Algebraic number theory Solutions to exercise sheet for chapter 4

Nicolas Mascot [\(n.a.v.mascot@warwick.ac.uk\)](mailto:n.a.v.mascot@warwick.ac.uk) Aurel Page [\(a.r.page@warwick.ac.uk\)](mailto:a.r.page@warwick.ac.uk) TA: Pedro Lemos [\(lemos.pj@gmail.com\)](mailto:lemos.pj@gmail.com)

Version: March 2, 2017

Exercise 1. Let $d > 0$ be a squarefree integer, let $K = \mathbb{Q}(\sqrt{1-\frac{1}{n}})$ $(-d)$ and let Δ_K be the discriminant of K. Let p be a prime that splits in K and let $\mathfrak p$ be a prime ideal above p.

1. Prove that for all integers $i \geq 1$ such that $p^i \leq |\Delta_K|/4$, the ideal p^i is not principal. Hint: consider the cases $\Delta_K = -d$ and $\Delta_K = -4d$ separately.

Let i be as above. Since p is split, $N(\mathfrak{p}) = p$, and by uniqueness of factorisation the ideal p^i is not divisible by (p) .

• If $\Delta_K = -4d$, then $\mathbb{Z}_K = \mathbb{Z}[\sqrt{1 + \sum_{k=1}^{K} d_k}]$ $\chi = -4d$, then $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-d}]$. The norm of a generic element $z = \sqrt{-d}$. $x+y\sqrt{-d}\in\mathbb{Z}_K$ is

 $x^2 + dy^2$.

If p^i is principal, let z be a generator. Then the norm of z is p^i , giving $x^2 +$ $dy^2 = p^i$, so $y^2 \leq p^i/d < 1$, so $y = 0$. But then $z \in \mathbb{Z}$ has norm $z^2 = p^i$, so z is divisible by p. But this is impossible since p^i is not divisible by (p) .

• If $\Delta_K = -d$, then $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ with $\alpha = \frac{1+\sqrt{-d}}{2}$ $\frac{\sqrt{d}}{2}$. The norm of a generic element $z = x + y\alpha$ is

$$
\left(x+\frac{y}{2}\right)^2 + d\left(\frac{y}{2}\right)^2.
$$

If \mathfrak{p}^i is principal, let z be a generator. Then the norm of z is p^i , so $y^2 \leq$ $4p^{i}/d < 1$, so $y = 0$ and as before z is divisible by p, which is impossible.

2. What does this tell you about the class number of K ?

The number of i as in the previous question is

$$
\left\lfloor \frac{\log(|\Delta_K|/4)}{\log p} \right\rfloor
$$

so, accounting for the trivial class, we have

$$
h_K \ge 1 + \left\lfloor \frac{\log(|\Delta_K|/4)}{\log p} \right\rfloor.
$$

Exercise 2. Let $K = \mathbb{Q}(\sqrt{2})$ (-87) .

1. Write down without proof the ring of integers, the discriminant and the signature of K.

Since $-87 = -3 \cdot 29$ is squarefree and $-87 \equiv 1 \mod 4$, the ring of integers of K $\lim_{K \to \infty} \frac{1}{K} = \mathbb{Z}[\alpha]$ with $\alpha = \frac{1+\sqrt{-87}}{2}$ $\frac{\sqrt{-87}}{2}$, the discriminant is $\Delta_K = -87$ and the signature is $(0, 1)$.

2. Describe all the integral ideals of K of norm up to 5 (qive generators for some prime ideals, and express the integral ideals as products of these prime ideals). What does this tell you about the class number of K ?

We first compute the decomposition of primes up to 5. Note that the minimal polynomial of α is $x^2 - x + 22$.

- Since $-87 \equiv 1 \mod 8$, the prime 2 splits. Since $\mathbb{Z}[\alpha]$ is 2-maximal and x^2 $x + 22 \equiv x(x+1) \mod 2$, we have $(2) = \mathfrak{p}_2 \mathfrak{p}'_2$ with $\mathfrak{p}_2 = (2, \alpha + 1)$ and $\mathfrak{p}'_2 =$ $(2,\alpha).$
- Since 87 is divisible by 3, the prime 3 is ramified. Since $\mathbb{Z}[\alpha]$ is 3-maximal and $x^2 - x + 22 \equiv x^2 + 2x + 1 \equiv (x + 1)^2 \mod 3$, we have $(3) = \mathfrak{p}_3^2$ with $\mathfrak{p}_3 = (3, \alpha + 1)$.
- Since $-87 \equiv 3 \mod 5$ is not a square modulo 5, the prime 5 is inert in K.

