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Exercise 1. Let d > 0 be a squarefree integer, let K = Q(
√
−d) and let ∆K be

the discriminant of K. Let p be a prime that splits in K and let p be a prime ideal
above p.

1. Prove that for all integers i ≥ 1 such that pi < |∆K |/4, the ideal pi is not
principal. Hint: consider the cases ∆K = −d and ∆K = −4d separately.

Let i be as above. Since p is split, N(p) = p, and by uniqueness of factorisation
the ideal pi is not divisible by (p).

• If ∆K = −4d, then ZK = Z[
√
−d]. The norm of a generic element z =

x+ y
√
−d ∈ ZK is

x2 + dy2.

If pi is principal, let z be a generator. Then the norm of z is pi, giving x2 +
dy2 = pi, so y2 ≤ pi/d < 1, so y = 0. But then z ∈ Z has norm z2 = pi,
so z is divisible by p. But this is impossible since pi is not divisible by (p).

• If ∆K = −d, then ZK = Z[α] with α = 1+
√
−d

2
. The norm of a generic

element z = x+ yα is (
x+

y

2

)2
+ d

(y
2

)2
.

If pi is principal, let z be a generator. Then the norm of z is pi, so y2 ≤
4pi/d < 1, so y = 0 and as before z is divisible by p, which is impossible.

2. What does this tell you about the class number of K?

The number of i as in the previous question is⌊
log(|∆K |/4)

log p

⌋
so, accounting for the trivial class, we have

hK ≥ 1 +

⌊
log(|∆K |/4)

log p

⌋
.
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Exercise 2. Let K = Q(
√
−87).

1. Write down without proof the ring of integers, the discriminant and the signature
of K.

Since −87 = −3 · 29 is squarefree and −87 ≡ 1 mod 4, the ring of integers of K
is ZK = Z[α] with α = 1+

√
−87
2

, the discriminant is ∆K = −87 and the signature
is (0, 1).

2. Describe all the integral ideals of K of norm up to 5 (give generators for some
prime ideals, and express the integral ideals as products of these prime ideals).
What does this tell you about the class number of K?

We first compute the decomposition of primes up to 5. Note that the minimal
polynomial of α is x2 − x+ 22.

• Since −87 ≡ 1 mod 8, the prime 2 splits. Since Z[α] is 2-maximal and x2−
x+ 22 ≡ x(x+ 1) mod 2, we have (2) = p2p

′
2 with p2 = (2, α+ 1) and p′2 =

(2, α).

• Since 87 is divisible by 3, the prime 3 is ramified. Since Z[α] is 3-maximal
and x2 − x + 22 ≡ x2 + 2x + 1 ≡ (x + 1)2 mod 3, we have (3) = p23
with p3 = (3, α + 1).

• Since −87 ≡ 3 mod 5 is not a square modulo 5, the prime 5 is inert in K.

The integral ideals of K of norm up to 5 are ZK , p2, p
′
2, p3, p

2
2, (2), and p′22 . The

Minkowski bound is

MK =
2

4
· 4

π

√
87 ≈ 5.94 < 6,

so every ideal class is represented by an integral ideal of norm at most 5.
Since (2) is principal, this implies that hK ≤ 6.

3. Factor the ideal (3+
√
−87
2

) into primes.

We have z = 3+
√
−87
2

= 1 + α, so this element z is an integer, and NK
Q (z) =

(3/2)2 + 87(1/2)2 = 24 = 3 · 8. Since (z) is an integral ideal, (z) is a product
of a prime of norm 3 and an integral ideal of norm 8. There is only one prime
of norm 3, namely p3. The integral ideals of norm 8 are p32, 2p2, 2p′2 and p′32 .
Since z = 1 + α is not divisible by 2 and z = 1 + α ∈ p2, we obtain

(z) = p32p3.

4. Prove that Cl(K) ∼= Z/6Z.

By Minkowski’s theorem, the class group is generated by p2, p
′
2 and p3. By the

decomposition of primes, we have the relations [p′2] = [p2]
−1 and [p3]

2 = 1. By
Question 3 we have the additional relation [p2]

3 = [p3]
−1 = [p3]. Since [p3] is of

order 1 or 2, the class [p2] is of order 1, 3 or 6. By Exercise 1, p32 is not principal
since 23 < 87/4, so p2 has order 6. By Question 2, we obtain Cl(K) ∼= Z/6Z,
with generator [p2].
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Exercise 3. In this exercise we consider the equation

y2 = x5 − 2, x, y ∈ Z.

