) = p3p
′
3 where p3 = (3, α + 2)

and p′3 = (3, α + 1), and [p′3] = [p3]−1.

• 79 ≡ 4 ≡ (±2)2 mod 5, so 5 splits: (5) = p5p
′
5 where p5 = (5, α + 3)

and p′5 = (5, α + 2), and [p′5] = [p5]−1.

• 79 ≡ 2 ≡ (±3)2 mod 7, so 7 splits: (7) = p7p
′
7 where p7 = (7, α + 4)

and p′7 = (7, α + 3), and [p′7] = [p7]−1.

So Cl(K) is generated by the classes of p2, p3, p5 and p7.
Let us compute some elements of small norm to try to get relations in the

class group. The norm of a generic element z = x + yα ∈ ZK is x2 − 79y2.
With y = 1 we try x = 8, 9, 10 and we get respective norms −15, 2, 21. Let
us compute the factorisation of the corresponding elements.

• The ideal (8 + α) has norm 15 = 3 · 5, so it is the product of a prime
of norm 3 and a prime of norm 5. Since 8 + α ≡ 2 + α mod 3 we
have p3 | (8 +α). Since 8 +α ≡ 3 +α mod 5 we have p5 | (8 +α). This
gives (8 + α) = p3p5, so that [p5] = [p3]−1.
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• The ideal (9 + α) has norm 2, so (9 + α) = p2 and [p2] = 1.

• The ideal (10 + α) has norm 21 = 3 · 7, so it is the product of a prime
of norm 3 and a prime of norm 7. Since 10 + α ≡ 1 + α mod 3, we
have p′3 | (10 + α). Since 10 + α ≡ 3 + α mod 7, we have p′7 | (10 + α).
This gives (10 + α) = p′3p

′
7, so that [p′3][p′7] = 1 and [p7] = [p3]−1.

We still need to find an ideal class of finite order. After a few trials, we
obtain the element 17 + 2α, which has norm −27 = −33. Since 17 + 2α ≡
2 + 2α ≡ 2(1 + α) mod 3, we have p′3 | (17 + 2α) and p3 - (17 + 2α), so
that (17 + 2α) = (p′3)3. This gives [p3]3 = 1.

With this we know that Cl(K) ∼= 1 or Z/3Z, and distinguishing between
these cases is equivalent to deciding whether p3 is principal. If we were in an
imaginary quadratic field, we could easily determine every element of norm 3.
Here, because there are infinitely many units, there could be infinitely many
elements of norm ±3! However, up to multiplication by a unit, there are still
finitely many. In order to determine these elements, we need to first compute
a fundamental unit2 of K. We need to find the smallest solution to

x2 − 79y2 = ±1, x, y ∈ Z.

After trying successive values of y, we find that u = 80 + 9
√

79 is a funda-
mental unit, and has norm 1.

Let us try to find an element z = x + yα of norm ±3. By reducing
modulo 4:

x2 − 79y2 ≡ x2 + y2 mod 4,

we see that 3 cannot be the norm of an element in ZK . However, we cannot
rule out −3 using congruences. Suppose z has norm 3. After multiplying z
by some power of u, we can assume that

u−1/2 < z < u1/2.

Since z = x + yα has norm −3, we have 3/z = −x + yα. But we also have
the inequality

3u−1/2 < 3/z < 3u1/2.

2Actually, any unit of infinite order would do, but using a fundamental one gives better
bounds and hence saves us some work.
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Summing these inequalities we get

4u−1/2 < 2yα < 4u1/2, i.e.
2

αu1/2
< y <

2u1/2

α
·

We compute 2
αu1/2

≈ 0.017 and 2u1/2

α
≈ 2.85. So it is enough to try y = 1

and y = 2, and we easily see that none of these work. So ZK does not contain
any element of norm ±3, the ideal p3 is not principal, and finally

Cl(K) ∼= Z/3Z.
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Chapter 6

Geometry of numbers

This chapter is not examinable.

6.1 Lattices

Proposition 6.1.1. Let n ≥ 1, V a real vector space of dimension n and
let L ⊂ V be a subgroup. The following are equivalent:

(i) There exists a Z-basis b1, . . . , br of L with (b1, . . . , br) linearly indepen-
dent over R;

(ii) Every Z-basis of L is linearly independent over R;

(iii) L is discrete;

(iv) For all compact subsets K ⊂ V , the intersection K ∩ L is finite.

Proof.

• (i)⇒ (ii): Two Z-bases differ by multiplication by an invertible matrix.

• (ii) ⇒ (iii): Let ym =
∑r

i=1 x
(m)
i bi be a sequence in L (x

(m)
i ∈ Z), and

assume that it has a limit: ym →m→∞ y ∈ L. Since (bi) are linearly

independent, each (x
(m)
i )m converges, as m→∞, to some xi ∈ R. But

since x
(m)
i ∈ Z, the sequences (x

(m)
i )m are eventually constant, so ym is

eventually constant. Hence L is discrete.

• (iii) ⇒ (iv): K ∩ L is compact and discrete, hence finite.
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• (iv) ⇒ (i): Let X = {b1, . . . , br} be a maximal R-linearly independent
subset of L (it is finite since V has finite dimension n). Let L′ =
{
∑

i xibi : xi ∈ Z} be the group generated by X. We will first prove
that L′ has finite index in L. Let K = {

∑
i xibi : xi ∈ [0, 1]}, which is

compact. Then K ∩ L is finite, say of cardinality M , so let d = M !.

Now let x ∈ L be arbitrary. We can write x =
∑

i xibi where xi ∈ R.
For all m ≥ 1, define ym =

∑
i(mxi − bmxic)bi, which belongs to K.

Since mx ∈ L and
∑

ibmxicbi ∈ L′ ⊂ L, we have ym ∈ L. Since M =
#K ∩L, as m ranges over 0, . . . ,M , some of the ym must coincide, say

ym1 = ym2 .

