Algebraic number theory Exercise sheet for chapter 3

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk)
Aurel Page (a.r.page@warwick.ac.uk)
TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Answers must be submitted by Friday February 26, 14:00

Exercise 1 (70 points)

Let $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}-5 \alpha+5=0$.

1. (10 points) Prove that the ring of integers of K is $\mathbb{Z}[\alpha]$.
2. (5 points) Which primes $p \in \mathbb{N}$ ramify in K ?
3. (21 points) For $n \in \mathbb{N}, n \leqslant 7$, compute explicitly the decomposition of $n \mathbb{Z}_{K}$ as a product of prime ideals.
4. (8 points) Prove that the prime(s) above 5 are principal, and find explicitly a generator for them.
5. (16 points) List the ideals \mathfrak{a} of \mathbb{Z}_{K} such that $N(\mathfrak{a}) \leqslant 7$.
6. (10 points) Compute and factor explicitly the different of K.

Exercise 2 (30 points)

Let $K=\mathbb{Q}(\zeta)$, where ζ is a primitive $90^{\text {th }}$ root of 1 .

1. (3 points) What is the degree of K ?
2. (5 points) Which primes $p \in \mathbb{N}$ ramify in K ?
3. (12 points) For $p=2,3,5,7$, describ \bigoplus^{17} how p decomposes in K.

[^0]4. (2 points) Give an example of a prime $p \in \mathbb{N}$ which splits completely in K.
5. (8 points) Does there exist a prime $p \in \mathbb{N}$ which is inert in K ?

UNASSESSED QUESTION

The next question is not worth any points. I still recommend you to try to solve it, for practice. Correction will be available online, just like for the marked questions.

Exercise 3

Let K be a number field of degree n. Prove that if there exists a prime $p<n$ which splits completely in K, then \mathbb{Z}_{K} is not of the form $\mathbb{Z}[\alpha]$ for any $\alpha \in K$.

[^0]: ${ }^{1}$ By this, I mean say how many primes there are above p, and what their ramification index and inertial degree are. Unlike in the previous exercise, you are NOT required to compute these primes explicitly.