The integral ideals of K of norm up to 5 are \mathbb{Z}_K , \mathfrak{p}_2 , \mathfrak{p}_2' , \mathfrak{p}_3 , \mathfrak{p}_2^2 , (2) , and $\mathfrak{p}_2'^2$. The Minkowski bound is

$$
M_K = \frac{2}{4} \cdot \frac{4}{\pi} \sqrt{87} \approx 5.94 < 6,
$$

so every ideal class is represented by an integral ideal of norm at most 5. Since (2) is principal, this implies that $h_K \leq 6$.

3. Factor the ideal $\left(\frac{3+\sqrt{-87}}{2}\right)$ $\frac{2}{2}$ into primes.

We have $z = \frac{3+\sqrt{-87}}{2} = 1 + \alpha$, so this element z is an integer, and $N_{\mathbb{Q}}^K(z) =$ $(3/2)^{2} + 87(1/2)^{2} = 24 = 3 \cdot 8$. Since (z) is an integral ideal, (z) is a product of a prime of norm 3 and an integral ideal of norm 8. There is only one prime of norm 3, namely \mathfrak{p}_3 . The integral ideals of norm 8 are \mathfrak{p}_2^3 , $2\mathfrak{p}_2$, $2\mathfrak{p}_2'$ and $\mathfrak{p}_2'^3$. Since $z = 1 + \alpha$ is not divisible by 2 and $z = 1 + \alpha \in \mathfrak{p}_2$, we obtain

$$
(z)=\mathfrak{p}_2^3\mathfrak{p}_3.
$$

4. Prove that $Cl(K) \cong \mathbb{Z}/6\mathbb{Z}$.

By Minkowski's theorem, the class group is generated by $\mathfrak{p}_2, \mathfrak{p}'_2$ and \mathfrak{p}_3 . By the decomposition of primes, we have the relations $[\mathfrak{p}'_2] = [\mathfrak{p}_2]^{-1}$ and $[\mathfrak{p}_3]^2 = 1$. By Question 3 we have the additional relation $[\mathfrak{p}_2]^3 = [\mathfrak{p}_3]^{-1} = [\mathfrak{p}_3]$. Since $[\mathfrak{p}_3]$ is of order 1 or 2, the class $[\mathfrak{p}_2]$ is of order 1, 3 or 6. By Exercise 1, \mathfrak{p}_2^3 is not principal since 2^3 < 87/4, so \mathfrak{p}_2 has order 6. By Question 2, we obtain Cl(K) ≅ $\mathbb{Z}/6\mathbb{Z}$, with generator $[\mathfrak{p}_2]$.

Exercise 3. In this exercise we consider the equation

$$
y^2 = x^5 - 2, \quad x, y \in \mathbb{Z}.
$$

1. Let $K = \mathbb{Q}(\sqrt{2})$ (-2) . Write down the signature, the discriminant, the ring of integers and then class number of K.

The integer −2 is squarefree and we have −2 ≡ 2 mod 4, so the ring of integers of K is $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-2}]$, the discriminant is $\Delta_K = -8$. The signature of K is (0, 1). Since the Minkowski bound is

$$
M_K = \frac{2}{4} \cdot \frac{4}{\pi} \sqrt{8} \approx 1.80 < 2,
$$

the class number of K is $h_K = 1$.

2. Let (x, y) be a solution of the equation. Prove that the ideals $(y +$ √ Let (x, y) be a solution of the equation. Prove that the ideals $(y + \sqrt{-2})$ and $(y - \sqrt{-2})$ $\sqrt{-2}$) are coprime. Hint: reduce the equation modulo 4 to prove that y must be odd.

If y is even, then modulo 4 we obtain $0 = x^5 - 2$, but 2 is not a 5-th power in $\mathbb{Z}/4\mathbb{Z}$ so y is odd.

Let **p** be a prime dividing both $(y +$ √ (-2) and $(y -$ √ (-2) . The it divides the Let p be a prime dividing both $(y + \sqrt{-2})$ and $(y - \sqrt{-2})$. The it divides the difference $2\sqrt{-2}$, which has norm a power of 2. Since 2 is ramified, there is a unique prime \mathfrak{p}_2 above 2. Since $\sqrt{-2} \in \mathfrak{p}_2$, we have $y \in \mathfrak{p}_2$, but $\mathfrak{p}_2 \cap \mathbb{Z} = 2\mathbb{Z}$, unique prime \mathfrak{p}_2 above 2. Since $\sqrt{-2} \in \mathfrak{p}_2$, we have $y \in \mathfrak{p}_2$, but $\mathfrak{p}_2 \cap \mathbb{Z} = 2\math$ so y is even, which is not possible. So $(y + \sqrt{-2})$ and $(y - \sqrt{-2})$ are coprime.

