Algebraic number theory
Solutions to exercise sheet for chapter 4

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk)

Aurel Page (a.r.page@warwick.ac.uk)
TA: Pedro Lemos (lemos.pj@gmail.com))

Version: March 2, 2017

Exercise 1. Let d > 0 be a squarefree integer, let K = Q(v/—d) and let Ag be
the discriminant of K. Let p be a prime that splits in K and let p be a prime ideal

1. Prove that for all integers i > 1 such that p* < |Ag|/4, the ideal p* is not
principal. Hint: consider the cases Ax = —d and A = —4d separately.

Let i be as above. Since p is split, N(p) = p, and by uniqueness of factorisation
the ideal p’ is not divisible by (p).

o If Ay = —4d, then Zyg = Z[\/—d]. The norm of a generic element z =
T + y\/—_d € Zg is

2 4+ dy.
If p? is principal, let z be a generator. Then the norm of z is p*, giving % +
dy* = p', so y> < p'/d < 1, so y = 0. But then z € Z has norm 2z? = p',
so z is divisible by p. But this is impossible since p’ is not divisible by (p).

If Ak = —d, then Zx = Z[a] with o = %jd. The norm of a generic

If p’ is principal, let z be a generator. Then the norm of z is p’, so y? <
4p'/d < 1, so y = 0 and as before z is divisible by p, which is impossible.

2. What does this tell you about the class number of K?

The number of i as in the previous question is

{log(!AK\/‘l)J

log p

so, accounting for the trivial class, we have

h@lﬂMJ.

log p

1


mailto:n.a.v.mascot@warwick.ac.uk
mailto:a.r.page@warwick.ac.uk
mailto:lemos.pj@gmail.com

Exercise 2. Let K = Q(1/—87).

1. Write down without proof the ring of integers, the discriminant and the signature

of K.

Since —87 = —3- 29 is squarefree and —87 = 1 mod 4, the ring of integers of K
is Zy = Z[o] with o = =5 the discriminant is Ax = —87 and the signature
is (0,1).

2. Describe all the integral ideals of K of norm up to 5 (give generators for some
prime ideals, and express the integral ideals as products of these prime ideals).
What does this tell you about the class number of K¢

We first compute the decomposition of primes up to 5. Note that the minimal
polynomial of « is 22 — x + 22.

e Since —87 = 1 mod 8, the prime 2 splits. Since Z[a] is 2-maximal and 2% —
r+22 = x(x+1) mod 2, we have (2) = paop), with po = (2, +1) and p), =
(2, ).

e Since 87 is divisible by 3, the prime 3 is ramified. Since Z[a] is 3-maximal
and 22 — 2 +22 = 22 + 20 + 1 = (r + 1)2 mod 3, we have (3) = p3
with ps = (3,a + 1).

e Since —87 = 3 mod 5 is not a square modulo 5, the prime 5 is inert in K.

The integral ideals of K of norm up to 5 are Zg, p2, ph, P3, P2, (2), and p%. The

Minkowski bound is 5

17
so every ideal class is represented by an integral ideal of norm at most 5.
Since (2) is principal, this implies that hyx < 6.

Mg 87~ 5.94 <6,

3. Factor the ideal (**5=°7) into primes.

We have z = %‘787 = 1+ «, so this element z is an integer, and N§ (z) =
(3/2)* +87(1/2)* = 24 = 3 - 8. Since (z) is an integral ideal, (z) is a product
of a prime of norm 3 and an integral ideal of norm 8. There is only one prime
of norm 3, namely p3. The integral ideals of norm 8 are p3, 2po, 2p5, and p5.
Since z = 1 4+ « is not divisible by 2 and z = 1 + « € ps, we obtain

(2) = ngz’a-

4. Prove that CI(K) = Z/6Z.

By Minkowski’s theorem, the class group is generated by po, p, and p3. By the
decomposition of primes, we have the relations [p5] = [p2] ™! and [ps3]? = 1. By
Question 3 we have the additional relation [ps]® = [p3]™ = [ps]. Since [p3] is of
order 1 or 2, the class [po] is of order 1, 3 or 6. By Exercise 1, p3 is not principal
since 2% < 87/4, so ps has order 6. By Question 2, we obtain CI(K) = Z/6Z,
with generator [ps].



