Algebraic number theory Solutions to exercise sheet for chapter 1

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk)
Aurel Page (a.r.page@warwick.ac.uk)
TA: Pedro Lemos (lemos.pj@gmail.com)

March 2, 2017

Exercise 1

Let $K=\mathbb{Q}[\sqrt[3]{2}]$, and let $\beta=1+\sqrt[3]{2} \in K$. Use a Bézout identity to compute $1 / \beta$ as a polynomial in $\sqrt[3]{2}$ with coefficients in \mathbb{Q}.

Let $A=x^{3}-2$, so that $A(\sqrt[3]{2})=0$, and let $B=x+1$, so that $\beta=B(\sqrt[3]{2})$. Since A is irreducible over \mathbb{Q} and $\operatorname{deg} B<\operatorname{deg} A, A$ and B are coprime in $\mathbb{Q}[x]$, so there exist $U, V \in \mathbb{Q}[x]$ such that $U A+V B=1$. For instance, Euclidian division reveals that

$$
x^{3}-2=(x+1)\left(x^{2}-x+1\right)-3,
$$

so we may take

$$
U=-\frac{1}{3}, \quad V=\frac{x^{2}-x+1}{3} .
$$

Evaluating at $x=\sqrt[3]{2}$, we find that $V(\sqrt[3]{2}) \beta=1$, whence

$$
\frac{1}{\beta}=V(\sqrt[3]{2})=\frac{\sqrt[3]{2}^{2}}{3}-\frac{\sqrt[3]{2}}{3}+\frac{1}{3}
$$

Exercise 2

Let $\alpha \in \mathbb{C}, \beta \in \mathbb{C}^{*}$ be algebraic numbers. Use resultants to prove that α / β is also an algebraic number.

As α and β are algebraic, there exist nonzero polynomials $A, B \mathbb{Q}[x]$ such that $A(\alpha)=B(\beta)=0$, and which we may assume are monic. These polynomials must factor over \mathbb{C} as

$$
A=\prod_{i=1}^{m}\left(x-\alpha_{i}\right), \quad B=\prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

where $\alpha_{1}=\alpha$ and $\beta_{1}=\beta$, and so, in $\mathbb{C}[x][y]$, we have

$$
\begin{aligned}
\operatorname{Res}_{y}(A(y), B(x y)) & =\prod_{i=1}^{m} B\left(x \alpha_{i}\right) \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n}\left(x \alpha_{i}-\beta_{j}\right)
\end{aligned}
$$

which clearly is a nonzero polynomial in $\mathbb{C}[x]$ which vanishes at α / β. Besides, this resultant can also be computed in $\mathbb{Q}[x][y]$, and therefore lies in $\mathbb{Q}[x]$. As a consequence, α / β is a root of a nonzero plynomial with coefficients in \mathbb{Q}, which means precisely that it is an algebraic number.

Exercise 3

Let L / K be a finite extension such that $[L: K]$ is a prime number.

1. Prove that if E is a field such that $K \subset E \subset L$, then $E=K$ or $E=L$.

If E is such a field, then we have $[L: E][E: K]=[L: K]$, and since this is prime, we must either have $[L: E]=1$, in which case $E=L$, or $[E: K]=1$, in which case $E=K$.
2. Deduce that every $\alpha \in L \backslash K$ is a primitive element for the extension L / K.

Let $E=K(\alpha)$. Since $\alpha \notin K$, we have $E \supsetneq K$, and so $E=L$ by the above, which means precisely that α is a primitive element for L / K.

Exercise 4

1. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{-5})$. Compute $[L: \mathbb{Q}]$.

We have the extensions $\mathbb{Q} \subset K \subset L$, where $K=\mathbb{Q}(\sqrt{2})$. We have $[K: \mathbb{Q}]=2$ because 2 is not a square in \mathbb{Q}, and also $[L: K]=2$ because -5 is not a square in K, for instance because K can be embedded into \mathbb{R} (it is even totally real). By multiplicativity of the degrees, we deduce that

$$
[L: \mathbb{Q}]=[L: K][K: \mathbb{Q}]=2 \cdot 2=4 .
$$

2. What is the signature of L ?

Because of the presence of $\sqrt{-5}$, the field L cannot be embedded in \mathbb{R}, and so is totally complex. Since it is of degree 4 , it must have two pairs of conjugate complex embeddings, and so its signature is $(0,2)$.
3. Let $\beta=\sqrt{2}+\sqrt{-5}$. Compute the characteristic polynomial $\chi_{\mathbb{Q}}^{L}(\beta)$ of β with respect to the extension L / \mathbb{Q}.