3. You may assume without proof that $\mathbb{Z}_K^\times = \{\pm 1\}$. Prove that $y +$ √ $\overline{-2}$ is a 5-th power in \mathbb{Z}_K .

Since $x^5 = (y +$ √ $\overline{-2}(y -$ √ (-2) , and since $(y +$ √ (-2) and $(y -$ √ $(y - \sqrt{-2})$, and since $(y + \sqrt{-2})$ and $(y - \sqrt{-2})$ are coprime, the ideal $(y + \sqrt{-2})$ is a 5-th power. Since the class number of K is 1, we have $(y + \sqrt{-2}) = (a)^5 = (a^5)$ for some $a \in \mathbb{Z}_K$, and so $y + \sqrt{-2}$ is a 5-th power in \mathbb{Z}_K up to a unit. But since $\mathbb{Z}_K^{\times} = {\pm 1}$, every unit is a 5-th power, so finally $y + \sqrt{-2}$ is a 5-th power in \mathbb{Z}_K .

4. Prove that the equation has no solution.

Since $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-2}]$, there exists $a, b \in \mathbb{Z}$ be such that $(a+b\sqrt{-2})$ $(-2)^5 = y +$ √ $\overline{-2}$. We expand

$$
(a+b\sqrt{-2})^5 = a^5 - 20b^2a^3 + 20b^4a + (5ba^4 - 20b^3a^2 + 4b^5)\sqrt{-2}.
$$

This gives $b(5a^4 - 20b^2a^2 + 4b^4) = 1$, so that $b = \pm 1$.

- If $b = 1$, then $5a^4 20a^2 + 3 = 0$. The discriminant of $5x^2 20x + 3$ is $(-20)^2 - 4 \cdot 5 \cdot 3 = 20 \cdot 17$, which is not a square in \mathbb{Q} , so this polynomial does not have any roots in \mathbb{Z} . So there is no solution with $b = 1$.
- If $b = -1$, then $5a^4 20a^2 + 5 = 0$, which simplifies into $a^4 4a^2 + 1 = 0$. The discriminant of $x^2 - 4x + 1$ is 12, which is not a square in \mathbb{Q} . Again, we have no solution.

So the equation has no solution.

UNASSESSED QUESTIONS

Exercise 4. Let $K = \mathbb{Q}(\sqrt{2})$ (-29) .

1. Determine the ring of integers and discriminant of K.

Since -29 is squarefree and $-29 \equiv 3 \mod 4$, we have $\mathbb{Z}_K = \mathbb{Z}[\sqrt{3}]$ nod 4, we have $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-29}]$ and the discriminant is $\Delta_K = -4 \cdot 29$. Let $\alpha = \sqrt{-29}$.

