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Exercise 1. Let K = Q(
√

21).

1. Let u = 55 + 12
√

21. Prove that u ∈ Z×K.

We have u ∈ Z[
√

21] ⊂ ZK . In addition, NK
Q (u) = 552−21 ·122 = 1, so u ∈ Z×K .

2. Is u a fundamental unit of Z×K?

Since 21 is squarefree and 21 ≡ 1 (mod 4), the ring of integers of K is Z[α]

where α = 1+
√
21

2
. More precisely,

ZK = Z[α] = Z · 1⊕ Z · 1 +
√

21

2
=

{
x+ y

√
21

2
, x, y ∈ Z, x+ y even

}
.

We have NK
Q

(
x+y
√
21

2

)
= 1

22
NK

Q (x + y
√

21) = x2−21y2
4

, so we look for a fun-

damental unit in ZK by computing the smallest solution to x2 − 21y2 = ±4
with x, y ∈ Z>0 and x+ y even.

• y = 1: x2 = ±4 + 21y2 = ±4 + 21 = 17 or 25, which is 52.

So the smallest solution is (5, 1) and ε = 1+5
√
21

2
is a fundamental unit in Z×K .

The other fundamental units are ±ε±1, and none of these is equal to u, so u is
not a fundamental unit of Z×K .

Remark : it can be checked that in fact, u = ε3.

3. Prove that for all v ∈ Z×K, NK
Q (v) = 1.

Let v ∈ Z×K . Then there exists a sign s ∈ {±1} and an integer n ∈ Z such
that v = sεn. We have

NK
Q (v) = NK

Q (s)NK
Q (ε)n = 1 · 1n = 1,

since NK
Q (±1) = (±1)2 = 1 and NK

Q (ε) = 1.
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Exercise 2. Let K be a number field of degree 3 such that discK < 0.

1. Prove that the signature of K is (1, 1).

Let (r1, r2) be the signature of K, so that r1 + 2r2 = 3. Since discK < 0 has
the same sign as (−1)r2 , we see that r2 is odd. This forces r1 = r2 = 1.

2. From now on, we use the unique real embedding of K to view it as a subfield of
R. Prove that there exists ε ∈ K such that Z×K = {±εn, n ∈ Z}. Why can we
assume that ε > 1? We make this assumption from now on.

Since K has a real embedding, the group of roots of unity in K is WK = {±1}.
By Dirichlet’s theorem, the rank of the unit group is r1 + r2 − 1 = 1. Let ε be
a fundamental unit of Z×K . Then we have

Z×K = {±εn : n ∈ Z}.

The other fundamental units are the ±ε±1, and exactly one of these is in the
interval (1,∞).

3. Express the regulator of K in terms of ε.

The matrix defining the regulator has two rows, one for the real embedding
of K and one for the pair of complex embeddings of K. We choose to delete the
row corresponding to the complex embedding. The resulting matrix is a 1 × 1
matrix, with only coefficient

log |ε| = log ε since ε > 0,

so the regulator of K is | log ε| = log ε since ε > 1.

4. Prove that ε is a primitive element for K, and deduce that the minimal poly-
nomial of ε factors as (x − ε)(x − u−1eiθ)(x − u−1e−iθ) for some θ ∈ R, where
u =
√
ε.

Since Z does not have any unit of infinite order, ε /∈ Q. So the field Q(ε) ⊂ K
is not Q, but its degree over Q divides that of K, which is 3. So [Q(ε) : Q] = 3
and Q(ε) = K: ε is a primitive element of K.

Let P be the minimal polynomial of ε over Q. Since ε is a primitive element
of K, the polynomial P has degree 3, is irreducible over Q, and has one real root
and two conjugate complex roots since the signature of K is (1, 1). The real
root is ε, and let z, z̄ be the complex roots. Since ε is a unit, it has norm ±1.
This norm is also the product of the complex embeddings of ε, so

±1 = εzz̄ = ε|z|2 > 0, so ε|z|2 = 1.