For all i we then have

m1xi − bm1xic = m2xi − bm2xic,

which we rewrite as

xi =
bm1xic − bm2xic

m1 −m2

∈ 1

d
Z,

since |m1 −m2| ≤M . We have proved that

L′ ⊂ L ⊂ 1

d
L′,

so that L′ has finite index in L. Now by construction, L′ has a Z-basis
that is R-linearly independent, and since it has finite index in L we
can obtain a Z-basis of L by multiplying the Z-basis of L′ by a matrix
with nonzero determinant, so that Z-basis is also linearly independent
over R.

Remark 6.1.2. We must have r ≤ n: a linearly independent set in V can
have at most n elements.

Example 6.1.3.

• L = Z(1, 2) +Z(π, 0) ⊂ R2 satisfies the conditions of Proposition 6.1.1.

• L = Z+Z
√

2 ⊂ R does not satisfy the conditions of Proposition 6.1.1.
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Proposition 6.1.4. Let n ≥ 1, V a real vector space of dimension n, let L ⊂
V be a subgroup satisfying the equivalent conditions of Proposition 6.1.1, and
let b1, . . . , br be a Z-basis of L. The following are equivalent:

(i) r = n;

(ii) There exists a compact subset K ⊂ V such that for all x ∈ V , there
exists y ∈ L such that x− y ∈ K.

Proof.

• (i) ⇒ (ii): Let K = {
∑n

i=1 xibi : xi ∈ [0, 1]}. Let x ∈ V , and write x =∑n
i=1 xibi with xi ∈ R. Let y =

∑n
i=1bxicbi ∈ Z. Then x − y =∑n

i=1(xi − bxic)bi ∈ K.

• (ii) ⇒ (i): Let W ⊂ V be the real vector space generated by L.
Since b1, . . . , br is a basis of W , we want to prove that W = V .
Let x ∈ V . For all m ≥ 1, mx ∈ V , so there exists ym ∈ L and km ∈ K
such that mx = ym + km. We write this as

x =
ym
m

+
km
m
.

Since K is compact, km/m → 0 when m → ∞. Since ym/m = x −
km/m, ym/m → x when m → ∞. But ym/m ∈ W and W is closed,
so x belongs to W . This proves that V = W , so that r = n.

Remark 6.1.5. The set K constructed in the proof of Proposition 6.1.4 is
called a fundamental parallelotope of L.

A subgroup L ⊂ V satisfying the properties of Propositions 6.1.1 and 6.1.4
is a lattice.

Example 6.1.6.

• L = (1,
√

2)Z + (
√

3, 0)Z ⊂ R2 is a lattice.

• L = (1, 2)Z + (π, 2π)Z ⊂ R2 is not a lattice.

• L = (1,−1)Z ⊂ R2 is not a lattice in R2, but it is a lattice in V =
{(x, y) ∈ R2 | x+ y = 0}.
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We will admit that there is a good notion of “volume” of subsets of Rn,
such that the volume of the unit cube [0, 1]n ⊂ Rn is 1, and such that any
linear map f : Rn → Rn multiplies volumes by | det f |.

Definition 6.1.7. Let n ≥ 1, V = Rn and L be a lattice in V . Let b1, . . . , bn
be a Z-basis of L and let

K =
{ n∑
i=1

xibi | xi ∈ [0, 1]
}

be a fundamental parallelotope. The covolume covol(L) of L is the volume
of K.

Proposition 6.1.8. Let n ≥ 1, V = Rn and L be a lattice in V . Let b1, . . . , bn
be a Z-basis of L, let A be the matrix with columns (bi), and let G be the
matrix with (i, j)-th coefficient 〈bi, bj〉, where 〈·, ·〉 denotes the standard inner
product on Rn. Then

covol(L) = | detA| = (detG)1/2.

In particular, the covolume of L does not depend on the choice of a Z-basis.

Proof. Let C = [0, 1]n be the unit cube and let K be the fundamental par-
allelotope corresponding to the basis (bi). Let f : Rn → Rn be the linear
map sending the element ei of the standard basis of Rn to bi. Then A is the
matrix of f , so | detA| = | det f |. Moreover, K = f(C), so the volume of K
is | detA| times the volume of C, which is 1.

The matrix G is exactly At · A, so detG = (detA)2.
If we change the Z-basis, we replace A with AP where P ∈ GLn(Z),

so detP = ±1 and the covolume does not change.

Corollary 6.1.9. Let L′ ⊂ L be lattices in Rn. Then L′ has finite index
in L, and

covol(L′) = [L : L′] covol(L).

Proof. The index is finite because L and L′ have the same rank n. We can
obtain a basis of L′ from a basis of L by multiplying it on the right by a
matrix with determinant [L : L′].
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6.2 Minkowski’s theorem

Lemma 6.2.1 (Blichfeldt). Let L ⊂ Rn be a lattice and let S be a subset1

such that
vol(S) > covol(L).

Then there exists distinct elements x, y ∈ S such that x− y ∈ L.

Proof. Let (bi) be a Z-basis of L and K = {
∑

i xibi : xi ∈ [0, 1]} be the
corresponding fundamental parallelotope. Let f : Rn → K be the map
defined by f(

∑
i xibi) =

∑
i(xi − bxic)bi. By construction, for all x ∈ Rn we

have f(x)− x ∈ L.
Now assume that the restriction of f to S is injective. Since f is a

piecewise translation, vol(f(S)) = vol(S) > vol(K). But f(S) ⊂ K, so that
is impossible.

So f is not injective: there exists distinct elements x, y ∈ S such that f(x) =
f(y). But then x− y = x− f(x) + f(y)− y ∈ L.