We know that $(1, \sqrt{2}, \sqrt{-5}, \sqrt{2} \sqrt{-5})$ is a \mathbb{Q}-basis of L. On this basis, the matrix of the multiplication by β is

$$
\left(\begin{array}{cccc}
0 & 2 & -5 & 0 \\
1 & 0 & 0 & -5 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of β is the characteristic polynomial of this matrix, namely

$$
x^{4}+6 x^{2}+49
$$

4. Is this polynomial squarefree? What does this tell us about β ?

This polynomial χ is squafree iff. it is coprime with its derivative $4 x^{3}+12 x$, thus iff. it is coprime with $x^{3}+3 x=x\left(x^{2}+3\right)$. But it is clearly coprime with x, so we must check whether it is coprime with $x^{2}+3$. Since the latter is irreducible, either χ is a multiple of it or it is coprime with it. Euclidian division of χ by $x^{2}+3$ reveals that $x^{2}+3 \nmid \chi$, and so χ is squarefree. As a consequence, β is a primitive element for L / \mathbb{Q}.

UNASSESSED QUESTIONS

Exercise 5

1. Let $K=\mathbb{Q}(\sqrt{-5})$, and let $\alpha=a+b \sqrt{-5}, a, b \in \mathbb{Q}$ be an element of K. Compute the trace, norm, and characteristic polynomial of α in terms of a and b.
The matrix of the multiplication by α on the \mathbb{Q}-basis $(1, \sqrt{5})$ of K is

$$
\left(\begin{array}{cc}
a & -5 b \\
b & a
\end{array}\right)
$$

By reading its trace, determinant, and characteristic polynomial, we get $\operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha)=$ $2 a, N_{\mathbb{Q}}^{K}(\alpha)=a^{2}+5 b^{2}$, and $\chi_{\mathbb{Q}}^{K}(\alpha)=x^{2}-2 a x+a^{2}+5 b^{2}$.
2. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{-5})$, and let $\beta=\sqrt{2}+\sqrt{-5}$. Compute the characteristic polynomial $\chi_{\mathbb{Q}}^{L}(\beta)$ of β with respect to the extension L / K.
$(1, \sqrt{2})$ is a K-basis of L, and on this basis, the matrix of the multiplication by β is

$$
\left(\begin{array}{cc}
\sqrt{-5} & 2 \\
1 & \sqrt{-5}
\end{array}\right)
$$

Thus $\operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha)=2 \sqrt{-5}, N_{\mathbb{Q}}^{K}(\alpha)=-7$, and $\chi_{\mathbb{Q}}^{K}(\alpha)=x^{2}-2 \sqrt{-5} x-7$.

Exercise 6

Let $K=\mathbb{Q}(\alpha)$ be a number field, let $A(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α, and let $\beta=B(\alpha) \in K$, where $B(x) \in \mathbb{Q}[x]$ is some polynomial. Express the characteristic polynomial $\chi_{\mathbb{Q}}^{K}$ of β in terms of a resultant involving A and B.

Let Σ be the set of embeddings of K into \mathbb{C}. When σ ranges over Σ, then $\sigma(\alpha)$ ranges over the complex roots of $A(x)$, so that

$$
\begin{aligned}
\chi_{\mathbb{Q}}^{K}(\beta) & =\prod_{\sigma \in \Sigma}(x-\sigma(\beta)) \\
& =\prod_{\sigma \in \Sigma}(x-\sigma(B(\alpha))) \\
& =\prod_{\sigma \in \Sigma}(x-B(\sigma(\alpha))) \\
& =\prod_{\substack{z \in \mathbb{C} \\
A(z)=0}}(x-B(z)) \\
& =\operatorname{Res}_{y}(A(y), x-B(y))
\end{aligned}
$$

where the resultant is computed in $\mathbb{C}[x][y]$.
Remark: Algorithmically speaking, this is in general the fastest way to compute characteristic polynomials.

