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A TWO-SCALE APPROACH TO THE HYDRODYNAMIC LIMIT

PART II: LOCAL GIBBS BEHAVIOR

MAX FATHI

Abstract. This work is a follow-up on 7]. In that previous work a two-scale approach

was used to prove the logarithmic Sobolev inequality for a system of spins with fixed

mean whose potential is a bounded perturbation of a Gaussian, and to derive an abstract
theorem for the convergence to the hydrodynamic limit. This strategy was then success-

fully applied to Kawasaki dynamics. Here we shall use again this two-scale approach to

show that the microscopic variable in such a model behaves according to a local Gibbs
state. As a consequence, we shall prove the convergence of the microscopic entropy to the

hydrodynamic entropy.
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Introduction

A local Gibbs measure is a vague term used to designate a measure whose density
(with respect to the plain Gibbs measure) takes the form G(x) = exp(

∑
λixi), where

the coefficients λi vary “at macroscopic scale”. They have been used by Guo, Papan-
icolaou and Varadhan in 5] for the Ginzburg-Landau model, and also play a crucial
role in the relative entropy method devised by Yau in 8]. They represent in some
sense a “typical” microscopic distribution having the correct hydrodynamic profile.
The main result in 8] can be informally summarized as follows: if the initial datum is
in local Gibbs state, then at later times the microscopic variable is very close (in the
sense of Kullback information) to be in local Gibbs state too. The local Gibbs state
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Yau used is defined in terms of the hydrodynamic equation, and chosen so that it is
close to being a solution of the microscopic equation.

In a more recent contribution, Kosygina 1] proved that the solution of the
Ginzburg–Landau model behaves like a local Gibbs state for all positive times even
if it does not at initial time. That is, there is a time-dependent family of vectors λ(t)
such that, if f(t, ·) is the density at time t with respect to the equilibrium measure
µ of a system of N continuous spins xi interacting according to Kawasaki dynamics,
then the relative entropy of fµ with respect to the measure ν(dx) = 1

Z exp(λ·x)µ(dx),
given by

Entν(fµ) =

∫
ρ log ρ ,

with ρ being the density of fµ with respect to ν, goes to 0 when N goes to infinity
for any time t > 0. The equilibrium measure µ(dx) := exp(−H(x))dx is assumed to
have a Ginzburg–Landau type potential, that is

H(x) =
∑

ψ(xi),

where ψ is the single-site potential. Kosygina’s proof relied on the logarithmic Sobolev
inequality, and she used an assumption of uniform convexity of the Ginzburg–Landau
potential ψ. In the present work we shall generalize these results to cover a certain
class of nonconvex potentials. At the same time we shall point out the role of another
information-theoretical inequality, the so-called HWI inequality introduced by Otto
and Villani in 4]. This inequality will allow us to pass from a convergence in a
Wasserstein distance sense to a convergence in relative entropy. To be used efficiently
in this setting, the HWI inequality needs a log-concave reference measure, which is
not the case for the microscopic equilibrium measure when ψ is not convex. This
is why we shall use, like in 7], the convexification induced by the macroscopic block
decomposition. Since we will then need our local Gibbs state to be compatible with
the passage to macroscopic scale, we will use a local Gibbs state slightly different from
the one used in 8] (the value of λ · x must only depend on the macroscopic profile
associated with x), but such that when N goes to infinity, the relative entropy with
respect to either measure behaves in the same way.

As in 1], we shall also prove the (physically relevant) convergence of the micro-
scopic entropy to the macroscopic (hydrodynamic) entropy, that is

1

N

∫
f(t, x) log f(t, x)µ(dx)→

∫
T
ϕ(ζ(t, θ))dθ − ϕ

(∫
T
ζ(t, θ)dθ

)
,

where ζ is the hydrodynamic limit, and ϕ is the Cramér transform of the potential.
However, we shall deduce it from the local Gibbs behavior, while Kosygina does it
the other way round.