Definition 6.2.2. A subset S ⊂ Rn is called

• convex if for all x, y ∈ S, the line segment [x, y] is contained in S, i.e.
for all t ∈ [0, 1], tx+ (1− t)y ∈ S.

• symmetric if for all x ∈ S, we have −x ∈ S.

Note that any nonempty convex symmetric subset always contains the
lattice point 0 = (x+ (−x))/2.

Theorem 6.2.3 (Minkowski). Let L ⊂ Rn be a lattice, and let S be a convex
symmetric subset such that

vol(S) > 2n covol(L).

Then there exists a nonzero vector v ∈ S ∩ L.

Proof. Let S ′ = 1
2
S, which has volume vol(S)/2n > covol(L). By Blichfeldt’s

Lemma 6.2.1, there exists distinct elements x, y ∈ S ′ such that v = x−y ∈ L.
But v = 2x+(−2y)

2
, and 2x and 2y are in S, so v ∈ S.

1The correct hypothesis on S is that it is Lebesgue measurable.
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Corollary 6.2.4. Let L ⊂ Rn be a lattice, and let S be a compact convex
symmetric subset such that

vol(S) ≥ 2n covol(L).

Then there exists a nonzero vector v ∈ S ∩ L.

Proof. For all m ≥ 1, let Sm = (1 + 1/m)S, which has volume strictly
greater than covol(L). By Minkowski’s Theorem 6.2.3, there exists nonzero
vectors vm ∈ Sm ∩ L. Write vm = (1 + 1/m)sm with sm ∈ S. Since S is
compact, there exists a subsequence sφ(m) which converges to an element s ∈
S. But then vφ(m) = (1 + 1/φ(m))sφ(m) also converges to s ∈ S. Every vφ(m)

is in L\{0}, which is closed, so the limit s is also a nonzero element of L.

Remark 6.2.5. The Corollary is false without the compactness hypothesis:
take L = Z2 ⊂ R2 and S the open square with sides of length 2.

6.3 Applications to number theory

Proposition 6.3.1. Let K be a number field of signature (r1, r2) and let Σ :
K ↪→ KR ∼= Rr1+2r2 be the Minkowski embedding of K. Let O be an order
in K and let L = Σ(O). Then L is a lattice in KR and

covol(L) = 2−r2| disc(O)|1/2.

Proof. By Proposition 5.3.3 and since O has rank n = r1 + 2r2, L is a
lattice in KR. Let b1, . . . , bn be a Z-basis of O, so that by definition we
have disc(O) = det

(
TrKQ (bibj)

)
. Let σ1, . . . , σr1+r2 be representatives of the

complex embeddings of K up to conjugacy. For 1 ≤ k ≤ r1 + r2, let nk = 1
if σk is real and nk = 2 otherwise. By Corollary 1.3.8 we have

TrKQ (bibj) =
∑
k

nk Re(σk(bi)σk(bj)).

We want to relate this to

〈Σ(bi),Σ(bj)〉 =
∑
k

Re(σk(bi)σk(bj)).

Let C : KR → KR be the linear map defined by C(x)k = nkxk for all 1 ≤
k ≤ r1 + r2. Then | detC| = 2r2 , and we have

TrKQ (bibj) = 〈Σ(bi), C(Σ(bj))〉,
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so that by Proposition 6.1.8, we have

disc(O) = | detC| covol(L) = 2r2 covol(L).

Corollary 6.3.2. Let K be a number field of signature (r1, r2) and discrim-
inant discK and let Σ : K ↪→ KR ∼= Rr1+2r2 be the Minkowski embedding
of K. Let I be a fractional ideal in K and let L = Σ(I). Then L is a lattice
in KR and

covol(L) = 2−r2 | discK|1/2N(I).

Proof. Since for all a ∈ Q we have N(aI) = anN(I) and covol(aL) =
an covol(L), it is enough to prove it for integral ideals. If I is an integral
ideal then N(I) = [ZK : I], so the result follows from Corollary 6.1.9 and
Proposition 6.3.1.

Lemma 6.3.3. Let V = Rr1 × Cr2 ∼= Rr1+2r2, and let

St = {((xi)i, (zj)j) ∈ V |
∑
|xi|+ 2

∑
|zj| ≤ t}.

Then

vol(St) = 2r1
(π

2

)r2 tn
n!
.

Proof. Omitted.

We now prove Minkowski’s theorem, which we restate here for conve-
nience.

Theorem 6.3.4 (Minkowski). Let K be a number field of signature (r1, r2)
and degree n = r1 + 2r2. Let

MK =
n!

nn

(
4

π

)r2√
| discK|.

Then every ideal class is represented by an integral ideal of norm at most MK.

Proof. Let Σ be the Minkowski embedding of K, let I be a fractional ideal
of K and let L = Σ(I−1). Let t > 0 be such that

vol(St) = 2r1
(π

2

)r2 tn
n!

= 2n−r2| discK|1/2N(I−1) = 2n covol(L),
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which we can rewrite as

tn = n!

(
4

π

)r2
| discK|1/2N(I)−1.

By Minkowski’s theorem (Corollary 6.2.4) there exists a nonzero vector y ∈
St ∩ L, which we write y = Σ(x) with x ∈ I−1.

By definition of St we have∑
σ

|σ(x)| ≤ t,

so by the inequality of arithmetic and geometric means we have

|NK
Q (x)| =

∏
σ

|σ(x)| ≤
(
t

n

)n
=
tn

nn
·

Let J = xI, which is a fractional ideal in the same ideal class as I.
Since x ∈ I−1, we have J = xI ⊂ II−1 = ZK , so J is an integral ideal. In
addition we have

N(J) = |NK
Q (x)|N(I) ≤ tn

nn
N(I) = MK ,

which proves the theorem.

