Algebraic number theory Exercise sheet for chapter 4

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Answers must be submitted by Friday March 11, 14:00

Exercise 1 (20 points). Let d > 0 be a squarefree integer, let $K = \mathbb{Q}(\sqrt{-d})$ and let Δ_K be the discriminant of K. Let p be a prime that splits in K and let \mathfrak{p} be a prime ideal above p.

- 1. (15 points) Prove that for all integers $i \ge 1$ such that $p^i < |\Delta_K|/4$, the ideal \mathfrak{p}^i is not principal. *Hint: consider the cases* $\Delta_K = -d$ and $\Delta_K = -4d$ separately.
- 2. (5 points) What does this tell you about the class number of K?

Exercise 2 (40 points). Let $K = \mathbb{Q}(\sqrt{-87})$.

- 1. (5 points) Write down without proof the ring of integers, the discriminant and the signature of K.
- 2. (10 points) Describe all the integral ideals of K of norm up to 5 (give generators for some prime ideals, and express the integral ideals as products of these prime ideals). What does this tell you about the class number of K?
- 3. (10 points) Factor the ideal $\left(\frac{3+\sqrt{-87}}{2}\right)$ into primes.
- 4. (15 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/6\mathbb{Z}$.

Exercise 3 (40 points). In this exercise we consider the equation

$$y^2 = x^5 - 2, \quad x, y \in \mathbb{Z}.$$

1. (5 points) Let $K = \mathbb{Q}(\sqrt{-2})$. Write down without proof the signature, the discriminant, the ring of integers of K, and then compute the class number of K.

- 2. (10 points) Let (x, y) be a solution of the equation. Prove that the ideals $(y + \sqrt{-2})$ and $(y \sqrt{-2})$ are coprime. *Hint: reduce the equation modulo* 4 to prove that y must be odd.
- 3. (10 points) You may assume without proof that $\mathbb{Z}_{K}^{\times} = \{\pm 1\}$. Prove that $y + \sqrt{-2}$ is a 5-th power in \mathbb{Z}_{K} .
- 4. (15 points) Prove that the equation has no solution.

UNASSESSED QUESTIONS

The next questions are not worth any points. I still recommend you to try to solve them, for practice. Corrections will be available online, just like for the marked questions.

Exercise 4. Let $K = \mathbb{Q}(\sqrt{-29})$.

- 1. Determine the ring of integers and discriminant of K.
- 2. Determine the decomposition of 2, 3 and 5 in K.
- 3. Factor the ideals $(1 + \sqrt{-29})$ and $(3 + 2\sqrt{-29})$ into primes.
- 4. Determine the order in the class group of K of the images of the primes above 2 and of the primes above 5.
- 5. Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/6\mathbb{Z}$.

Exercise 5 (Difficult). Let K be a number field, and let $m \ge 1$ be an integer. In this exercise we write $\operatorname{Cl}(K)[m] = \{c \in \operatorname{Cl}(K) \mid c^m = 1\}.$

- 1. Prove that if h_K is coprime to m, then $\operatorname{Cl}(K)[m] = \{1\}$.
- 2. Let $G_m(K) = \{x^m : x \in K^{\times}\}$, and let $L_m(K)$ be the set of elements $x \in K^{\times}$ such that in the prime ideal factorisation of (x), all the exponents are multiples of m.
 - (a) Prove that $G_m(K)$ is a subgroup of $L_m(K)$. We define $S_m(K) = L_m(K)/G_m(K)$.
 - (b) Let $x \in L_m(K)$. Prove that there exists a unique fractional ideal \mathfrak{a}_x such that $(x) = \mathfrak{a}_x^m$.
 - (c) Prove that the map $f: S_m(K) \to \operatorname{Cl}(K)[m]$, defined by $f(x) = [\mathfrak{a}_x]$, is well-defined, and is a group homomorphism.
 - (d) Prove that f is surjective.
 - (e) What is the kernel of f?

From now on, K is an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$ with d > 0 squarefree. We write $\overline{\cdot}$ for the complex conjugation in K.

- 3. Let $x = a + b\sqrt{-d} \in K$ be an element such that $N_{\mathbb{Q}}^{K}(x) = 1$. Let $\phi : K \to K$ be defined by $\phi(y) = \bar{y} xy$.
 - (a) Prove that ϕ is \mathbb{Q} -linear.
 - (b) Compute the matrix of ϕ on the basis $(1, \sqrt{-d})$.
 - (c) Compute the determinant of ϕ . Is ϕ injective?
 - (d) Prove that there exists $y \in K^{\times}$ such that $x = \bar{y}/y$.
- 4. Let $[\mathfrak{a}] \in \operatorname{Cl}(K)[2]$ and let $a = N(\mathfrak{a})$.
 - (a) Prove that there exists $x \in K^{\times}$ such that $\mathfrak{a}^2 = (x)$.
 - (b) Prove that there exists $y \in K^{\times}$ such that $x = a\bar{y}/y$.
 - (c) Let $\mathfrak{b} = y\mathfrak{a}$. Prove that there exists $b \in \mathbb{Q}^{\times}$ such that $\mathfrak{b}^2 = (b)$.
 - (d) Prove that \mathfrak{a} is in the same ideal class as a product of the ramified prime ideals of \mathbb{Z}_K .

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be the ramified prime ideals of K.

- 5. Prove that if the product $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_t^{e_t}$ with $0 \leq e_i \leq 1$ is principal then $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_t^{e_t} = (\sqrt{-d})$ or all the e_i are zero. Hint: consider the norm of such an ideal, and look at elements of \mathbb{Z}_K of that norm.
- 6. Prove that $\operatorname{Cl}(K)[2] \cong (\mathbb{Z}/2\mathbb{Z})^{t-1}$.