Our two-scale approach will only yield convergences in L1(dt). However, by using
a method of 1] in conjunction with these results, we will be able to immediately prove
that the convergence is uniform in time, as long as we stay away from time t = 0.

It should be noted that, while Kosygina used an assumption of convexity, it
was mainly required to ensure that the equilibrium measures satisfies a logarithmic
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Sobolev inequality. In light of the recent work 3], it seems that her method can be
adapted to the class of nonconvex potentials covered here. On the other hand, our
method does not cover potentials with superquadratic growth. This restriction is
inherited from the results in 7]. If the two scale approach could be extended to cover
superquadratic potentials, our method could also be extended, with minor technical
modifications. However, even with the logarithmic Sobolev inequality obtained in 3],
extending the section of 7] that concerns the hydrodynamic limit to superquadratic
potentials is nontrivial, and remains to be done.

The plan of this paper is as follows : in Section 1, we will recall the framework
and results of 7] which will be used in this article and present our main results, in
both the abstract framework and their application for Kawasaki dynamics. Sections
2 and 3 will then give the details of the proofs.

Notation

-∇ stands for the gradient, Hess for Hessian, |·| for norm and 〈·, ·〉 for inner product.
Whenever necessary, the space to which these are associated will be indicated with a
subscript.

- At is the transpose of the operator A.
- Ran(A) is the range of the operator A.
- Φ(x) = x log x.
- Entµ(f) :=

∫
Φ(f)dµ − Φ(

∫
fdµ) is the (negative of the) entropy of the positive

function f with respect to the probability measure µ.
- C is a positive constant, which may change from line to line, or even within a

line.
- Z is a positive constant enforcing unit mass of a given probability measure.
- idE is the identity map E → E
- LSI is an abbreviation for Logarithmic Sobolev Inequality.
- Γ(Y, | · |Y ) :=

∫
exp(−|y|2Y /2)dy is the Gaussian integral on the space Y with

respect to the norm | · |Y .
- C1,2(A × B) is the space of real-valued functions on A × B which are C1 with

respect to the first variable and C2 with respect to the second variable.
- W2(µ, ν) is the Wasserstein distance between two probability measures µ and

ν with finite second moment. It is defined as W2(µ, ν)2 := inf
π∈Π

∫
|x− y|2π(dx, dy),

where Π is the set of all coupling of µ and ν;
- Iµ(ν) is the Fisher information of the probability measure ν with respect to µ,

given by
∫ |∇f |2

f dµ if ν = fµ for some density f , and +∞ if not.

1. Background and Main Results

The aim of this section is to recall the setting and the main results of 7], as well as
to present the new results brought by the present paper.
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1.1. Logarithmic Sobolev inequalities. Throughout this work, X and Y are two
Euclidean spaces. It is convenient to think of X as the space of microscopic variables,
and Y as the space of macroscopic variables. We consider a linear operator P : X →
Y , that associates to the microscopic profile x the corresponding macroscopic profile
y = Px. We shall assume that there is an integer N ∈ N, which measures the size of
the microscopic system, such that

PNP t = idY . (1.1)

We shall keep the same framework as in 7], by considering a measure µ(dx) =
exp(−H(x)) dx on X, and its decomposition, as induced by the operator P . The
measure µ̄ = P#µ is the distribution of the macroscopic profile, and for all y ∈ Y ,
µ(dx|y) is the conditional distribution of x given Px = y. This decomposition
induces a natural coarse-graining of the microscopic Hamiltonian H, defined by

H̄(y) := − 1
N log

(
dµ̄
dy

)
, so that

µ̄(dy) = exp(−NH̄(y)) dy.

One of the tools frequently used to study particle systems is a logarithmic Sobolev
inequality. Let us first recall the definition:

Definition 1.1. Let X be a Riemannian manifold. A probability measure µ on X
is said to satisfy a LSI with constant ρ > 0 if, for any locally Lipschitz, nonnegative
function f ∈ L1(µ),∫

f log(f)dµ−
(∫

fdµ

)
log

(∫
fdµ

)
≤ 1

ρ

∫
|∇f |2

2f
dµ.