- 2. Determine the decomposition of 2, 3 and 5 in K.
	- $x^2 + 29 \equiv (x+1)^2 \mod 2$, so 2 is ramified and $(2) = \mathfrak{p}_2^2$ with $\mathfrak{p}_2 = (2, \alpha + 1)$.
	- $x^2 + 29 \equiv x^2 1 \equiv (x 1)(x + 1) \mod 3$, so 3 splits and $(3) = \mathfrak{p}_3 \mathfrak{p}_3'$ where $\mathfrak{p}_3 = (3, \alpha + 1)$ and $\mathfrak{p}'_3 = (3, \alpha + 2)$.
	- $x^2 + 29 \equiv x^2 1 \equiv (x 1)(x + 1) \mod 5$, so 5 splits and $(5) = \mathfrak{p}_5 \mathfrak{p}_5'$ where $\mathfrak{p}_5 = (5, \alpha + 1)$ and $\mathfrak{p}'_5 = (5, \alpha + 4)$.
- 3. Factor the ideals $(1 + \sqrt{-29})$ and $(3 + 2\sqrt{-29})$ into primes.
	- We have $N_{\mathbb{Q}}^K(1+\alpha) = 1+29 = 30 = 2\cdot3\cdot5$. Clearly $1+\alpha \in \mathfrak{p}_3$ so $\mathfrak{p}_3 \mid (1+\alpha)$ and $1 + \alpha \in \mathfrak{p}_5$ so $\mathfrak{p}_5 \mid (1 + \alpha)$, so that $(1 + \alpha) = \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_5$.
	- We have $N_0^K(3+2\alpha) = 3^2+29 \cdot 2^2 = 125 = 5^3$. Since $(5) \nmid 3+2\alpha$ and $3 + 2\alpha \equiv 3 + 2 \cdot 1 \equiv 0 \mod p'_5$, we have $(3 + 2\alpha) = (p'_5)^3$.
- 4. Determine the order in the class group of K of the images of the primes above 2 and of the primes above 5.
	- Since $(2) = \mathfrak{p}_2$, the class $[\mathfrak{p}_2]$ has order 1 or 2. Since the equation $x^2 + 29y^2 =$ 2 clearly has no integer solution, there is no element of norm 2 in \mathbb{Z}_K so \mathfrak{p}_2 is not principal. So $[p_2]$ has order 2.
	- Since (5) = $\mathfrak{p}_5 \mathfrak{p}_5'$, the classes $[\mathfrak{p}_5]$ and $[\mathfrak{p}_5']$ are inverse of each other and hence have the same order. Since $(3 + 2\alpha) = (\mathfrak{p}'_5)^3$, the class $[\mathfrak{p}'_5]$ has order 1 or 3. Since $5 < |\Delta_K|/4 = 29$, \mathfrak{p}_5 is not principal by Exercise 1. So $[\mathfrak{p}_5]$ and $[\mathfrak{p}_5']$ have order 3.
- 5. Prove that $Cl(K) \cong \mathbb{Z}/6\mathbb{Z}$.

The Minkowski bound is $M_K \approx 5.29$, so the class group Cl(K) is generated by the classes of prime ideals of norm up to 5. Since $(1 + \alpha) = \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_5$, the class $[\mathfrak{p}_3]$ is in the subgroup generated by $[\mathfrak{p}_2]$ and $[\mathfrak{p}_5]$. Since $[\mathfrak{p}'_3] = [\mathfrak{p}_3]^{-1}$ and $[\mathfrak{p}_5'] = [\mathfrak{p}_5]^{-1}$, the class group is generated by $[\mathfrak{p}_2]$ and $[\mathfrak{p}_5]$. Since $[\mathfrak{p}_2]$ has order 2 and $[\mathfrak{p}_5]$ has order 3, the element $g = [\mathfrak{p}_2][\mathfrak{p}_5]$ generates the class group $([{\mathfrak p}_2] = g^3$ and $[{\mathfrak p}_5] = g^4$) and has order 6, so $\text{Cl}(K) \cong \mathbb{Z}/6\mathbb{Z}$.

Exercise 5 (Difficult). Let K be a number field, and let $m > 1$ be an integer. In this exercise we write $\text{Cl}(K)[m] = \{c \in \text{Cl}(K) \mid c^m = 1\}.$

- 1. Prove that if h_K is coprime to m, then $Cl(K)[m] = \{1\}.$ Since h_K is coprime to m, there exists $u, v \in \mathbb{Z}$ such that $um + vh_K = 1$. Let $c \in \mathrm{Cl}(K)[m]$. Then $c = c^{um + vh_K} = (c^m)^u (c^{h_K})^v = 1$. So $\mathrm{Cl}(K)[m] = 1$.
- 2. Let $G_m(K) = \{x^m : x \in K^{\times}\}\$, and let $L_m(K)$ be the set of elements $x \in K^{\times}$ such that in the prime ideal factorisation of (x) , all the exponents are multiples of m.
	- (a) Prove that $G_m(K)$ is a subgroup of $L_m(K)$. Let $x \in K^{\times}$, and let $(x) = \prod_i \mathfrak{p}_i^{a_i}$ be its prime ideal factorisation. Then (x^m) = $\prod_i \mathfrak{p}_i^{ma_i} \in L_m(K)$. So $G_m(K) \subset L_m(K)$, and it is obviously stable by multiplication and contains $1 = 1^m$. We define $S_m(K) = L_m(K)/G_m(K)$.
	- (b) Let $x \in L_m(K)$. Prove that there exists a unique fractional ideal \mathfrak{a}_x such that $(x) = \mathfrak{a}_x^m$.

Let $x \in L_m(K)$, and let $(x) = \prod_i \mathfrak{p}_i^{ma_i}$ be its prime ideal factorisation. Then $\mathfrak{a}_x = \prod_i \mathfrak{p}_i^{a_i}$ satisfies the required property, and it is unique by uniqueness of factorisation into prime ideals.