1. Let K = Q(
√
−2). Write down the signature, the discriminant, the ring of

integers and then class number of K.

The integer −2 is squarefree and we have −2 ≡ 2 mod 4, so the ring of integers
of K is ZK = Z[

√
−2], the discriminant is ∆K = −8. The signature of K

is (0, 1). Since the Minkowski bound is

MK =
2

4
· 4

π

√
8 ≈ 1.80 < 2,

the class number of K is hK = 1.

2. Let (x, y) be a solution of the equation. Prove that the ideals (y+
√
−2) and (y−√

−2) are coprime. Hint: reduce the equation modulo 4 to prove that y must be
odd.

If y is even, then modulo 4 we obtain 0 = x5 − 2, but 2 is not a 5-th power
in Z/4Z so y is odd.

Let p be a prime dividing both (y +
√
−2) and (y −

√
−2). The it divides the

difference 2
√
−2, which has norm a power of 2. Since 2 is ramified, there is a

unique prime p2 above 2. Since
√
−2 ∈ p2, we have y ∈ p2, but p2 ∩ Z = 2Z,

so y is even, which is not possible. So (y +
√
−2) and (y −

√
−2) are coprime.

3. You may assume without proof that Z×K = {±1}. Prove that y +
√
−2 is a 5-th

power in ZK.

Since x5 = (y +
√
−2)(y −

√
−2), and since (y +

√
−2) and (y −

√
−2) are

coprime, the ideal (y +
√
−2) is a 5-th power. Since the class number of K is

1, we have (y+
√
−2) = (a)5 = (a5) for some a ∈ ZK , and so y+

√
−2 is a 5-th

power in ZK up to a unit. But since Z×K = {±1}, every unit is a 5-th power, so
finally y +

√
−2 is a 5-th power in ZK .

4. Prove that the equation has no solution.

Since ZK = Z[
√
−2], there exists a, b ∈ Z be such that (a+ b

√
−2)5 = y+

√
−2.

We expand

(a+ b
√
−2)5 = a5 − 20b2a3 + 20b4a+ (5ba4 − 20b3a2 + 4b5)

√
−2.

This gives b(5a4 − 20b2a2 + 4b4) = 1, so that b = ±1.

• If b = 1, then 5a4 − 20a2 + 3 = 0. The discriminant of 5x2 − 20x + 3
is (−20)2− 4 · 5 · 3 = 20 · 17, which is not a square in Q, so this polynomial
does not have any roots in Z. So there is no solution with b = 1.

• If b = −1, then 5a4 − 20a2 + 5 = 0, which simplifies into a4 − 4a2 + 1 = 0.
The discriminant of x2 − 4x+ 1 is 12, which is not a square in Q. Again,
we have no solution.
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So the equation has no solution.

UNASSESSED QUESTIONS

Exercise 4. Let K = Q(
√
−29).

1. Determine the ring of integers and discriminant of K.

Since −29 is squarefree and −29 ≡ 3 mod 4, we have ZK = Z[
√
−29] and the

discriminant is ∆K = −4 · 29. Let α =
√
−29.

2. Determine the decomposition of 2, 3 and 5 in K.

• x2 +29 ≡ (x+1)2 mod 2, so 2 is ramified and (2) = p22 with p2 = (2, α+1).

• x2 + 29 ≡ x2 − 1 ≡ (x − 1)(x + 1) mod 3, so 3 splits and (3) = p3p
′
3

where p3 = (3, α + 1) and p′3 = (3, α + 2).

• x2 + 29 ≡ x2 − 1 ≡ (x − 1)(x + 1) mod 5, so 5 splits and (5) = p5p
′
5

where p5 = (5, α + 1) and p′5 = (5, α + 4).

3. Factor the ideals (1 +
√
−29) and (3 + 2

√
−29) into primes.

• We have NK
Q (1+α) = 1+29 = 30 = 2·3·5. Clearly 1+α ∈ p3 so p3 | (1+α)

and 1 + α ∈ p5 so p5 | (1 + α), so that (1 + α) = p2p3p5.

• We have NK
Q (3 + 2α) = 32 + 29 · 22 = 125 = 53. Since (5) - 3 + 2α

and 3 + 2α ≡ 3 + 2 · 1 ≡ 0 mod p′5, we have (3 + 2α) = (p′5)
3.