There are many criterions and applications for LSI in the literature. 2] contains a
nice introduction to the topic. One of the main results of 7] is the following sufficient
condition for LSI, based on the two-scale decomposition of µ.

Theorem 1.2 (Two-scale LSI). Let µ(dx) = exp(−H(x))dx be a probability measure
on X, and let P : X → Y satisfy (1.1). Assume that

(i) κ :=

max
x∈X

{
〈HessH(x) · u, v〉 , u ∈ Ran

(
NP tP

)
, v ∈ Ran

(
idX −NP tP

)
, |u| = |v| = 1

}
(1.2)

is finite;
(ii) There is ρ > 0 such that µ(dx|y) satisfies LSI(ρ) for all y;
(iii) There is λ > 0 such that µ̄ satisfies LSI(λN).
Then µ satisfies LSI(ρ̂), with

ρ̂ :=
1

2

(
ρ+ λ+

κ2

ρ
−

√
(ρ+ λ+

κ2

ρ
)2 − 4ρλ

)
> 0. (1.3)
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1.2. Hydrodynamic limits. Let us now recall the setting of the abstract criterion
for hydrodynamic limits proved in 7]. We endow the space X with a Gibbs probability
measure µ, and we consider a positive definite symmetric linear operator A : X → X.
The stochastic dynamics on X that is studied is described by the equation

∂

∂t
(fµ) = ∇ · (A∇fµ) . (1.4)

This equation is to be understood in a weak sense. That is, for all smooth test
function ξ, we have d

dt

∫
ξ(x)f(t, x)µ(dx) = −

∫
∇ξ(x) ·A∇f(t, x)µ(dx). Given an

initial condition f(0, ·) such that f(0, x)µ(dx) is a probability measure, the solution
f(t, x) is at all times the microscopic density of a probability measure with respect
to µ.

The aforementioned abstract criterion states that, under certain conditions, and
in a precise sense, the macroscopic profile y = Px, with law given by f̄(t, y) =∫
{Px=y} f(t, x)µ(dx) is close to the solution of the following differential equation :

dη

dt
= −Ā∇H̄(η(t)) (1.5)

where Ā is the symmetric, positive definite operator on Y defined by

Ā−1 = PA−1NP t. (1.6)

We can now recall the abstract theorem proved in 7] :

Theorem 1.3. Let µ(dx) = exp(−H(x))dx be a probability measure on X, and let
P : X → Y satisfy (1.1). We define M := dimY +1. Let A : X → X be a symmetric,
definite positive operator, and f(t, x) and η(t) be the solutions of (1.4) and (1.5), with
initial data f(0, ·) and η0 respectively. Assume that :

(i) κ as defined by (1.2) is finite;
(ii) There is ρ > 0 such that µ(dx|y) satisfies LSI(ρ) for all y;
(iii) There is λ > 0 such that 〈Hess H̄(y)ỹ, ỹ〉Y ≥ λ〈ỹ, ỹ〉Y for all y, ỹ ∈ Y ;
(iv) There is α > 0 such that

∫
X |x|

2µ(dx) ≤ αN ;

(v) There is β > 0 such that inf
y∈Y

H̄(y) ≥ −β;

(vi) There is γ > 0 such that for all x ∈ X,

|(idX −NP tP )x|2 ≤ γM−2〈x,Ax〉X ;

(vii) There are constants C1 and C2 such that the initial datum satisfy∫
f(0, x) log f(0, x)µ(dx) ≤ C1N and H̄(η0) ≤ C2.

Define

Θ(t) :=
1

2N

∫ 〈
(x−NP tη(t)), A−1(x−NP tη(t))

〉
f(t, x)µ(dx).

