Algebraic number theory Solutions to exercise sheet for chapter 2

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk)
Aurel Page (a.r.page@warwick.ac.uk)
TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Exercise 1

Is $\frac{3+2 \sqrt{6}}{\sqrt{6}-1}$ an algebraic integer?
We have

$$
\frac{3+2 \sqrt{6}}{\sqrt{6}-1}=\frac{(3+2 \sqrt{6})(\sqrt{6}+1)}{(\sqrt{6}-1)(\sqrt{6}+1)}=\frac{15+5 \sqrt{6}}{5}=3+\sqrt{6}
$$

Since 3 and $\sqrt{6}$ clearly are algebraic integers (the latter because it is a root of monic $\left.x^{2}-6 \in \mathbb{Z}[x]\right)$, so is their sum, so the answer is yes.

Exercise 2

Let $b, c, n \in \mathbb{Z}, n \geqslant 2$, and let $P(x)=x^{n}+b x+c$. Prove that

$$
\operatorname{disc} P=(-1)^{n(n-1) / 2}\left((1-n)^{n-1} b^{n}+n^{n} c^{n-1}\right)
$$

Hint : start by proving that $\operatorname{disc} P=(-1)^{n(n-1) / 2} n^{n} \prod_{k=0}^{n-2}\left(\left(1-\frac{1}{n}\right) \beta \zeta^{k} b+c\right)$, where $\zeta=e^{2 \pi i /(n-1)}$ and $\beta \in \mathbb{C}$ is such that $\beta^{n-1}=-b / n$.

The discriminant is essentially the resultant of P and P^{\prime}. This resultant can be computed in two ways : as the product of the values of P at the roots of P^{\prime} (essentially), and vice versa. Here, the first way is easier, because the roots of P^{\prime} are easy to express and manipulate. Explicitly, we have $P^{\prime}(x)=n x^{n-1}+b$, whose complex roots are the $\zeta^{k} \beta, 0 \leqslant k<n-1$, and

$$
P\left(\zeta^{k} \beta\right)=\zeta^{k n} \beta^{n}+b \zeta^{k} \beta+c=\zeta^{k}\left(-\frac{\beta}{n}\right)+b \zeta^{k} \beta+c=\left(1-\frac{1}{n}\right) \beta \zeta^{k} b+c .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Res}\left(P, P^{\prime}\right) & =n^{n} \prod_{k=0}^{n-2} P\left(\zeta^{k} \beta\right) \quad \text { because the leading coefficient of } P^{\prime} \text { is } n \\
& =n^{n} \prod_{k=0}^{n-2}\left(\left(1-\frac{1}{n}\right) \beta \zeta^{k} b+c\right) \\
& =n^{n}(-1)^{n-1} \prod_{k=0}^{n-2}\left(-c-\zeta^{k}\left(1-\frac{1}{n}\right) \beta b\right) \\
& =n^{n}(-1)^{n-1}\left((-c)^{n-1}-((1-1 / n) \beta b)^{n-1}\right) \quad \text { because } \prod_{k=0}^{n-2}\left(x-\zeta^{k} y\right)=x^{n-1}-y^{n-1} \\
& =n^{n} c^{n-1}-n^{n} \beta^{n-1} b^{n-1}(1 / n-1)^{n-1} \\
& =n^{n} c^{n-1}-n\left(-\frac{b}{n}\right)(1-n)^{n-1} b^{n-1} \\
& =n^{n} c^{n-1}+(1-n)^{n-1} b^{n} .
\end{aligned}
$$

The result then follows since disc $P=(-1)^{n(n-1) / 2} \operatorname{Res}\left(P, P^{\prime}\right)$.

Exercise 3

Let $K=\mathbb{Q}(\alpha)$, where α satisfies $\alpha^{3}-\alpha-4=0$.

1. Compute the discriminant of $\mathbb{Z}[\alpha]$.

According to the previous exercise,

$$
\operatorname{disc} \mathbb{Z}[\alpha]=\operatorname{disc}\left(x^{3}-x-4\right)=-\left(4(-1)^{3}+27 \cdot 4^{2}\right)=-428
$$

2. At this point, what are the possibilities for disc K ?

Since $-428=-2^{2} \cdot 107$ and 107 is prime, either $\mathbb{Z}[\alpha]=\mathbb{Z}_{K}$ is the whole ring of integers of K, in which case disc $K=-428$, or $\mathbb{Z}[\alpha]$ has index 2 and disc $K=-107$.
3. Prove that $\frac{\alpha^{2}+\alpha}{2}$ is an algebraic integer.
$1, \alpha, \alpha^{2}$ is a \mathbb{Q}-basis of K, and the matrix of the multiplication by $\frac{\alpha^{2}+\alpha}{2}$ on this basis is

$$
\left(\begin{array}{ccc}
0 & 2 & 2 \\
1 / 2 & 1 / 2 & 5 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)
$$

Since its characteristic polynomial $x^{3}-x^{2}-3 x-2$ lies in $\mathbb{Z}[x], \frac{\alpha^{2}+\alpha}{2}$ is an algebraic integer.
4. What is the ring of integers of K ?

We now have the new order $\mathbb{Z}\left[\alpha, \frac{\alpha^{2}+\alpha}{2}\right] \subseteq \mathbb{Z}_{K}$. It admits $1, \alpha, \frac{\alpha^{2}+\alpha}{2}$ as a \mathbb{Z}-basis, so it contains $\mathbb{Z}[\alpha]$ with index 2 , and so its discriminant is 2^{2} times smaller, i.e. is -107 . Since this is squarefree, we can conclude that

$$
\mathbb{Z}_{K}=\mathbb{Z}\left[\alpha, \frac{\alpha^{2}+\alpha}{2}\right]
$$

In particular, disc $K=-107$.
Remark: Actually, if $\beta=\frac{\alpha^{2}+\alpha}{2}$, it can be checked that $\alpha=\beta^{2}-\beta-2 \in \mathbb{Z}[\beta]$; as a result, $\mathbb{Z}_{K}=\mathbb{Z}[\beta]$, and in particular, the discriminant of the characteristic polynomial of β must be -107 . But of course, you did not need to say that to get full marks.

