Algebraic number theory Solutions to exercise sheet for chapter 1

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com)

March 2, 2017

Exercise 1

Let $K = \mathbb{Q}[\sqrt[3]{2}]$, and let $\beta = 1 + \sqrt[3]{2} \in K$. Use a Bézout identity to compute $1/\beta$ as a polynomial in $\sqrt[3]{2}$ with coefficients in \mathbb{Q} .

Let $A = x^3 - 2$, so that $A(\sqrt[3]{2}) = 0$, and let B = x + 1, so that $\beta = B(\sqrt[3]{2})$. Since A is irreducible over \mathbb{Q} and deg $B < \deg A$, A and B are coprime in $\mathbb{Q}[x]$, so there exist $U, V \in \mathbb{Q}[x]$ such that UA + VB = 1. For instance, Euclidian division reveals that

$$x^{3} - 2 = (x+1)(x^{2} - x + 1) - 3,$$

so we may take

$$U = -\frac{1}{3}, \quad V = \frac{x^2 - x + 1}{3}.$$

Evaluating at $x = \sqrt[3]{2}$, we find that $V(\sqrt[3]{2})\beta = 1$, whence

$$\frac{1}{\beta} = V(\sqrt[3]{2}) = \frac{\sqrt[3]{2}}{3} - \frac{\sqrt[3]{2}}{3} + \frac{1}{3}.$$

Exercise 2

Let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C}^*$ be algebraic numbers. Use resultants to prove that α/β is also an algebraic number.

As α and β are algebraic, there exist nonzero polynomials $A, B\mathbb{Q}[x]$ such that $A(\alpha) = B(\beta) = 0$, and which we may assume are monic. These polynomials must factor over \mathbb{C} as

$$A = \prod_{i=1}^{m} (x - \alpha_i), \quad B = \prod_{j=1}^{n} (x - \beta_j)$$

where $\alpha_1 = \alpha$ and $\beta_1 = \beta$, and so, in $\mathbb{C}[x][y]$, we have

$$\operatorname{Res}_{y} \left(A(y), B(xy) \right) = \prod_{i=1}^{m} B(x\alpha_{i})$$
$$= \prod_{i=1}^{m} \prod_{j=1}^{n} (x\alpha_{i} - \beta_{j}),$$

which clearly is a nonzero polynomial in $\mathbb{C}[x]$ which vanishes at α/β . Besides, this resultant can also be computed in $\mathbb{Q}[x][y]$, and therefore lies in $\mathbb{Q}[x]$. As a consequence, α/β is a root of a nonzero plynomial with coefficients in \mathbb{Q} , which means precisely that it is an algebraic number.

Exercise 3

Let L/K be a finite extension such that [L:K] is a prime number.

1. Prove that if E is a field such that $K \subset E \subset L$, then E = K or E = L.

If E is such a field, then we have [L : E][E : K] = [L : K], and since this is prime, we must either have [L : E] = 1, in which case E = L, or [E : K] = 1, in which case E = K.

2. Deduce that every $\alpha \in L \setminus K$ is a primitive element for the extension L/K. Let $E = K(\alpha)$. Since $\alpha \notin K$, we have $E \supseteq K$, and so E = L by the above, which means precisely that α is a primitive element for L/K.

Exercise 4

1. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{-5})$. Compute $[L : \mathbb{Q}]$.

We have the extensions $\mathbb{Q} \subset K \subset L$, where $K = \mathbb{Q}(\sqrt{2})$. We have $[K : \mathbb{Q}] = 2$ because 2 is not a square in \mathbb{Q} , and also [L : K] = 2 because -5 is not a square in K, for instance because K can be embedded into \mathbb{R} (it is even totally real). By multiplicativity of the degrees, we deduce that

$$[L:\mathbb{Q}] = [L:K][K:\mathbb{Q}] = 2 \cdot 2 = 4.$$

2. What is the signature of L?

Because of the presence of $\sqrt{-5}$, the field *L* cannot be embedded in \mathbb{R} , and so is totally complex. Since it is of degree 4, it must have two pairs of conjugate complex embeddings, and so its signature is (0, 2).