Then for any T > 0, we have, with ρ̂ given by (1.3),
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max

{
sup

0≤t≤T
Θ(t), λ2

∫ T
0

(∫
Y |y − η(t)|2Y f̄(t, y)µ̄(dy)

)
dt

}
≤ Θ(0) + T

(
M
N

)
+ 1

M2

(
C1γκ2

2λρ2

)
+ 1

M

[√
2γT

(
α+ 2C1

ρ̂

)1/2
(
√
C1 +

√
C2 + β)

]
=: Ξ(T,M,N).

This theorem means that, if we consider a sequence of data
{X`, Y`, N`, P`, A`, µl, f0,`, η0,`}`∈N that satisfies the previous assumptions with uni-

form constants, and if we assume that

M` ↑ ∞; N` ↑ ∞;
N`

M`
↑ ∞ (1.7)

and that the initial data Θ`(0) goes to 0, then for all T > 0 we have

lim
`↑∞

sup
0≤t≤T

1

N`

∫
(x−N`P

t
`η`(t)) ·A−1

` (x−N`P
t
`η`(t))f`(t, x)µ`(dx) = 0 (1.8)

and

lim
`↑∞

∫ T

0

∫
Y
|y − η`(t)|2Y f̄`(t, y)µ̄(dy)dt = 0.

Remark. As noted in 7], hypothesis (iii) of this theorem implies hypothesis (iii) of

Theorem 1.2 by the Bakry–Émery theorem, a proof of which can be found in [L].

Using this result, we will deduce bounds on the relative entropy with respect to a
well-chosen local Gibbs state. Let us first give a precise definition of what we mean
by a local Gibbs state.

Definition 1.4. Let η ∈ Y . The local Gibbs state associated with η is the probability
measure on X whose density is given by

Gη(x)µ(dx) = Z−1 exp
(
~λ · x

)
µ(dx), ~λ = NP t∇H̄(η). (1.9)

Remark. Notice that, in this definition, Gη(x) only depends on the macroscopic
profile Px. This differs from the local Gibbs measure used in 8], which (slowly)
varied at the microscopic scale. But here, we force the maximum of the macroscopic
probability density to be reached at η, which makes this definition convenient.

We can now formulate our results in this abstract setting:

Theorem 1.5. Let G(t, ·) = Gη(t) denote the local Gibbs state associated with η(t),
where η(t) solves the macroscopic equation (1.5). Suppose assumptions (i) to (vii)
from Theorem 1.3 hold. Further assume that

(viii) There is τ > 0 such that A ≥ τ IdX
(ix) The Hessian of H̄ is bounded above, i.e. there exists Λ > 0 such that for all

y ∈ Y we have Hess H̄(y) ≤ Λ Id;
Then
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(a) The relative entropy with respect to the local Gibbs state is controlled as follows:∫ T

0

1

N

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µ(dx)dt = O

(√
Θ(0) +

M

N
+

1

M

)
(1.10)

where the actual constants in the bound depend on T , λ, α, γ, ρ, κ, τ , C1 and C2,
but not on M and N ;

(b) The difference between the microscopic free energy and the free energy associated
with the macroscopic profile η is bounded as follows:∫ T

0

∣∣∣∣ 1

N

∫
Φ(f(t, x))µ(dx)− H̄(η(t))

∣∣∣∣ dt
= O

(√
Θ(0) +

M

N
+

1

M

)

+ O

(
M

N

)
×max

(∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)∣∣∣∣∣
∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

λN

)∣∣∣∣∣
)

(1.11)

Remark (On the assumptions). Assumption (viii) is always true, since we assumed
A to be a positive symmetric operator on X, but I write it down this way because,
in the next Corollary, I will require this lower bound to be uniform in N , and setting
it this way makes this requirement clearer. When the Hessian of H is bounded above
(which will be the case in the next section for the application to Kawasaki dynamics),
both assumptions (i) and (ix) will be satisfied. As for Γ(Y, | · |Y ), it will have a nice
behavior when | · |Y is comparable to the L2 norm, as we shall see in the proof of
Theorem 1.14.