Exercise 3. In this exercise we consider the equation
v =2 -2, x,y€Z.

1. Let K = Q(v/—2). Write down the signature, the discriminant, the ring of
integers and then class number of K.

The integer —2 is squarefree and we have —2 = 2 mod 4, so the ring of integers
of K is Zx = Z[v/—2|, the discriminant is Ax = —8. The signature of K
is (0,1). Since the Minkowski bound is

2 4
Mg =--—vV8=1.80 < 2,
4 7
the class number of K is hy = 1.

2. Let (x,y) be a solution of the equation. Prove that the ideals (y++/—2) and (y—
V/—2) are coprime. Hint: reduce the equation modulo 4 to prove that y must be
odd.

If y is even, then modulo 4 we obtain 0 = z° — 2, but 2 is not a 5-th power
in Z/4Z so y is odd.

Let p be a prime dividing both (y + v/—2) and (y — v/—2). The it divides the
difference 2v/—2, which has norm a power of 2. Since 2 is ramified, there is a
unique prime py above 2. Since v/—2 € p,, we have y € po, but py N Z = 27Z,
so y is even, which is not possible. So (y + v/—2) and (y — /—2) are coprime.

3. You may assume without proof that Z; = {£1}. Prove that y + /—2 is a 5-th
power in L.

Since 2° = (y + v—2)(y — v/—2), and since (y + v/—2) and (y — v/—2) are
coprime, the ideal (y + +/—2) is a 5-th power. Since the class number of K is
1, we have (y ++v/—2) = (a)® = (a®) for some a € Zg, and so y ++/—2 is a 5-th
power in Zg up to a unit. But since Zj = {£1}, every unit is a 5-th power, so
finally 3 + /=2 is a 5-th power in Zg-.

4. Prove that the equation has no solution.

Since Zy = Z[v/—2], there exists a, b € Z be such that (a+bv/—2)° = y++/—2.
We expand

(a +bvV=2)° = a® — 200%a® + 20b*a + (5ba* — 20b%a® + 4b°)/ 2.
This gives b(5a* — 20b%a® + 4b*) = 1, so that b = +1.

o If b = 1, then 5a* — 20a® + 3 = 0. The discriminant of 522 — 20z + 3
is (—20)? —4-5-3 = 20-17, which is not a square in Q, so this polynomial
does not have any roots in Z. So there is no solution with b = 1.

o If b = —1, then 5a* — 20a® + 5 = 0, which simplifies into a* — 4a? 4+ 1 = 0.
The discriminant of 22 — 4x + 1 is 12, which is not a square in Q. Again,
we have no solution.



So the equation has no solution.
UNASSESSED QUESTIONS
Exercise 4. Let K = Q(1/—29).

1. Determine the ring of integers and discriminant of K.

Since —29 is squarefree and —29 = 3 mod 4, we have Zx = Z[\/—29] and the
discriminant is Ax = —4-29. Let o« = +/—29.

2. Determine the decomposition of 2, 3 and 5 in K.

o 22+29 = (z+1)? mod 2, so 2 is ramified and (2) = p2 with py = (2, a+1).

e > +29 =22—-1= (z—1)(x + 1) mod 3, so 3 splits and (3) = pzp}
where p3 = (3, + 1) and p; = (3, + 2).

e 1 +29=22—-1= (z—1)(x + 1) mod 5, so 5 splits and (5) = pspL
where ps = (5, + 1) and p§ = (5, a +4).

3. Factor the ideals (1 4+ +/—29) and (3 + 2v/—29) into primes.

e We have N§ (1+a) = 1+29 = 30 = 2-3-5. Clearly 14+« € p3so ps | (1+a)
and 1+ a € p5 so ps | (1 + «), so that (1 4+ «) = papsps.

e We have NJ'(3 +2a) = 3 +29-2% = 125 = 5°. Since (5) { 3 + 2«
and 3+ 2a =3 +2-1 = 0mod pj, we have (3 + 2a) = (p})3.