Definition 6.3.5. Let K be a number field of signature (r1, r2) and KR =
Rr1 × Cr2 . We endow KR with the structure of a ring by coordinatewise
multiplication. Let x ∈ KR. Then multiplication by x induces an R-linear
endomorphism of KR, denoted by

µx : KR −→ KR
y 7−→ xy.

We define NKR
R (x) = det(µx).

Lemma 6.3.6. With notations as in Definition 6.3.5, let x = ((xi), (zj)) ∈
KR. Then

NKR
R (x) =

∏
i

xi ×
∏
j

|zj|2.

In particular, for all x ∈ K, we have NK
Q (x) = NKR

R (Σ(x)).
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Proof. It suffices to prove it on each R or C factor. For x ∈ R, µx is the 1×1
matrix (x). For z = x + iy ∈ C, on the basis (1, i) the matrix of the

endomorphism µz is

(
x −y
y x

)
, which has determinant x2 + y2 = |z|2. The

second claim is a restatement of Corollary 1.3.8.

We now prove Dirichlet’s theorem, which we restate here for convenience.

Theorem 6.3.7 (Dirichlet). Let K be a number field of signature (r1, r2).
Let V ⊂ Rr1+r2 be the subspace of vectors whose coordinates sum to zero.
Then L(Z×K) is a lattice in V . As an abstract abelian group, we have

Z×K ∼= WK × Zr1+r2−1.

Proof. We first prove that L = L(Z×K) is a subgroup of V : this follows from
the fact that every unit has norm ±1 (Proposition 5.2.2) and Corollary 1.3.8.

To prove that L is a lattice in V , we will prove that

a) L ∩B is finite for all compact subsets B ⊂ V , and

b) there exists a compact subset C ⊂ V such that for all v ∈ V , there
exists x ∈ L such that v − x ∈ C.

By Propositions 6.1.1 and 6.1.4, this is equivalent to L being a lattice.

a) In B, every coordinate is bounded, so by Proposition 5.3.3, the intersec-
tion with L is finite.

b) Let K1
R = {x ∈ KR | NKR

R (x) = 1}, which contains Σ(Z×K). By taking
exponentials, it is enough to construct a set C ′ ⊂ K1

R such that for all x ∈
K1

R, there exists u ∈ Z×K such that xΣ(u)−1 ∈ C ′.
Let L′ = Σ(ZK), and let S be a compact convex symetric subset of KR
such that

vol(S) ≥ 2n covol(L′).

Let R = NKR
R (S) ∩ Z, which is finite. For all r ∈ R, define

• Sr = {x ∈ S | NKR
R (x) = r};

• Yr a set of representatives of the elements of norm r in ZK up to
multiplication by units.
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Then Sr is compact, and Yr is finite since two element differ by a unit
if and only if they generate the same ideal and there are finitely many
integral ideals of norm r. So Cr = Σ(Yr)

−1Sr = {Σ(y)−1x : y ∈ Yr, x ∈ Sr}
is compact.

Let C ′ =
⋃
r∈R Cr, which is compact. We claim that C ′ works.

Let x ∈ K1
R. Since covol(xL′) = covol(L′), by Minkowski’s theorem

(Corollary 6.2.4) there exists y ∈ S ∩ xL′. Let us write y = x · Σ(a)
with a ∈ ZK . We have r = NKR

R (y) = NK
R (a) since NKR

R (x) = 1,
so r ∈ R and y ∈ Sr. By definition of Yr, there exists a unit u ∈ Z×K
such that au ∈ Yr. But now xΣ(u)−1 = Σ(au)−1y ∈ Y −1

r Sr ∈ C ′, as
claimed.

This proves that L ∼= Zr, where r = dimV = r1 + r2 − 1. By Theo-
rem 5.3.5, we have

kerL = WK ,

which is precisely the torsion subgroup of Z×K . By the structure theory of
abelian groups, we get

Z×K ∼= WK × Zr

as claimed.
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Chapter 7

Summary of methods and
examples

7.1 Discriminant and ring of integers

In summary, to compute the ring of integers in a number field K = Q(α)
given by the minimal polynomial P ∈ Z[x] of α:

• Compute the discriminant of Z[α], i.e. the discriminant of P , and
find its factorisation into prime numbers.

• The discriminant discK of K and the index f of Z[α] in ZK sat-
isfy disc(Z[α]) = f 2 discK. In particular every prime that ramifies
in K must divide disc(Z[α]).

• If a prime divides disc(Z[α]) with exponent 1, then Z[α] is p-maximal.

• If the minimal polynomial of α is Eisenstein at p, then Z[α] is p-
maximal.

• The order Z[α] is often not maximal. In this case, you need to find an
element x ∈ ZK \ Z[α] and examine the larger order Z[α, x]. You are
not supposed to know a general method to find x.
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7.2 Factorisation

In summary, to compute factorisations in a number field K = Q(α) given by
the minimal polynomial P ∈ Z[x] of α:

• To find the decomposition of a prime number p (equivalently the factori-
sation of the ideal pZK) when Z[α] is maximal at p, factor P modulo p
into irreducible polynomials in Fp[x], and apply Theorem 3.7.1.

• To find the factorisation of an integral ideal I, for instance of the
form (β) with β ∈ ZK , first compute the norm N(I) ∈ Z and
factor this norm into prime numbers.

• For each prime p dividing N(I) with exponent e, find the decomposition
of p into prime ideals, compute the possible products of these primes
that have norm pe, then find out which product really divides I.

• Testing whether a prime ideal p divides (β) is equivalent to testing
whether the image of β under the reduction modulo p map ZK → ZK/p
is zero.

• To compute the reduction modulo p = (p, φ(α)) of an element β,
when Z[α] is p-maximal and φ is an irreducible factor of P mod p:
write β as a polynomial in α1: β = R(α) for some R ∈ Z[x]. Then you
can obtain the reduction modulo p of β by reducing every coefficient
modulo p, and then dividing the resulting polynomial by φ in Fp[x].