(c) Prove that the map $f: S_m(K) \to \mathrm{Cl}(K)[m]$, defined by $f(x) = [\mathfrak{a}_x]$, is welldefined, and is a group homomorphism.

To prove that f is well-defined, we need to prove that a_x is principal whenever $x \in G_m(K)$ and that $[\mathfrak{a}_x] \in \mathrm{Cl}(K)[m]$ for all $x \in L_m(K)$.

• Let $x = y^m \in G_m(K)$. Then $\mathfrak{a}_x^m = (x) = (y)^m$ so $\mathfrak{a}_x = (y)$ and $[\mathfrak{a}_x] = 1$. • Let $x \in L_m(K)$. Then $(x) = \mathfrak{a}_x^m$, so $[\mathfrak{a}_x]^m = 1$ and $[\mathfrak{a}_x] \in \mathrm{Cl}(K)[m]$.

For all $x, y \in L_m(K)$ we have $(\mathfrak{a}_x \mathfrak{a}_y)^m = \mathfrak{a}_x^m \mathfrak{a}_y^m = (x)(y) = (xy)$ so $\mathfrak{a}_{xy} =$ $\mathfrak{a}_x \mathfrak{a}_y$ by uniqueness. This gives $f(xy) = f(x)f(y)$. Since $a_1 = (1)$, we have $f(1) = 1$ and f is a group homomorphism.

(d) Prove that f is surjective.

Let $[\mathfrak{a}] \in \mathrm{Cl}(K)[m]$. Then $[\mathfrak{a}]^m = 1$ so \mathfrak{a}^m is principal, say $\mathfrak{a}^m = (x)$. But then $x \in L_m(K)$ and $\mathfrak{a} = \mathfrak{a}_x$, so that $[\mathfrak{a}] = f(x)$. So f is surjective.

(e) What is the kernel of f ?

Let $x \in L_m(K)$ be such that $f(x) = 1$. Then $[a_x] = 1$, so a_x is principal, say $\mathfrak{a}_x = (y)$. We have $(x) = \mathfrak{a}_x^m = (y^m)$, so there exists a unit $u \in \mathbb{Z}_K^{\times}$ K such that $x = y^m u$. This proves that the kernel of f is the image of \mathbb{Z}_k^{\times} K in $S_m(K)$, that is, $\mathbb{Z}_K^{\times}/(\mathbb{Z}_K^{\times})^m$.

From now on, K is an imaginary quadratic field $K = \mathbb{Q}(\sqrt{2})$ $(-d)$ with $d > 0$ squarefree. We write $\overline{\cdot}$ for the complex conjugation in K.

3. Let $x = a + b$ √ $-\overline{d} \in K$ be an element such that $N^K_{\mathbb{O}}(x) = 1$. Let $\phi: K \to K$ be defined by $\phi(y) = \bar{y} - xy$.

(a) Prove that ϕ is $\mathbb{Q}\text{-linear}$.

Conjugation is additive and does not change rational numbers, so conjugation is Q-linear. Since multiplication by x is also Q-linear, ϕ is Q-linear. √

(b) Compute the matrix of ϕ on the basis $(1,$ $(-d).$ √

We have $\phi(1) = 1 - x = (1 - a) + (-b)$ $-d$ and ϕ (√ $(-d) = -$ √ Ve have $\phi(1) = 1 - x = (1 - a) + (-b)\sqrt{-d}$ and $\phi(\sqrt{-d}) = -\sqrt{-d} - (a + a)$ $b\sqrt{-d}$) $\sqrt{-d}$ = $-\sqrt{-d}$ – $a\sqrt{-d}$ + bd = bd + $(-1 - a)\sqrt{-d}$, so the matrix of ϕ is

$$
\begin{pmatrix} 1-a & -b \ bd & -1-a \end{pmatrix}
$$

.