4. Determine the order in the class group of K of the images of the primes above 2
and of the primes above 5.

e Since (2) = py, the class [p] has order 1 or 2. Since the equation x?429y? =
2 clearly has no integer solution, there is no element of norm 2 in Zg so ps
is not principal. So [ps] has order 2.

e Since (5) = psps, the classes [ps] and [pi] are inverse of each other and
hence have the same order. Since (3 + 2a) = (p§)?, the class [pf] has
order 1 or 3. Since 5 < |Ag|/4 = 29, ps5 is not principal by Exercise 1.
So [ps] and [pt] have order 3.

5. Prove that CI(K) = Z/6Z.

The Minkowski bound is My =~ 5.29, so the class group CIl(K) is generated
by the classes of prime ideals of norm up to 5. Since (1 + a) = papsps, the
class [p3] is in the subgroup generated by [ps] and [ps]. Since [p5] = [ps]™!
and [pL] = [ps]~!, the class group is generated by [ps] and [ps]. Since [ps] has
order 2 and [ps] has order 3, the element g = [ps][p5] generates the class group
([p2] = ¢® and [ps] = ¢g*) and has order 6, so CI(K) = Z/6Z.

Exercise 5 (Difficult). Let K be a number field, and let m > 1 be an integer. In this
exercise we write C1I(K)[m| = {c € CI(K) | ¢™ = 1}.



1. Prove that if hi is coprime to m, then C1(K)[m] = {1}.

Since hg is coprime to m, there exists u,v € 7Z such that um + vhx = 1.
Let ¢ € CI(K)[m]. Then ¢ = ¢vmtvhx = (¢m)4(chx) = 1. So CI(K)[m] = 1.

2. Let Gpp(K) = {a™: x € K*}, and let L,,,(K) be the set of elements x € K*
such that in the prime ideal factorisation of (x), all the exponents are multiples
of m.

(a) Prove that G,,,(K) is a subgroup of L, (K).
Let z € K*, and let (x) = [[, p{* be its prime ideal factorisation. Then (z™) =
[L " € Liy(K). So Gp(K) C Ly, (K), and it is obviously stable by mul-
tiplication and contains 1 = 1.
We define S,,(K) = Ly, (K)/Gn(K).

(b) Let x € L,,(K). Prove that there exists a unique fractional ideal a, such
that () = all’.
Let x € L, (K), and let (z) = [[, p]"* be its prime ideal factorisation.
Then a, = HZ p;" satisfies the required property, and it is unique by unique-
ness of factorisation into prime ideals.

(¢c) Prove that the map f: S, (K) — CI(K)[m], defined by f(x) = [a,], is well-
defined, and is a group homomorphism.
To prove that f is well-defined, we need to prove that a, is principal when-
ever € G,,(K) and that [a,] € CI(K)[m] for all z € L,,(K).

o Let z =y € G, (K )Thena = (z) = (y)™ so a, = (y) and [a,] =
e Let z € L,,(K). Then (z) = so [a;]™ =1 and [a,] € CI(K)[m)].

For all z,y € L,,(K) we have (axay) = ayay = (z)(y) = (zy) so azy =
a,a, by uniqueness. This gives f(zy) = f(x)f(y). Since a; = (1), we
have f(1) =1 and f is a group homomorphism.

(d) Prove that f is surjective.
Let [a] € CI(K)[m]. Then [a]™ = 1 so a™ is principal, say a™ = (x). But
then x € L,,(K) and a = a,, so that [a] = f(z). So f is surjective.

(e) What is the kernel of f?¢
Let z € L,,,(K) be such that f(x) = 1. Then [a,] = 1, so a, is principal,
say a; = (y). We have () = a' = (y™), so there exists a unit u € Zy

such that x = y™u. This proves that the kernel of f is the image of Zy
in S,,(K), that is, Zy /(Zj)™.