7.3 Class group and units

We first study a number of examples of computations of class groups. The
general method is to first compute the Minkowski bound for the field under
consideration, then study the prime ideals up to that bound, and then study
their products. We will focus mostly on quadratic fields.

Example 7.3.1. Let K = Q(i), so that ZK = Z[i] and discK = −4. We
already know that ZK is a Euclidean domain, hence a PID, but let’s reprove

1If β /∈ Z[α], write β = β′/d with β′ ∈ Z[α] and d coprime to p; this is always possible
if Z[α] is p-maximal. Then d has an inverse u modulo p (du ≡ 1 mod p), the reduction
map sends 1/d to u.
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it using our new methods. The Minkowski bound is MK ≈ 1.27 < 2, so by
Corollary 4.4.4, the class group of K is trivial; in other words, ZK is a PID
(and hence a UFD) in this case.

Example 7.3.2. Let K = Q(
√

437). Since 437 is squarefree and 437 ≡
1 mod 4, we have ZK = Z[1+

√
437

2
] and discK = 437. The Minkowski bound

is MK ≈ 10.45 < 11. By Corollary 4.4.4, Cl(K) is generated by the classes of
the prime ideals of norm at most 10. Since 437 ≡ 5 mod 8, by Theorem 3.9.3
the prime 2 is inert in K. So the only prime ideal above 2 is (2), which is
principal, so it does not contribute to the class group. Since 437 ≡ 2 mod 3
which is not a square, by Theorem 3.9.1 the prime 3 is inert in K. Again the
prime (3) is principal. We similarly compute that 5 and 7 are inert in K. So
again, the class group of K is trivial.

What you should remember from this example is that you can ignore
inert primes when computing the class group.

Now let us complete the study of our examples Q(
√
−5) and Q(

√
−23).

Example 7.3.3. LetK = Q(
√
−5). We saw that ZK = Z[

√
−5] and discK =

−20. The Minkowski bound is MK ≈ 2.85 < 3. By Corollary 4.4.4, Cl(K)
is generated by the classes of the prime ideals of norm at most 2. As we
saw in Example 4.3.3, the unique ideal p2 above 2 has norm 2 and is not
principal, but its square is principal. We conclude that Cl(K) ∼= Z/2Z, our
first nontrivial class group!

What you should remember from this example is that it is easy to get an
upper bound on the order of totally ramified primes in the class group.

Example 7.3.4. LetK = Q(
√
−23). We have ZK = Z[1+

√
−23

2
] and discK =

−23. The Minkowski bound is MK ≈ 3.05 < 4. The class group of K is
generated by the classes of prime ideals of norm at most 3. We have seen
that the prime 2 splits in K: (2) = p2p

′
2. This implies that [p′2] = [p2]−1, so

it suffices to consider one of them. We saw that p2 and p2
2 are not principal

but that p3
2 is. This proves that [p2] has order 3. Since −23 ≡ 1 mod 3 is a

square, the prime 3 also splits in K: (3) = p3p
′
3, and [p3] = [p′3]−1. Now we

can conclude by two different methods.

1. Recall that the norm of a generic element z = x + 1+
√
−23

2
y ∈ ZK

is x2 + xy + 6y2. Taking (x, y) = (0, 1), we get an element z ∈ ZK of
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norm 6. We factor the ideal (z) = qq′ where N(q) = 2 and N(q′) = 3.
In the class group we have [q′] = [q]−1, so that [p3] belongs to the group
generated by [p2]. This proves that Cl(K) ∼= Z/3Z.

2. By Minkowski’s Theorem 4.4.1, every ideal class is represented by an
integral ideal of norm at most 3. The only such ideals are ZK , p2, p

′
2, p3,

and p′3, so we have hK ≤ 5. But we already exhibited an element [p2]
of order 3 so hK is a multiple of 3, so Cl(K) ∼= Z/3Z.

What you should remember from this example is that the splitting of
primes gives relations in the class group for free, and elements of small norm
in ZK provide the additional relations.

Example 7.3.5. Let K = Q(
√

10). Since 10 is squarefree and 10 ≡ 2 mod 4,
by Theorem 2.4.2 we have ZK = Z[

√
10] and discK = 40. The Minkowski

bound is MK ≈ 3.16 < 4. Since 2 | discK, the prime 2 ramifies in K: (2) =
p2

2. Since N(p2) = 2, if p2 were principal then a generator z = x+
√

10y ∈ ZK
would have to satisfy

x2 − 10y2 = ±2.

By reducing modulo 5, we see that x would be a square root of ±2 mod 5.
But only 0, 1 and 4 are squares modulo 5, so z cannot exist. Hence p2 is not
principal, and [p2] has order 2 since [p2]2 = [(2)] = 1. Since 10 ≡ 1 mod 3 is
a square, the prime 3 splits in K: (3) = p3p

′
3. We have [p3] = [p′3]−1. We find

another relation by looking for elements of small norm: taking (x, y) = (2, 1)
gives an element z of norm −6. We factor the ideal (z) = p2p

′′
3, where p′′3 is

a prime of norm 3, so it is either p3 or p′3. This gives [p′′3] = [p2]−1 = [p2].
Again, we can conclude by two methods.

1. By Minkowski’s Theorem 4.4.1, every ideal class is represented by an
integral ideal of norm at most 3. The only such ideals are ZK , p2, p3,
and p′3, but [p2] is the same as the class of one of the primes above 3,
so hK ≤ 3. Since we already know an element [p2] of order 2, hK is a
multiple of 2, so hK = 2 and Cl(K) ∼= Z/2Z.

2. We have 〈[p3]〉 = 〈[p′3]〉 = 〈[p′′3]〉 = 〈[p2]〉. Since the class group
is generated by the classes of prime ideals above 2 and 3, we ob-
tain Cl(K) = 〈[p2]〉 ∼= Z/2Z.