4. Determine the order in the class group of K of the images of the primes above 2
and of the primes above 5.

• Since (2) = p2, the class [p2] has order 1 or 2. Since the equation x2+29y2 =
2 clearly has no integer solution, there is no element of norm 2 in ZK so p2
is not principal. So [p2] has order 2.

• Since (5) = p5p
′
5, the classes [p5] and [p′5] are inverse of each other and

hence have the same order. Since (3 + 2α) = (p′5)
3, the class [p′5] has

order 1 or 3. Since 5 < |∆K |/4 = 29, p5 is not principal by Exercise 1.
So [p5] and [p′5] have order 3.

5. Prove that Cl(K) ∼= Z/6Z.

The Minkowski bound is MK ≈ 5.29, so the class group Cl(K) is generated
by the classes of prime ideals of norm up to 5. Since (1 + α) = p2p3p5, the
class [p3] is in the subgroup generated by [p2] and [p5]. Since [p′3] = [p3]

−1

and [p′5] = [p5]
−1, the class group is generated by [p2] and [p5]. Since [p2] has

order 2 and [p5] has order 3, the element g = [p2][p5] generates the class group
([p2] = g3 and [p5] = g4) and has order 6, so Cl(K) ∼= Z/6Z.

Exercise 5 (Difficult). Let K be a number field, and let m ≥ 1 be an integer. In this
exercise we write Cl(K)[m] = {c ∈ Cl(K) | cm = 1}.
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1. Prove that if hK is coprime to m, then Cl(K)[m] = {1}.
Since hK is coprime to m, there exists u, v ∈ Z such that um + vhK = 1.
Let c ∈ Cl(K)[m]. Then c = cum+vhK = (cm)u(chK )v = 1. So Cl(K)[m] = 1.

2. Let Gm(K) = {xm : x ∈ K×}, and let Lm(K) be the set of elements x ∈ K×

such that in the prime ideal factorisation of (x), all the exponents are multiples
of m.

(a) Prove that Gm(K) is a subgroup of Lm(K).

Let x ∈ K×, and let (x) =
∏

i p
ai
i be its prime ideal factorisation. Then (xm) =∏

i p
mai
i ∈ Lm(K). So Gm(K) ⊂ Lm(K), and it is obviously stable by mul-

tiplication and contains 1 = 1m.

We define Sm(K) = Lm(K)/Gm(K).

(b) Let x ∈ Lm(K). Prove that there exists a unique fractional ideal ax such
that (x) = amx .

Let x ∈ Lm(K), and let (x) =
∏

i p
mai
i be its prime ideal factorisation.

Then ax =
∏

i p
ai
i satisfies the required property, and it is unique by unique-

ness of factorisation into prime ideals.

(c) Prove that the map f : Sm(K)→ Cl(K)[m], defined by f(x) = [ax], is well-
defined, and is a group homomorphism.

To prove that f is well-defined, we need to prove that ax is principal when-
ever x ∈ Gm(K) and that [ax] ∈ Cl(K)[m] for all x ∈ Lm(K).

• Let x = ym ∈ Gm(K). Then amx = (x) = (y)m so ax = (y) and [ax] = 1.

• Let x ∈ Lm(K). Then (x) = amx , so [ax]m = 1 and [ax] ∈ Cl(K)[m].

For all x, y ∈ Lm(K) we have (axay)
m = amx a

m
y = (x)(y) = (xy) so axy =

axay by uniqueness. This gives f(xy) = f(x)f(y). Since a1 = (1), we
have f(1) = 1 and f is a group homomorphism.

(d) Prove that f is surjective.

Let [a] ∈ Cl(K)[m]. Then [a]m = 1 so am is principal, say am = (x). But
then x ∈ Lm(K) and a = ax, so that [a] = f(x). So f is surjective.

(e) What is the kernel of f?

Let x ∈ Lm(K) be such that f(x) = 1. Then [ax] = 1, so ax is principal,
say ax = (y). We have (x) = amx = (ym), so there exists a unit u ∈ Z×K
such that x = ymu. This proves that the kernel of f is the image of Z×K
in Sm(K), that is, Z×K/(Z

×
K)m.