We get |z|2 = ε−1, so the polar decomposition of z is z = u−1eiθ with u =
√
ε

and θ ∈ R.
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5. Given that (
u3 + u−3

2
− cos θ

)2

sin2 θ <
u6

4
+

3

2

for all θ ∈ R (you are NOT required to prove this), prove that

ε >
3

√
| discK|

4
− 6.

Hint: Prove that

discZ[ε] = −16

(
u3 + u−3

2
− cos θ

)2

sin2 θ.

Since ε is a primitive element of K and is an algebraic integer, Z[ε] is an order
in K, so | discK| ≤ | discZ[ε]| = | discP |. We compute

discP =
[
(ε− u−1eiθ)(ε− u−1e−iθ)(u−1eiθ − u−1e−iθ)

]2
=

[
(ε2 − 2εu−1 cos θ + u−2)u−12i sin θ

]2
= −16

(
u3 + u−3

2
− cos θ

)2

sin2 θ since u2 = ε.

Taking absolute values, we have

| discK| ≤ | discP |

< 16

(
u6

4
+

3

2

)
= 4(ε3 + 6).

Dividing by 4, subtracting 6 and taking cube roots, we obtain

ε >
3

√
| discK|

4
− 6.

6. Application: given that 3
√

151/4 ≈ 3.354 and that the complex roots of x3 −
5x + 5 = 0 are −2.627 . . . and 1.314 · · · ± 0.421 . . . i, find a fundamental unit
for K = Q(α), where α3 − 5α + 5 = 0.

Hint: Prove first that the decomposition of 5 in ZK is 5ZK = (α)3, use this to
find a nontrivial unit in K, and prove that this unit is a fundamental unit.

We are first going to use the decomposition of 5 in K to find a unit in K, and
then use the previous question to prove that this unit is fundamental.

The number field K was studied in assignment sheet 3, and we saw that ZK =
Z[α], discK = −175, and that 5ZK = p35 is totally ramified in K, where p5 =
(5, α). We also proved that actually p5 = (α). As a result, we have

(5) = p35 = (α)3 = (α3),
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so we have discovered the unit v = α3

5
= α− 1.

Now, as discK < 0, we may try to apply the previous questions to see if v is
fundamental. By question 2 we have Z×K = {±εn, n ∈ Z} for some ε ∈ Z×K ,
and, seeing K as a subfield of R via the embedding α 7→ −2.627 . . . , we may
assume that ε > 1. Since v is a unit, we have v = ±εn for some n ∈ Z, and
since v = α − 1 ≈ −3.627 < −1 we must actually have v = −εn with n ∈ N.
As a consequence, v is fundamental iff. n = 1.

But according to question 4, we have ε > 3

√
175
4
− 6 = 3

√
151/4 ≈ 3.354, and

the equality εn = −v ≈ 3.627 implies that n < 2. As a result, we must have
n = 1, and so v is fundamental (and also ε = 1− α).

UNASSESSED QUESTIONS

Exercise 3. What are the possible values of #WK for K a number field of degree 4?
Give an example for each possible value.

Suppose that K contains ζn, a primitive n-th root of 1, for some n ∈ N. Then
Q(ζn), the n-th cyclotomic field, is a subfield of K, and so ϕ(n) = [Q(ζn) : Q] divides
[K : Q] = 4. The formula

ϕ(
∏
i

pvii ) =
∏
i

(pi − 1)pvi−1i

then shows that the primes dividing n are all 6 5, and that 2, 3 and 5 divide n with
multiplicity at most 3, 1 and 1 respectively. By trying all the possible values, we
deduce that the integers n such that ϕ(n) | 4 are 1, 2, 3, 4, 5, 6, 8, 10 and 12.

Besides, we always have −1 ∈ K, so #WK is always even. This leaves 2, 4, 6, 8,
10 and 12 as possibilities for #WK .

It turns out that all of these possibilities occur. In the extreme cases, this is easy
to prove : we have #WK = 8 (respectively 10, 12) for K = Q(ζ8) (respectively Q(ζ10),
Q(ζ12)), in view of the formula (caveat : Q(ζm) = Q(ζ2m) when m is odd, because
−ζm is then a primitive 2m-th root of 1). Besides, #WK = 2 when K is totally real,
e.g when K = Q(α) where α satisfies an irreducible equation of degree 4 whose roots
are all real.