What you should remember from this example is that you can sometimes
use congruences to prove that certain ideals are not principal.
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In summary, to compute a class group:

• First, compute the Minkowski bound, and list the prime ideals up
to that bound by decomposing prime integers.

• The decomposition of primes provides relations in Cl(K) for free.

• Elements of ZK of small norm provide additional relations.

• In imaginary quadratic fields, you can test whether an ideal is principal
by computing bounds on the coordinates of a possible generator.

• You can often prove that an ideal is not principal using congruences.

• In real quadratic fields, after computing a fundamental unit, you can
determine all elements of ZK of a given norm up to multiplication by
a unit. This allows you to test whether an ideal is principal.

• Conclude using Minkowski’s theorem and the group structure.

7.4 Complete examples

Here is an example of computations with a number field. It is meant to
illustrate pretty much everything that has been seen in this course, and rep-
resents the upper limit of what can be done without the help of a computer
so do not be alarmed by its length! Also, if you feel that you could have
performed these computations by yourself (with a reasonable amount of in-
termediate questions) this means that you have understood algebraic number
theory very well.

Example 7.4.1. Let P (x) = x3 + 6x+ 6 ∈ Z[x], and let K = Q(α), where α
is a root of P (x). Since P (x) is Eisenstein at 2 (and also at 3), it is irreducible
over Z and over Q, so K is a well-defined number field of degree [K : Q] = 3.

In order to compute the ring of integers ZK of K, let us have a look at
the order O = Z[α]. Its discriminant is

discZ[α] = discP (x) = −4.63 − 27.62

by theorem 2.3.12. We want it in factored form (it is more interesting this
way, because we can then get information about ramification), so we factor
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and compute that

discZ[α] = −62(226 + 33) = −623(23 + 32) = −223317.

Next, we know that discZ[α] = f 2 discK, where f = [ZK : Z[α]] ∈ N is the
index of Z[α]. This tells us that f ∈ {1, 2, 3, 6}, so that the order Z[α] is
maximal at every prime except possibly at 2 and at 3. Besides, since the
primes that ramify in K are the ones that divide discK, we see that the set
of ramified primes is a subset of {2, 3, 17}. In fact, we can be more accurate:
since discZ[α] differs from discK by a square and since the exponents of 3
and 17 in discZ[α] are odd, both 3 and 17 do ramify in K. On the other
hand, we do not know yet whether 2 ramifies (the factor 22 in discZ[α] could
come either from discK, in which case 2 would ramify, or from f 2, in which
case 2 would not ramify).

To determine ZK , we must discover whether Z[α] is maximal at 2 and 3
or not. In general, we have not seen how to do that, but in this particular
case, our only weapon, theorem 3.8.4, applies, and tells us that since P (x) is
Eisenstein at 2, the order Z[α] is maximal at 2 (i.e 2 - f), and similarly for 3.
As a result, we have f = 1 and ZK = Z[α]. In particular, discK = −223317,
so 2 does ramifies in K.

Let us now compute the class group of K. The signature of K is (r1, r2)
with r1 + 2r2 = [K : Q] = 3, so the only possibilities are (3, 0) and (1, 1).
This corresponds to P (x) having 3 real roots, vs. P (x) having 1 real root
and 1 conjugate pair of complex roots (note that in the former case, K would
be totally real). To find out what the signature of K actually is, we have two
possibilities: studying the function P (x) to see if it has 1 or 3 real zeroes, or
using the fact that the sign of discK is (−1)r2 (proposition 2.3.13). The latter
is much faster of course, and allows us to effortlessly see that the signature
of K is in fact (1, 1) (so in particular P (x) has 1 real root and 1 conjugate
pair of complex roots). As a result, the Minkowski bound for K is

MK =
3!

33

(
4

π

)1√
223317 = 12.123 . . . ,

which tells us that that Cl(K) is generated by the prime ideals above 2,3,5,7
and 11.

Let us determine these prime ideals. We are of course going to use the-
orem 3.7.1, which means that we will have to compute the factorisation of
P (x) modulo these primes. Now, a polynomial of degree 3 is irreducible over
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a field if and only if it has no root in this field, so a table of values of P (x)
at small integers will be useful2. Here it is:

n −5 −4 −3 −2 −1 0 1 2 3 4 5
P (n) −149 −82 −39 −14 −1 6 13 26 51 94 161

Actually, we do not really need that for p = 2 and 3, since we already know
by theorem 3.8.4 that these primes are totally ramified in K. Indeed, for
both of them we have P (x) ≡ x3 mod p, so that

2ZK = (2, α)3 = p3
2

and
3ZK = (3, α)3 = p3

3.

Next, we observe that although the values of n in the table represent the
whole of F5 = Z/5Z (there is even plenty of overlap), none of the values of
P (n) is divisible by 5; this means that P (x) has no root mod 5. It is thus is
irreducible mod 5, so that 5 is inert in K, i.e.

5ZK = p53

(here and in what follows, we denote prime ideals by pN , p
′
N , . . . , where N is

their norm). Next, we observe that 7 divides P (−2), but none of the other
values of P in our table. Since the values of n in this table cover F7 = Z/7Z,
this means that −2 is the only root of P (x) mod 7. In fact, we compute
by Euclidian division that P (x) ≡ (x+ 2)(x2 − 2x+ 3) mod 7, and that the
quadratic factor is irreducible over F7 (because it does not have any root,
since it does not vanish at −2). In fact, we can save ourselves the trouble of
this irreducibility check: we know that 7 does not ramify in K since it does
not divide discK, so theorem 3.7.1 tells us that P (x) is squarefree mod 7,
which shows that the quadratic factor is irreducible (since its only possible
root over F7 would be −2). Anyway, we deduce from theorem 3.7.1 that the
decomposition of 7 in K is

7ZK = (7, α + 2)(7, α2 − 2α + 3) = p7p
′
72 .