With this theorem, we can obtain quantitative controls in the hydrodynamic limit:

Corollary 1.6. Consider a sequence of data {X`, Y`, N`, P`, A`, µ`, f0,`, η0,`} satisfy-
ing the previous assumptions, with uniform constants α, λ, β, C1, C2, τ and Λ. Assume
moreover that

N` →∞; M` →∞;
M`

N`
→ 0; (1.12)

M`

N`
log

(
Γ(Y`, | · |Y )1/(M−1)

N`

)
→ 0 (1.13)

and that the sequence of initial data satisfies

Θ`(0)→ 0.

Then we have, for all T > 0,
(a’) ∫ T

0

1

N

∫
Φ

(
f`(t, x)

G`(t, x)

)
G`(t, x)µ`(dx)dt −→ 0;
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(b’) ∫ T

0

∣∣∣∣ 1

N

∫
Φ(f`(t, x))µ`(dx)− H̄`(η`(t))

∣∣∣∣ dt −→ 0.

Let us summarize these results in the language of statistical physics :
-The microscopic variables are approximately distributed according to a local Gibbs

state, in the sense of relative Kullback information, in a time-integrated sense on [0, T ].
-The microscopic free energy converges to the hydrodynamic free energy, in L1([0, T ]).
In the next section, in the case of a concrete example, we will reinforce this into a

convergence uniformly in time as long as we stay away from zero.

Remark. Using the Otto-Villani theorem, which states that the Wasserstein distance
W2(ν, µ)2 is controlled by the entropy Entµ(ν) when µ satisfies a logarithmic Sobolev
inequality (see [OV], or [Go] for an alternate proof), it is possible to show that (a’)
implies ∫ T

0

1

N
W2(f(t)µ,G(t)µ)2 dt −→ 0,

with the Wasserstein distance associated to the L2 structure, rather than the penalized
A−1 scalar product that appears in 7]. Since the L2 norm is strictly stronger than
the A−1 norm, this shows that our convergence in entropy result is strictly stronger
than the convergence (1.8), as long as we integrate in time. We will later see that
this convergence also holds pointwise, for strictly positive times, even if it only holds
in the weaker A−1 sense at time zero.

Our results also imply that, at macroscopic scale, we have∫
|y − η(t)|2Y f̄(t, y)µ̄(dy) −→ 0

for any time t > 0, while this convergence was only proven in a time-integrated
sense in 7]. This statement follows from the convergence to 0 of W2(f̄ µ̄, Ḡµ̄) and
W2(Ḡµ̄, δη), and the triangle inequality for Wasserstein distances.

One of the main tools we shall use is the following interpolation inequality, due to
Otto and Villani (4], Theorem 5):

Theorem 1.7. Let µ(dx) = e−H(x)dx be a probability measure on Rn with a finite
moment of order 2 such that H ∈ C2(Rn) and HessH ≥ λIn, λ ∈ R. Then for any
probability measure ν on Rn that is absolutely continuous with respect to µ, we have

Entµ(ν) ≤W2(µ, ν)
√
Iµ(ν)− λ

2
W2(µ, ν)2.

In particular, if H is convex, then

Entµ(ν) ≤W2(µ, ν)
√
Iµ(ν). (1.14)

We refer to the original article 4] for a proof of this theorem. This will allow
us to transform a convergence in Wasserstein distance and a bound on the Fisher
information into a convergence of the relative entropy. However, if we apply this
result immediately in the microscopic scale, if we use the usual Euclidean structure,
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the Wasserstein distance between fµ and the local Gibbs state does not go to zero.
And if we use the penalized Euclidean structure 〈A−1·, ·〉, the lower bound on the
Hessian will grow too fast, and the additional term (inf HessH)WA−1,2(fµ,Gµ) will
go to infinity. So, in order to get rid of the additional term, we will go to macroscopic
scale, where the Hessian of H̄ is convex, and use inequality (1.14).