- (c) Compute the determinant of ϕ . Is ϕ injective? The determinant of ϕ is $-(1-a)(1+a)+b^2d = a^2+db^2-1 = 0$ since $N_0^K(x) =$ 1. So ϕ is not invertible, and hence not injective.
- (d) Prove that there exists $y \in K^{\times}$ such that $x = \bar{y}/y$. Let $y \neq 0$ be an element of ker ϕ . Then $\bar{y} - xy = 0$, so $xy = \bar{y}$ and finally $x = \bar{y}/y$ since $y \neq 0$.
- 4. Let $[\mathfrak{a}] \in \mathrm{Cl}(K)[2]$ and let $a = N(\mathfrak{a})$.
	- (a) Prove that there exists $x \in K^{\times}$ such that $\mathfrak{a}^2 = (x)$. We have $[\mathfrak{a}^2] = 1$ so \mathfrak{a}^2 is principal: there exists $x \in K^\times$ such that $\mathfrak{a}^2 = (x)$.
	- (b) Prove that there exists $y \in K^{\times}$ such that $x = a\bar{y}/y$. We have $N_0^K(x/a) = N(a)^2/a^2 = 1$, so by Question 4 (d), there exists $y \in$ K^{\times} such that $x/a = \bar{y}/y$, i.e. $x = a\bar{y}/y$.
	- (c) Let $\mathfrak{b} = y\mathfrak{a}$. Prove that there exists $b \in \mathbb{Q}^{\times}$ such that $\mathfrak{b}^2 = (b)$. We have $\mathfrak{b}^2 = y^2 \mathfrak{a}^2 = (y^2 x) = (y^2 a \bar{y}/y) = (N_0^K(y) a)$, so $b = N_0^K(y) a \in \mathbb{Q}^\times$ is a generator of \mathfrak{b}^2 .
	- (d) Prove that a is in the same ideal class as a product of the ramified prime ideals of \mathbb{Z}_K .

Since $\mathfrak{b} = y\mathfrak{a}$, \mathfrak{a} and \mathfrak{b} are in the same ideal class. Write $b = ef^2$, where $e \in \mathbb{Z}$ is a squarefree integer and $f \in \mathbb{Q}^{\times}$ (which is possible by reducing the exponents modulo 2 in the prime factorisation of b), and let $\mathfrak{c} = f^{-1}\mathfrak{b}$, which is in the same ideal class as \mathfrak{a} . Then $\mathfrak{c}^2 = (f^{-2}b) = (e)$. By uniqueness of factorisation into prime ideals, every prime divisor of e is ramified, and $\mathfrak c$ is a product of the ramified prime ideals of \mathbb{Z}_K .

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be the ramified prime ideals of K.

5. Prove that if the product $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_t^{e_t}$ with $0 \leq e_i \leq 1$ is principal then $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_t^{e_t} =$ $(\sqrt{-d})$ or all the e_i are zero. Hint: consider the norm of such an ideal, and look at elements of \mathbb{Z}_K of that norm.

Let $n = N(\mathfrak{p}_1^{e_1} \ldots \mathfrak{p}_t^{e_t}),$ and we assume that then e_i are not all zero, so that $n > 1$ and *n* is squarefree. Assume $z = x + y\sqrt{-d} \in \mathbb{Z}_K$ is a generator of $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_t^{e_t}$. Since *n* is squarefree we have $y \neq 0$. We distinguish two cases:

- If $\Delta_K = -d$: we have $n \mid d$, and $x^2 + dy^2 = n$, so $y^2 \le n/d \le 1$: we get $y = \pm 1/2$ or $y = \pm 1$. In the first case we get $4x^2 + d = 4n$ which is impossible by reduction modulo 4. In the second case we must have $n = d$, so that $x = 0$ and $z = \pm \sqrt{-d}$.
- If $\Delta_K = -4d$: we have $n \mid 2d$, and $x^2 + dy^2 = n$, so that $n \geq d$: we get $n = d$ or $n = 2d$. In the first case we must have $x = 0$, $y = \pm 1$ and $z = \pm \sqrt{-d}$. In the second case we get $y^2 \leq 2$ so that $y = \pm 1$, giving $x^2 + d = 2d$ or equivalently $x^2 = d$, which is impossible.
- 6. Prove that $\text{Cl}(K)[2] \cong (\mathbb{Z}/2\mathbb{Z})^{t-1}$.

By Question 4 (d) the group $Cl(K)[2]$ is generated by the classes $[\mathfrak{p}_1], \ldots, [\mathfrak{p}_t],$ and we have $[\mathfrak{p}_i]^2 = 1$ for all i. So $\text{Cl}(K)[2]$ is the quotient of $(\mathbb{Z}/2\mathbb{Z})^t$ by the relations of the form $[\mathfrak{p}_1^{e_1}] \dots [\mathfrak{p}_t^{e_t}] = 1$ where for all i we have $0 \le e_i \le 1$. By Question 5 there is only one such nontrivial relation, so $Cl(K)[2] \cong (\mathbb{Z}/2\mathbb{Z})^{t-1}$.