2It will be even more useful when we will be looking for relations in the class group,
cf. infra.
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Finally, since the values of n in our table cover F11 and since none of the
P (n) is divisible by 11, we have that 11 is inert in K,

11ZK = p113 .

Now that we have decomposed 2, 3, 5, 7 and 11 in K, we can ap-
ply theorem 4.4.1, which tells us that Cl(K) is generated by the classes
of p2, p3, p53 , p7, p

′
72 and p113 (in fact we could throw away p53 , p

′
72 and p113

because their norms exceed the Minkowski bound, but let us pretend we
failed to notice that). The above decompositions also give us for free some
relations satisfied by these classes, namely

[p2]3 = [2ZK ] = 1,

[p3]3 = [3ZK ] = 1,

[p53 ] = [5ZK ] = 1,

[p7].[p′72 ] = [7ZK ] = 1,

[p113 ] = [11ZK ] = 1.

In particular, we see that Cl(K) is in fact generated by [p2], [p3] and [p7]
only.

There must be extra relations between [p2], [p3] and [p7] (otherwise the
class group would be infinite, which would contradict corollary 4.4.2). To
find them, we look for elements of small norm. Indeed, if the only prime
numbers dividing the norm of some β ∈ ZK are 2,3 and 7, then theorem
3.4.4 tells us that the only prime ideals in the factorisation of the ideal (β)
are p2, p3, p7 and p′72 , so we have found a relation between the classes of these
ideals. To find such elements β, we use our table of values of P (x) again.

For instance, we see that P (0) = 6, which tells us that the norm of α is
±6 (here we are using the fact that the constant term of the characteristic
polynomial of a matrix is, up to sign, the determinant of this matrix), so the
ideal (α) must factor as a prime of norm 2 times a prime of norm 3. As p2

(resp. p3) is the only prime of norm 2 (resp. 3), we therefore have

(α) = p2p3.

Indeed, we can check (although is is not necessary of course) that

p2p3 = (2, α)(3, α) = (6, 3α, 2α, α2) = (6, α, α2) = (6, α),
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and N((α)) = |NK
Q (α)| = 6 so 6 ∈ (α) by proposition 3.4.3 (another way to

see this is simply to write 6 = α(−α2 − 6)), whence (6, α) = (α). Anyway,
we have found the relation

[p2][p3] = [(α)] = 1

in Cl(K).
Similarly, we see in the table that α+ 2 has norm ±14, so (α+ 2) factors

as a prime of norm 2 times a prime of norm 7, whence

(α + 2) = p2p7

since p7 is the only prime of norm 7 (the norm of p′7 being 72, not 7). There-
fore, we have found the relation

[p2][p7] = [(α + 2)] = 1.

(incidentally, this shows that there exists β ∈ K× such that p′72 = βp2, and
also γ ∈ K× such that p7 = γp3. Of course, such β and γ cannot lie in ZK .)

As a result, Cl(K) is generated by the class of p2 alone. As [p2]3 = 1, we
have two possibilities; either [p2] = 1 (i.e p2 is principal), and then Cl(K) is
trivial, or [p2] 6= 1 (i.e p2 is not principal), and then Cl(K) ' Z/3Z.

We are going to prove that p2 is actually not principal. A possibility
for this would be to write down the norm of a generic element of ZK in
terms of [K : Q] indeterminates, and prove that this norm can never be ±2.
However, this would lead to a horrible homogeneous expression of degree 3
in 3 variables, so this approach would be very tedious, if not intractable. We
thus need another method.

If p2 were principal, say p2 = (β) for some β ∈ ZK , then we would have
(2) = p3

2 = (β3), so that v = β3/2 would be a unit. If we could prove that,
for all v ∈ Z×K , the equation β3 = 2v has no solution β ∈ K, then we could
conclude that p2 is not principal. Unfortunately, this means considering
infinitely many cases : indeed, the rank of Z×K is 1 according to Dirichlet’s
theorem 5.4.2, so Z×K is infinite. To be precise, the only roots of unity in K
are ±1 since K is not totally complex, so Z×K ' Z/2Z× Z.

However, we see that Z×K/(Z
×
K)3 ' Z/2Z

3(Z/2Z)
× Z

3Z ' Z/3Z, so if u is any unit

which is not the cube of a unit, then its image in Z×K/(Z
×
K)3 generates this

quotient, so every unit is of the form uiw3 for some w ∈ Z×K and some unique
i ∈ {0, 1, 2}. Thus, if p2 were principal, we could write β3 = 2v = 2uiw3,
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whence 2ui = (βw−1)3 so either 2, 2u or 2u2 would be a cube in ZK . We are
going to prove that none of these three possibilities can occur. Note how we
are led to studying the units of K in order to reduce the study of its class
group from infinitely many cases to finitely many cases.

We need to find a unit u which is not the cube of a unit. In the table of
values of P (x), we spot that P (−1) = −1, which shows that u = α + 1 is
a unit. To prove that it is not the cube of a unit, we have two possibilities:
reduce u modulo a prime ideal and prove that it is not a cube in the quotient,
or write u in terms of a fundamental unit of K.

As an example of the first method, we can try to prove that the image of
u mod p7 is not a cube in ZK/p7 ' F7 (we have skipped p2 and p3 because
everybody is a cube in F2 and in F3, and we have skipped p53 because we
prefer to stay away from3 F53). Unfortunately, α+2 ∈ p7, so α reduces to −2
mod p7, so u = α+ 1 reduces mod p7 to −1 which is a cube in ZK/p7 ' F7,
so we cannot conclude anything. Let us try another prime. We do not want
to work in F72 nor in F113 , so let us try to find a new prime of inertial degree
1. We see in the table that P (−3), P (1) and P (2) are all divisible by 13,
which means that P (x) ≡ (x+3)(x−1)(x−2) mod 13. As a result, 13 splits
completely,

13ZK = (13, α + 3)(13, α− 1)(13, α− 2) = p13p
′
13p
′′
13.