From now on, K is an imaginary quadratic field K = Q(v/—d) with d > 0
squarefree. We write = for the complex conjugation in K.

3. Let x = a+byv/—d € K be an element such that N (x) = 1. Let ¢ : K — K be
defined by ¢(y) = 7 — vy.



(a) Prove that ¢ is Q-linear.
Conjugation is additive and does not change rational numbers, so conjuga-
tion is Q-linear. Since multiplication by z is also Q-linear, ¢ is Q-linear.
(b) Compute the matriz of ¢ on the basis (1,v/—d).

We have ¢(1) =1 —x = (1 — a) + (=b)v/—d and ¢(v/—d) = —v/—d — (a +
bv/—d)v/—d = —v/—d — ar/—d + bd = bd + (—1 — a)/—d, so the matrix

of ¢ is
l—a —b
(" —ita)
(¢) Compute the determinant of ¢. Is ¢ injective?
The determinant of ¢ is —(1—a)(1+a)+b*d = a®+db*—1 = O since Nj (z) =
1. So ¢ is not invertible, and hence not injective.

(d) Prove that there exists y € K* such that x = y/y.

Let y # 0 be an element of ker¢. Then §y — xy = 0, so xy = y and
finally = y/y since y # 0.

. Let [a] € CI(K)[2] and let a = N(a).

(a) Prove that there exists x € K* such that a* = (x).
We have [a?] = 1 so a? is principal: there exists z € K* such that a® = (z).

(b) Prove that there exists y € K* such that x = ay/y.
We have N§ (x/a) = N(a)?/a* = 1, so by Question 4 (d), there exists y €
K* such that x/a = y/y, i.e. x = ay/y.

(c) Let b =ya. Prove that there exists b € Q* such that b* = (b).
We have b* = y*a® = (y°z) = (v%ay/y) = (N§ (y)a), so b = N§ (y)a € Q"
is a generator of b2.

(d) Prove that a is in the same ideal class as a product of the ramified prime
ideals of Zk .
Since b = ya, a and b are in the same ideal class. Write b = ef?, where e € Z
is a squarefree integer and f € Q* (which is possible by reducing the
exponents modulo 2 in the prime factorisation of b), and let ¢ = f~1b, which
is in the same ideal class as a. Then ¢* = (f72b) = (e). By uniqueness of
factorisation into prime ideals, every prime divisor of e is ramified, and c¢ is
a product of the ramified prime ideals of Zg.

Let py1,...,ps be the ramified prime ideals of K.

. Prove that if the product pi* ... p;" with 0 < e; < 1 is principal then p$* ... pJt =
(vV—d) or all the e; are zero. Hint: consider the norm of such an ideal, and
look at elements of Zk of that norm.

Let n = N(p7*...p;"), and we assume that then e; are not all zero, so that n > 1
and n is squarefree. Assume z = = + yv/—d € Zg is a generator of p{* ... p7".
Since n is squarefree we have y # 0. We distinguish two cases:
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o If Ax = —d: we have n | d, and 22 + dy* = n, so y* < n/d < 1: we
get y = +1/2 or y = £1. In the first case we get 42% + d = 4n which is
impossible by reduction modulo 4. In the second case we must have n = d,

so that x =0 and 2z = £/ —d.
o If Ax = —4d: we haven | 2d, and 2?+dy* = n, so that n > d: we getn = d
or n = 2d. In the first case we must have z = 0, y = £1 and z = v/ —d.

In the second case we get y? < 2 so that y = +1, giving 22 + d = 2d or
equivalently 2 = d, which is impossible.

6. Prove that C1(K)[2] = (Z/2Z)" .

By Question 4 (d) the group CI(K)[2] is generated by the classes [pi], ..., [P,
and we have [p;]*> = 1 for all . So CI(K)[2| is the quotient of (Z/2Z)! by the
relations of the form [p7*]...[p;*] = 1 where for all ¢ we have 0 < ¢; < 1. By
Question 5 there is only one such nontrivial relation, so C1(K)[2] = (Z/2Z)"*.



