# Algebraic number theory Revision exercises 

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk)<br>Aurel Page (a.r.page@warwick.ac.uk)<br>TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Exercise 1. What is the ring of integers of $\mathbb{Q}(\sqrt{98})$ ?
Exercise 2. What kinds of number fields have a unit group of rank 1 ?
Exercise 3. Compute the class group of $\mathbb{Q}(\sqrt{-47})$.
Exercise 4. The aim of this exercise is to determine the class group of $K=\mathbb{Q}(\sqrt{82})$, seen as a subfield of $\mathbb{R}$.

1. Prove that the class group of $K$ is either trivial or isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z}$.
2. What is the rank of the unit group of $K$ ? Compute a fundamental unit $u>1$ of $K$.
3. Suppose that there exist an element $\beta=x+y \sqrt{82} \in \mathbb{Z}_{K}$ of norm 2. Why may we assume that $\frac{1}{\sqrt{u}}<\beta<\sqrt{u}$ ? Prove that $x-y \sqrt{82}=\frac{2}{\beta}$, use this to derive bounds on $x$, and deduce that no such $\beta$ exists.
4. Prove similarly that no element of $\mathbb{Z}_{K}$ has norm -2 .
5. What is the class group of $K$ ?
6. Was is absolutely necessary that the unit $u$ be fundamental for the above reasoning to be valid?

Exercise 5. Let $f(x)=x^{3}-4 x^{2}+2 x-2$, which is an irreducible polynomial over $\mathbb{Q}$ (why ?), and let $K=\mathbb{Q}(\alpha)$, where $\alpha$ is a root of $f$.

1. Given that $\operatorname{disc} f=-300$, what can you say about the ring of integers of $K$ and the primes that ramify in $K$ ? What if, on the top of that, you notice that $f(x+3)=x^{3}+5 x^{2}+5 x-5 ?$
2. Prove that $\mathbb{Z}_{K}$ is a PID.

Hint: For $n \in \mathbb{Q}$, what relation is there between $f(n)$ and the norm of $n-\alpha$ ? Use this to find elements of small norm, and thus relations in the class group.
3. Find a generator for each of the primes above 2,3 and 5 .
4. Use the results of the previous question to discover that $u=2 \alpha^{2}-\alpha+1$ is a unit.
5. We use the unique embedding of $K$ into $\mathbb{R}$ to view $K$ as a subfield of $\mathbb{R}$ from now on. Prove that there exists a unit $\varepsilon \in \mathbb{Z}_{K}^{\times}$such that $\mathbb{Z}_{K}^{\times}=\left\{ \pm \varepsilon^{n}, n \in \mathbb{Z}\right\}$ and $\varepsilon>1$.
6. By the technique of exercise 2 from exercise sheet number 5 , it can be proved that $\varepsilon \geqslant 4.1$. Given that $u \approx 23.3$, prove that $u$ is a fundamental unit.
Hint : Reduce $u$ modulo the primes above 3 to prove that $u$ is not a square in $\mathbb{Z}_{K}$.
What is the regulator of $K$ ?
Exercise 6. Let $f(x)=x^{4}+3 x^{3}-18 x^{2}-24 x+129$, which is an irreducible polynomial over $\mathbb{Q}$ (why ?), and let $K=\mathbb{Q}(\alpha)$, where $\alpha$ is a root of $f$.

1. If I told you that $\operatorname{disc} f=930069$, why would not that be very useful to you ? Which information can you get from that nonetheless?
2. I now tell you that the roots of $f$ are approximately $-4.1 \pm 0.1 i$ and $2.6 \pm 1.0 i$. What is the signature of $K$ ? Can you compute the trace of $\alpha$ from these approximate values? Why is the result obvious?
3. If I now tell you that $\operatorname{disc} f$ factors as $3^{3} \cdot 7^{2} \cdot 19 \cdot 37$, what can you say about the ring of integers of $K$ and the primes that ramify in $K$ ?
4. In principle (don't actually do it), how could you test whether $\beta=\frac{\alpha^{3}-2 \alpha^{2}-\alpha+2}{7}$ is an algebraic integer ?
5. If I now tell you that the characteristic polynomial of $\beta$ is $\chi(\beta)=x^{4}+28 x^{3}+$ $207 x^{2}+154 x+247$, whose discriminant is disc $\chi(\beta)=25364993616$, which conclusions can you draw from that ?
6. Given that disc $\chi(\beta)$ factors as $2^{4} \cdot 3^{3} \cdot 17^{4} \cdot 19 \cdot 37$, what is the index of the order $\mathbb{Z}[\beta]$ ? What consequence does this have on the expression of a $\mathbb{Z}$-basis of $\mathbb{Z}_{K}$ in terms of $\beta$ ?
7. Let $\gamma=\frac{\beta^{2}-3 \beta-3}{34}$, and let $\delta=\frac{\beta^{3}-12 \beta-9}{34}$, whose respective characteristic polynomials are $\chi(\gamma)=x^{4}-13 x^{3}+42 x^{2}+8 x+1$ and $\chi(\delta)=x^{4}+139 x^{3}+5163 x^{2}+973$. Prove that $\{1, \beta, \gamma, \delta\}$ is a $\mathbb{Z}$-basis of $\mathbb{Z}_{K}$.
8. Compute explicitly the decomposition of 2,3 , and 7 in $K$.
9. What is the rank of the unit group of $K$ ? Can you spot a nontrivial (i.e. not $\pm 1$ ) unit of $K$ ?
10. What can you say about the roots of unity contained in $K$ ? How could you use this to test whether the unit you spotted in the previous question if a root of unity ?