Remark. In this context, Kosygina’s method would suggest to decompose the macro-
scopic relative entropy

1

N
EntḠµ̄(f̄/Ḡ) =

1

N

∫
Y
f̃ log f̃dy +

∫
H̄(y)f̄(y)µ̄(dy)

+
1

N
log Z̄ −

∫
∇H̄(η) · yf̄(y)µ̄(dy)

where f̃ = e−NH̄f is the density of the coarse-grained state with respect to the
Lebesgue measure. We can get a bound on the time-integral of the sum of the last
three terms of the same type as those in Theorem 1.5. So the problem would be to
bound 1

N

∫
Y f̃ log f̃dy.

For the application to Kawasaki dynamics, Kosygina proved a vanishing upper

bound on 1
N

∫ t
t′

∫
Y

˜f(s) log ˜f(s)dyds for times t > t′ > 0, which has the same order
of magnitude in the system size N = KM as ours. Her proof consists in showing
that we can replace the law of our process Kawasaki dynamics with another process
for which this problem is easier. This method uses Girsanov’s theorem and specific
information on the operator A, and I do not know how to replicate it in the abstract
setting considered here. Moreover, unlike our method, it does not work when t′ = 0.
However, for discrete spins, the quantity that would play the role of

∫
Y f̃ log f̃dy

is non-positive, which makes her method very convenient when applied to particle
systems such as exclusion processes. It is not clear whether the two-scale approach
can be successfully applied to the study of discrete systems.

1.3. Kawasaki dynamics. We shall now present the application of the two pre-
vious theorems to Kawasaki dynamics. We consider a one dimensional N -periodic
lattice system with continuous spin variables. The law of each variable is given by a
Ginzburg-Landau potential ψ : R→ R, which we shall assume to be of the form

ψ(x) =
1

2
x2 + δψ(x), ||δψ||C2(R) <∞. (1.15)

We shall also force the mean spin to take a given value m ∈ R. That is, the random
vector x = (x1, .., xN ) will take its values in the (N − 1)-dimensional hyperplane with
mean m ∈ R :

XN,m :=

{
(x1, .., xN ) ∈ RN ;

1

N

∑
xi = m

}
equipped with the `2 inner product,

〈x, x̃〉XN,m
:=
∑

xix̃i.

We shall consider the canonical ensemble µN,m, which is the distribution of the random
variables x1, .., xN conditioned on the event that their mean value is given by m ∈ R.
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Its density with respect to the Lebesgue measure on XN,m is given by

µN,m(dx) =
1

Z
1∑xi=Nm exp

(
−

N∑
i=1

ψ(xi)

)
. (1.16)

The logarithmic density H is evidently given by H(x) =
N∑
i=1

ψ(xi) + logZ.

We shall now introduce the macroscopic state necessary to apply the abstract
results of the previous section. We first divide the N spins into M blocks. To fix ideas,
we shall assume that all these blocks have the same size K, such that N = KM . This
assumption is not necessary (all that will be needed is that the sizes of all the blocks
are of same order) but it will make things a lot clearer. See Remark 30 of 7] for a full
explanation about this. We will now define the macroscopic variables as the mean
of each block. Therefore they form a set of M real numbers that still have mean m.
The associated macroscopic space is thus

YM,m :=

{
(y1, .., yM ) ∈ RM ;

1

M

∑
yi = m

}
which we endow with the L2 inner product

〈y, ỹ〉Y :=
1

M

∑
yj ỹj .

