Algebraic number theory Revision exercises

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Exercise 1. What is the ring of integers of $\mathbb{Q}(\sqrt{98})$?

Exercise 2. What kinds of number fields have a unit group of rank 1 ?

Exercise 3. Compute the class group of $\mathbb{Q}(\sqrt{-47})$.

Exercise 4. The aim of this exercise is to determine the class group of $K = \mathbb{Q}(\sqrt{82})$, seen as a subfield of \mathbb{R} .

- 1. Prove that the class group of K is either trivial or isomorphic to $\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$.
- 2. What is the rank of the unit group of K? Compute a fundamental unit u > 1 of K.
- 3. Suppose that there exist an element $\beta = x + y\sqrt{82} \in \mathbb{Z}_K$ of norm 2. Why may we assume that $\frac{1}{\sqrt{u}} < \beta < \sqrt{u}$? Prove that $x y\sqrt{82} = \frac{2}{\beta}$, use this to derive bounds on x, and deduce that no such β exists.
- 4. Prove similarly that no element of \mathbb{Z}_K has norm -2.
- 5. What is the class group of K?
- 6. Was is absolutely necessary that the unit u be fundamental for the above reasoning to be valid ?

Exercise 5. Let $f(x) = x^3 - 4x^2 + 2x - 2$, which is an irreducible polynomial over \mathbb{Q} (why ?), and let $K = \mathbb{Q}(\alpha)$, where α is a root of f.

1. Given that disc f = -300, what can you say about the ring of integers of K and the primes that ramify in K? What if, on the top of that, you notice that $f(x+3) = x^3 + 5x^2 + 5x - 5$?

2. Prove that \mathbb{Z}_K is a PID.

Hint: For $n \in \mathbb{Q}$, what relation is there between f(n) and the norm of $n - \alpha$? Use this to find elements of small norm, and thus relations in the class group.

- 3. Find a generator for each of the primes above 2, 3 and 5.
- 4. Use the results of the previous question to discover that $u = 2\alpha^2 \alpha + 1$ is a unit.
- 5. We use the unique embedding of K into \mathbb{R} to view K as a subfield of \mathbb{R} from now on. Prove that there exists a unit $\varepsilon \in \mathbb{Z}_K^{\times}$ such that $\mathbb{Z}_K^{\times} = \{\pm \varepsilon^n, n \in \mathbb{Z}\}$ and $\varepsilon > 1$.
- 6. By the technique of exercise 2 from exercise sheet number 5, it can be proved that $\varepsilon \ge 4.1$. Given that $u \approx 23.3$, prove that u is a fundamental unit.

Hint : *Reduce* u *modulo the primes above* 3 *to prove that* u *is not a square in* \mathbb{Z}_K .

What is the regulator of K?

Exercise 6. Let $f(x) = x^4 + 3x^3 - 18x^2 - 24x + 129$, which is an irreducible polynomial over \mathbb{Q} (why ?), and let $K = \mathbb{Q}(\alpha)$, where α is a root of f.

- 1. If I told you that disc f = 930069, why would not that be very useful to you ? Which information can you get from that nonetheless ?
- 2. I now tell you that the roots of f are approximately $-4.1 \pm 0.1i$ and $2.6 \pm 1.0i$. What is the signature of K? Can you compute the trace of α from these approximate values? Why is the result obvious?
- 3. If I now tell you that disc f factors as $3^3 \cdot 7^2 \cdot 19 \cdot 37$, what can you say about the ring of integers of K and the primes that ramify in K?
- 4. In principle (don't actually do it), how could you test whether $\beta = \frac{\alpha^3 2\alpha^2 \alpha + 2}{7}$ is an algebraic integer ?
- 5. If I now tell you that the characteristic polynomial of β is $\chi(\beta) = x^4 + 28x^3 + 207x^2 + 154x + 247$, whose discriminant is disc $\chi(\beta) = 25364993616$, which conclusions can you draw from that ?
- 6. Given that disc $\chi(\beta)$ factors as $2^4 \cdot 3^3 \cdot 17^4 \cdot 19 \cdot 37$, what is the index of the order $\mathbb{Z}[\beta]$? What consequence does this have on the expression of a \mathbb{Z} -basis of \mathbb{Z}_K in terms of β ?
- 7. Let $\gamma = \frac{\beta^2 3\beta 3}{34}$, and let $\delta = \frac{\beta^3 12\beta 9}{34}$, whose respective characteristic polynomials are $\chi(\gamma) = x^4 13x^3 + 42x^2 + 8x + 1$ and $\chi(\delta) = x^4 + 139x^3 + 5163x^2 + 973$. Prove that $\{1, \beta, \gamma, \delta\}$ is a \mathbb{Z} -basis of \mathbb{Z}_K .
- 8. Compute explicitly the decomposition of 2, 3, and 7 in K.

- 9. What is the rank of the unit group of K ? Can you spot a nontrivial (i.e. not ± 1) unit of K ?
- 10. What can you say about the roots of unity contained in K? How could you use this to test whether the unit you spotted in the previous question if a root of unity ?