The image of α modulo these primes is −3, 1 and 2 respectively, so the image
of u is −2, 2 and 3 respectively. This time, we are in luck: −2 is not a cube
in F13, so u is not a cube in ZK . (In fact, neither −2 nor 2 nor 3 are cubes
in F13, so we have three distinct proofs of the fact that u is not a cube).

As a example of the second method, we can use the method from assign-
ment 5 to prove that u is actually a fundamental unit of K; in particular, it
is not a cube (nor a square, nor a fifth power, ...).

Anyway, we now have that if p2 were principal, then either 2, 2u or 2u2

would be a cube in ZK . But we have already seen that u ≡ −1 mod p7, so 2,
2u and 2u2 reduce to 2, −2 and 2 mod p7. But neither 2 nor −2 is a cube in
F7, so we finally conclude that p2 is not principal, and that Cl(K) ' Z/3Z
is a cyclic group of order 3 generated by [p2]. Phew!

3Actually it is not so hard to work in F53 , it is even pretty easy; but I don’t want to
scare you!
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Example 7.4.2. Here is another example with almost the same polynomial,
to show how delicate an invariant the class group is, and also to illustrate
more how to play with units.

Let P (x) = x3 − 6x + 6 ∈ Z[x], and let K = Q(α), where α is a root of
P (x).

Just as in the previous example, we find that P (x) is irreducible over Q
because it is Eisenstein at 2 (and also at 3), so K is a well-defined number
field. We compute that discP (x) = −2233, and since P (x) is Eisenstein at 2
and 3, we again conclude that ZK = Z[α] and discK = −2233.

Besides, the sign of discK shows that the signature of K is again (1, 1),
so the Minkowski bound has the same shape as before. But this time the
discriminant is much smaller, so the Minkowski bound is

3!

33

(
4

π

)1√
2233 = 2.94 . . .

only. This means that Cl(K) is generated by the primes above 2 only. But
we know by Eisenstein’s criterion 3.8.4 that 2 is totally ramified in K,

2ZK = p3
2,

so Cl(K) is cyclic and generated by the class of p2. If we make a table of
values of P (x) at small integers, we spot that P (2) = 2, which tells us that
NK

Q (α − 2) = ±2, so that the norm of the ideal (α − 2) is 2 by proposition
3.4.3. Since p2 is the only prime of norm 2, this means that p2 = (α− 2). In
particular, p2 is principal, so the class group of K is trivial, i.e. ZK is a PID
this time.

The relation p2 = (α − 2) also tells us that (2) = ((α − 2)3), so

u = (α−2)3

2
= −3α2 + 9α − 7 is a unit. As in the previous example, we

have Z×K = {±εn, n ∈ Z} for some fundamental unit ε, so could our unit u
be a fundamental unit (i.e. one of ±ε±1)? Let σ : K ↪→ R be the unique real
embedding of K in R. The real root of P (x) is −2.85 · · · = σ(α), so the image
of σ(u) = −56.95 . . . , whereas the method from assignment sheet 5 merely
tells us that there exists a fundamental unit ε of K such that σ(ε) > 2.76 . . . .
Therefore, all that we can say is that u = −εn for some n ∈ {1, 2, 3}. In fact,
56.95 . . . is so much larger than 2.76 . . . that we can legitimately suspect
that our unit u is in fact not a fundamental unit.

Actually, if we have made a table of values of P (x), we spot that P (1) = 1,
which means that NK

Q (α − 1) = ±1, so that u′ = α − 1 is also a unit. But
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σ(u′) = −3.85 . . . , so we must have u′ = −ε, so u′ is also a fundamental unit.
This confirms our doubts: since u 6= ±ε±1 (this is obvious under σ), u is not
a fundamental unit. In fact, by computing the powers of u′, we find that
u = u′3 = −ε3.

But this means that 2 =
(
α−2
u′

)3
= (α2 + α − 4)3 is a cube in K,

i.e. that K contains a subfield isomorphic to Q( 3
√

2). Actually, we have
[K : Q] = 3 = [Q( 3

√
2) : Q] (because x3 − 2, being Eisenstein at 2, is irre-

ducible over Q), so that K is in fact isomorphic to Q( 3
√

2), an isomorphism
being given explicitly by

Q( 3
√

2)
∼−→ K

2∑
j=0

λj(
3
√

2)j 7−→
2∑
j=0

λjβ
j

where β = α2 + α− 4 and the λj lie in Q.
If we want, we can compute the reverse isomorphism; this amounts to

expressing α in terms of β (which must be possible because the above de-
scription of the isomorphism implies that β is a primitive element of K). In
general, this kind of rewriting process can be done by computing the powers
of β as polynomials in α, and by performing linear algebra over Q. For exam-
ple, in our case, we know that α must be a polynomial in β of degree at most
2 (since we are in a field of degree 3), so we compute that β2 = −α2−2α+4,
and we try to write α as a linear combination of 1, β and β2. We find that
α = −β2 − β, which means that the reverse isomorphism is

K
∼−→ Q( 3

√
2)

2∑
j=0

λjα
j 7−→

2∑
j=0

λj(− 3
√

2
2
− 3
√

2)j.

By looking at the image of ε = 1 − α under this isomorphism, we can infer

that 3
√

2
2

+ 3
√

2 + 1 is a fundamental unit in Q( 3
√

2), so that

Regulator(K) = Regulator
(
Q(

3
√

2)
)

= log(
3
√

2
2

+
3
√

2 + 1) = 1.347 · · · .
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