Then the projection operator PN,K : XN,m → YM,m that associates to a given micro-
scopic profile its macroscopic profile is given by

PN,K(x1, .., xN ) = (y1, .., yM ); yj =
1

K

jK∑
i=(j−1)K+1

xi,

and it is easy to check that PNP t = idY . We can explicitly compute the coarse-
grained Hamiltonian H̄:

H̄(y) =
1

M

M∑
j=1

ψK(yi) +
1

N
log Z̄

where

ψK(m) = − 1

K
log

(∫
XK,m

exp(−
K∑
i=1

ψ(xi))dx

)
(1.17)

and Z̄ is the normalization constant. The gradient and Hessian of H̄ are then given
by

(∇Y H̄(y))Y = ψ′K(yi); (HessY H̄)ij = ψ′′K(yi)δij . (1.18)

As a consequence of the principle of equivalence of ensembles (quantified through a
local version of the Cramér theorem), the following proposition explains the behavior
of ψK when K is large. It was proven in the Appendix of 7].
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Proposition 1.8. If ψ satisfies (1.15) and ψK is defined by (1.17), then

ψK →
K↑∞

ϕ in the uniform C2 topology,

where ϕ is the Cramér transform of ψ, defined by

ϕ(m) = sup
σ∈R

(
σm− log

∫
exp(σx− ψ(x))dx

)
. (1.19)

Using this proposition, the strict convexity of ϕ and the expression of the Hessian
(1.18), the following lemma is easily deduced :

Lemma 1.9 (Convexity of the coarse-grained Hamiltonian). There exists K0 < ∞
and λ > 0 depending only on ψ such that, for any K ≥ K0,〈

ỹ,Hess H̄(y)ỹ
〉
Y
≥ λ〈ỹ, ỹ〉Y .

This lemma, among others, allowed to apply the abstract criterion for logarithmic
Sobolev inequalities to the present setting, and obtain

Theorem 1.10. Let ψ satisfy (1.15) and let µN,m be defined by (1.16). Then there
exists ρ > 0 such that for any N ∈ N and m ∈ R, µN,m satisfies LSI(ρ).

This result was recently extended in 3] to the case where ψ is a bounded perturba-
tion of a uniformly convex function (rather than strictly quadratic), using a technique
of iterated coarse-graining.

We shall now present the Kawasaki dynamics for such a system of spins. We
(arbitrarily) set the mean m in the setting just explained to be 0, and we consider a
dynamics of the form described by (1.4), with the matrix A = (Aij) defined by

Aij = N2(−δi,j−1 + 2δi,j − δi,j+1) (1.20)

We also identify the space XN,0 with the space X̄ of piecewise constant functions on
T = R/Z :

X̄ =

{
x̄ : T→ R; x̄ is constant on

(
j − 1

N
,
j

N

]
, j = 1, .., N

}
by associating to the vector x ∈ XN,0 the function x̄ ∈ X̄ such that

x̄(θ) = xj , θ ∈
(
j − 1

N
,
j

N

]
.

To obtain the final hydrodynamic limit, we must embed all of these spaces X̄N in
a common functional space. We consider the space of functions f : T→ R of locally
integrable functions of mean zero, which we equip of the following norm:

||f ||2H−1 =

∫
T
w2(θ)dθ; w′ = f,

∫
T
w(θ)dθ = 0. (1.21)

Then the closure of all the spaces X̄N for this norm is the usual Sobolev space
H−1(T). We can now formulate the following theorem on the hydrodynamic limit
of the Kawasaki dynamics.
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Theorem 1.11. Assume that ψ satisfies (1.15). Let fN = fN (t, x) be a time-
dependent probability density on (XN,0, µN,0) solving

∂

∂t
(fµN,0) = ∇ · (A∇fµN,0)

where fN (0, ·) = f0,N (·) satisfies∫
f0,N (x) log f0,N (x)µN,0(dx) ≤ CN (1.22)

for some constant C > 0. Assume that

lim
N↑∞

∫
||x̄− ζ0||2H−1f0,N (x)µN,0(dx) = 0 (1.23)

for some ζ0 ∈ L2(T) which has mean zero. Then for any T > 0 we have

lim
N↑∞

sup
0≤t≤T

∫
||x̄− ζ(t, ·)||2H−1fN (t, x)µN,0(dx) = 0, (1.24)

where ζ is the unique weak solution of the nonlinear parabolic equation

∂ζ

∂t
=

∂2

∂θ2
ϕ′(ζ) (1.25)

with initial condition ζ(0, ·) = ζ0(·), where ϕ is defined as in (1.19).