3. Let $\beta = \sqrt{2} + \sqrt{-5}$. Compute the characteristic polynomial $\chi^L_{\mathbb{Q}}(\beta)$ of β with respect to the extension L/\mathbb{Q} .

We know that $(1, \sqrt{2}, \sqrt{-5}, \sqrt{2}\sqrt{-5})$ is a Q-basis of L. On this basis, the matrix of the multiplication by β is

$$\begin{pmatrix} 0 & 2 & -5 & 0 \\ 1 & 0 & 0 & -5 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

The characteristic polynomial of β is the characteristic polynomial of this matrix, namely

$$x^4 + 6x^2 + 49$$

4. Is this polynomial squarefree ? What does this tell us about β ?

This polynomial χ is squafree iff. it is coprime with its derivative $4x^3 + 12x$, thus iff. it is coprime with $x^3 + 3x = x(x^2 + 3)$. But it is clearly coprime with x, so we must check whether it is coprime with $x^2 + 3$. Since the latter is irreducible, either χ is a multiple of it or it is coprime with it. Euclidian division of χ by $x^2 + 3$ reveals that $x^2 + 3 \nmid \chi$, and so χ is squarefree. As a consequence, β is a primitive element for L/\mathbb{Q} .

UNASSESSED QUESTIONS

Exercise 5

1. Let $K = \mathbb{Q}(\sqrt{-5})$, and let $\alpha = a + b\sqrt{-5}$, $a, b \in \mathbb{Q}$ be an element of K. Compute the trace, norm, and characteristic polynomial of α in terms of a and b.

The matrix of the multiplication by α on the Q-basis $(1,\sqrt{5})$ of K is

$$\begin{pmatrix} a & -5b \\ b & a \end{pmatrix}$$
.

By reading its trace, determinant, and characteristic polynomial, we get $\operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha) = 2a$, $N_{\mathbb{Q}}^{K}(\alpha) = a^{2} + 5b^{2}$, and $\chi_{\mathbb{Q}}^{K}(\alpha) = x^{2} - 2ax + a^{2} + 5b^{2}$.

2. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{-5})$, and let $\beta = \sqrt{2} + \sqrt{-5}$. Compute the characteristic polynomial $\chi^L_{\mathbb{Q}}(\beta)$ of β with respect to the extension L/K.

 $(1,\sqrt{2})$ is a K-basis of L, and on this basis, the matrix of the multiplication by β is

$$\begin{pmatrix} \sqrt{-5} & 2\\ 1 & \sqrt{-5} \end{pmatrix}$$

Thus $\operatorname{Tr}_{\mathbb{Q}}^{K}(\alpha) = 2\sqrt{-5}$, $N_{\mathbb{Q}}^{K}(\alpha) = -7$, and $\chi_{\mathbb{Q}}^{K}(\alpha) = x^{2} - 2\sqrt{-5}x - 7$.

Exercise 6

Let $K = \mathbb{Q}(\alpha)$ be a number field, let $A(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α , and let $\beta = B(\alpha) \in K$, where $B(x) \in \mathbb{Q}[x]$ is some polynomial. Express the characteristic polynomial $\chi_{\mathbb{Q}}^{K}$ of β in terms of a resultant involving A and B.

Let Σ be the set of embeddings of K into C. When σ ranges over Σ , then $\sigma(\alpha)$ ranges over the complex roots of A(x), so that

$$\chi_{\mathbb{Q}}^{K}(\beta) = \prod_{\sigma \in \Sigma} (x - \sigma(\beta))$$
$$= \prod_{\sigma \in \Sigma} (x - \sigma(B(\alpha)))$$
$$= \prod_{\sigma \in \Sigma} (x - B(\sigma(\alpha)))$$
$$= \prod_{\substack{z \in \mathbb{C} \\ A(z) = 0}} (x - B(z))$$
$$= \operatorname{Res}_{y} (A(y), x - B(y))$$

where the resultant is computed in $\mathbb{C}[x][y]$.

Remark: Algorithmically speaking, this is in general the fastest way to compute characteristic polynomials.