Algebraic number theory Exercise sheet for chapter 3

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com)

Version: March 2, 2017

Answers must be submitted by Friday February 26, 14:00

Exercise 1 (70 points)

Let $K = \mathbb{Q}(\alpha)$, where $\alpha^3 - 5\alpha + 5 = 0$.

- 1. (10 points) Prove that the ring of integers of K is $\mathbb{Z}[\alpha]$.
- 2. (5 points) Which primes $p \in \mathbb{N}$ ramify in K?
- 3. (21 points) For $n \in \mathbb{N}$, $n \leq 7$, compute explicitly the decomposition of $n\mathbb{Z}_K$ as a product of prime ideals.
- 4. (8 points) Prove that the prime(s) above 5 are principal, and find explicitly a generator for them.
- 5. (16 points) List the ideals \mathfrak{a} of \mathbb{Z}_K such that $N(\mathfrak{a}) \leq 7$.
- 6. (10 points) Compute and factor explicitly the different of K.

Exercise 2 (30 points)

Let $K = \mathbb{Q}(\zeta)$, where ζ is a primitive 90th root of 1.

- 1. (3 points) What is the degree of K?
- 2. (5 points) Which primes $p \in \mathbb{N}$ ramify in K?
- 3. (12 points) For p = 2, 3, 5, 7, describe¹ how p decomposes in K.

¹By this, I mean say how many primes there are above p, and what their ramification index and inertial degree are. Unlike in the previous exercise, you are **NOT** required to compute these primes explicitly.

- 4. (2 points) Give an example of a prime $p \in \mathbb{N}$ which splits completely in K.
- 5. (8 points) Does there exist a prime $p \in \mathbb{N}$ which is inert in K?

UNASSESSED QUESTION

The next question is not worth any points. I still recommend you to try to solve it, for practice. Correction will be available online, just like for the marked questions.

Exercise 3

Let K be a number field of degree n. Prove that if there exists a prime p < n which splits completely in K, then \mathbb{Z}_K is not of the form $\mathbb{Z}[\alpha]$ for any $\alpha \in K$.