From now on, K is an imaginary quadratic field K = Q(
√
−d) with d > 0

squarefree. We write ·̄ for the complex conjugation in K.

3. Let x = a+ b
√
−d ∈ K be an element such that NK

Q (x) = 1. Let φ : K → K be
defined by φ(y) = ȳ − xy.

5



(a) Prove that φ is Q-linear.

Conjugation is additive and does not change rational numbers, so conjuga-
tion is Q-linear. Since multiplication by x is also Q-linear, φ is Q-linear.

(b) Compute the matrix of φ on the basis (1,
√
−d).

We have φ(1) = 1− x = (1− a) + (−b)
√
−d and φ(

√
−d) = −

√
−d− (a+

b
√
−d)
√
−d = −

√
−d − a

√
−d + bd = bd + (−1 − a)

√
−d, so the matrix

of φ is (
1− a −b
bd −1− a

)
.

(c) Compute the determinant of φ. Is φ injective?

The determinant of φ is−(1−a)(1+a)+b2d = a2+db2−1 = 0 sinceNK
Q (x) =

1. So φ is not invertible, and hence not injective.

(d) Prove that there exists y ∈ K× such that x = ȳ/y.

Let y 6= 0 be an element of kerφ. Then ȳ − xy = 0, so xy = ȳ and
finally x = ȳ/y since y 6= 0.

4. Let [a] ∈ Cl(K)[2] and let a = N(a).

(a) Prove that there exists x ∈ K× such that a2 = (x).

We have [a2] = 1 so a2 is principal: there exists x ∈ K× such that a2 = (x).

(b) Prove that there exists y ∈ K× such that x = aȳ/y.

We have NK
Q (x/a) = N(a)2/a2 = 1, so by Question 4 (d), there exists y ∈

K× such that x/a = ȳ/y, i.e. x = aȳ/y.

(c) Let b = ya. Prove that there exists b ∈ Q× such that b2 = (b).

We have b2 = y2a2 = (y2x) = (y2aȳ/y) = (NK
Q (y)a), so b = NK

Q (y)a ∈ Q×
is a generator of b2.

(d) Prove that a is in the same ideal class as a product of the ramified prime
ideals of ZK.

Since b = ya, a and b are in the same ideal class. Write b = ef 2, where e ∈ Z
is a squarefree integer and f ∈ Q× (which is possible by reducing the
exponents modulo 2 in the prime factorisation of b), and let c = f−1b, which
is in the same ideal class as a. Then c2 = (f−2b) = (e). By uniqueness of
factorisation into prime ideals, every prime divisor of e is ramified, and c is
a product of the ramified prime ideals of ZK .

Let p1, . . . , pt be the ramified prime ideals of K.

5. Prove that if the product pe11 . . . pett with 0 ≤ ei ≤ 1 is principal then pe11 . . . pett =
(
√
−d) or all the ei are zero. Hint: consider the norm of such an ideal, and

look at elements of ZK of that norm.

Let n = N(pe11 . . . pett ), and we assume that then ei are not all zero, so that n > 1
and n is squarefree. Assume z = x + y

√
−d ∈ ZK is a generator of pe11 . . . pett .

Since n is squarefree we have y 6= 0. We distinguish two cases:
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• If ∆K = −d: we have n | d, and x2 + dy2 = n, so y2 ≤ n/d ≤ 1: we
get y = ±1/2 or y = ±1. In the first case we get 4x2 + d = 4n which is
impossible by reduction modulo 4. In the second case we must have n = d,
so that x = 0 and z = ±

√
−d.

• If ∆K = −4d: we have n | 2d, and x2+dy2 = n, so that n ≥ d: we get n = d
or n = 2d. In the first case we must have x = 0, y = ±1 and z = ±

√
−d.

In the second case we get y2 ≤ 2 so that y = ±1, giving x2 + d = 2d or
equivalently x2 = d, which is impossible.

6. Prove that Cl(K)[2] ∼= (Z/2Z)t−1.

By Question 4 (d) the group Cl(K)[2] is generated by the classes [p1], . . . , [pt],
and we have [pi]

2 = 1 for all i. So Cl(K)[2] is the quotient of (Z/2Z)t by the
relations of the form [pe11 ] . . . [pett ] = 1 where for all i we have 0 ≤ ei ≤ 1. By
Question 5 there is only one such nontrivial relation, so Cl(K)[2] ∼= (Z/2Z)t−1.
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