For 4 and 6, this is more difficult. The fields Q(ζ4) = Q(
√
−1) and Q(ζ6) =

Q(
√
−3) are quadratic, so we can try to take a “random” extension of degree 2 of

them, and hope that this extension does not enlarge the number of roots of 1.
Let us find an example with #WK = 4 first. The minimal polynomial of i =

√
−1

over Q is x2 + 1, so the one of 1 + i is x2 − 2x + 2 (just translate the variable), and
so
√

1 + i is a root of f(x) = x4 − 2x2 + 2. This polynomial is Eisenstein at 2, so it
is irreducible and so K = Q(

√
1 + i) is a number field of degree 4. Besides, i ∈ K, so

#WK is a multiple of 4; it can thus be either 4, 8 or 12. We are going to prove that
K is not isomorphic to Q(ζ8) nor to Q(ζ12), which will prove that #WK = 4. Indeed,
we have x2 − 2x+ 2 ≡ (x+ 1)(x+ 2) mod 5, so f(x) ≡ (x− 2)(x+ 2)(x2 + 2) mod 5,
and −2 is not a square mod 5 so this is the complete factorisation of f(x) mod 5. In
particular, f mod 5 is squarefree, so 5 - disc f , and so the order Z[

√
1 + i] is maximal
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at 5; therefore, we may read the decomposition of 5 in K off the factorisation of
f mod 5. We conclude that 5ZK is a product of three primes, two of which have
degree 1 and one of which has degree 2. However, the theorem on the decomposition
of primes in cyclotomic fields tells us that for all prime p ∈ N the primes occurring in
the decomposition of p in a cyclotomic field all have the same degree, so K is not a
cyclotomic field. This proves that #WK = 4. We could also have applied proposition
5.2.9 to a prime of degree 1 above 5.

Let us now do #WK = 6. The minimal polynomial of j = ζ3 over Q is x2 + x+ 1,
so the one of j − 1 is x2 + 3x + 3, and so

√
j − 1 is a root of g(x) = x4 + 3x2 + 3,

which is Eisenstein at 3 so that K = Q(
√
j − 1) is of degree 4. Besides, j ∈ K, so

#WK = 6 or 12. However, the factorisation of g mod 7 is (x + 1)(x − 1)(x2 + 4), so
7ZK decomposes as degree 1 × degree 1 × degree 2, and again, because the degrees
are not all the same or by proposition 5.2.9, this shows that K 6' Q(ζ12), whence
#WK = 6.

Exercise 4 (The battle of Hastings). “The men of Harold stood well together, as their
wont was, and formed thirteen squares, with a like number of men in every square
thereof. (. . . ) When Harold threw himself into the fray the Saxons were one mighty
square of men, shouting the battle cries ‘Ut!’, ‘Olicrosse!’, ‘Godemite!’.”

How many troops does this fictional historical text1 suggest Harold II had at the
battle of Hastings?

We are looking for solutions to 13y2 + 1 = x2 with some x, y ∈ N. This translates
as x2 − 13y2 = 1, so we are looking for units of norm +1 in Z[

√
13].

Let K = Q(
√

13). We have ZK = Z[1+
√
13

2
], and by the same technique as in

exercise 1 we find that a fundamental unit is ε = 3+
√
13

2
, which as norm −1. The

units of norm +1 are thus the ±ε2n, n ∈ Z. We try small values of n until we find a
number of the form x+ y

√
13 with x, y ∈ N.

• For n = ±1 we have ε±2 = 11±3
√
13

2
, which doesn’t do as we want a unit in the

order Z[
√

13];

• for n = ±2 we get ε±4 = 119±33
√
13

2
, same problem;

• for n = ±3 we finally get ε±6 = 649 ± 180
√

13, whence our first solution :
x = 180, y = 649.

This corresponds to an army of 13 ·1802 = 421, 200 men plus Harold, which seems
a bit exaggerated ! Larger values of n only lead to larger solutions, so we are led to
suspecting that this historical text is, indeed, fictitious.

1Cf. problem no. 129 in Amusement in Mathematics (H.E. Dundeney, 1917).
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