In this theorem, a weak solution of (1.25) is defined in the following way:

Definition 1.12. We will call ζ = ζ(t, θ) a weak solution of (1.25) on [0, T ]× T if

ζ ∈ L∞t (L2
θ),

∂ζ

∂t
∈ L2

t (H
−1
θ ), ϕ′(ζ) ∈ L2

t (L
2
θ), (1.26)

and 〈
ξ,
∂ζ

∂t

〉
H−1

= −
∫
T1

ξϕ′(ζ)dθ for all ξ ∈ L2, for a.e. t ∈ [0, T ] (1.27)

One of the main steps of the proof, which will also be used in this paper, is the
convergence of η̄ to ζ:

Proposition 1.13. Let η̄`0 ∈ Ȳ` be a step function approximation of ζ0, η`0 the vector
of Y associated with it, and η` the solution of (1.5) with initial condition η`0. Then the

step functions η̄` converge strongly in L∞t (H−1
θ ) to the unique weak solution of (1.25)

with initial condition ζ0.

We now state the result obtained when applying the previous abstract theorem to
this setting.

Theorem 1.14 (Convergence of the entropy for Kawasaki dynamics). Under the
same assumptions as Theorem 1.11, the relative entropy with respect to the local
Gibbs state goes to zeo, in a time-integrated sense :∫ T

0

∫
XN

Φ

(
fN (t, x)

GN (t, x)

)
GN (t, x)µN (dx)dt, (1.28)
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where GN (t, ·) is the local Gibbs state given by ηN (t). As a consequence, we have con-
vergence of the microscopic entropy to the hydrodynamic entropy, in a time-integrated
sense :∫ T

0

∣∣∣∣ 1

N

∫
Φ(fN (t, x))µN (dx)−

(∫
T
ϕ(ζ(θ, t))dθ − ϕ

(∫
T
ζ(t, θ)dθ

))∣∣∣∣ dt →N→∞ 0.

(1.29)

Moreover, in this setting, we will be able to get a pointwise convergence of the
entropy, as long as we stay away from the origin. It will follow from the time-integrated
convergence and the fact that the entropy is decreasing in time.

Theorem 1.15 (Pointwise convergence of the relative entropy). Assume that ζ is
continuous in both variables. Let 0 < ε < T . Then

1

N

∫
Φ(fN (t, x))µN (dx) −→

N→∞

∫
T
ϕ(ζ(θ, t))dθ − ϕ

(∫
T
ζ(t, θ)dθ

)
uniformly on [ε, T ].

Remark. This convergence will in general not hold true at initial time, since no rela-
tion is assumed between the initial microscopic entropy and the initial hydrodynamic
entropy. However, if it does hold true initially, then it will hold true uniformly on
[0, T ] for any T > 0. (This is the main outcome of Yau’s entropy method.)

Since we do not necessarily assume our initial data to be smooth, ζ is not in general
smooth at t = 0. However, as long as ζ0 lies in L2(T), ζ will satisfy the smoothness
assumptions of Theorem 1.15:

Proposition 1.16. Assume ϕ is a C3 function, with ϕ′′ ≥ λ > 0, ||ϕ′′||∞ < ∞ and

||ϕ(3)/ϕ′′||∞ <∞. Let ζ the weak solution of

∂ζ

∂t
=

∂2

∂θ2
ϕ′(ζ)

with initial data ζ0 ∈ L2(T). Then, for any ε > 0, ζ lies in C1,2([ε, T ] × T), and
∂
∂tϕ
′(ζ) and ∂2

∂θ2
ϕ′(ζ) are uniformly continuous.

This result is well-known in the PDE community, we give a proof for the sake of
completeness.

2. Proof of Theorem 1.5

Let us first state some properties of the Local Gibbs state, which we shall use for
the proof.

Proposition 2.1 (Study of the local Gibbs state). (i) At the macroscopic scale the
density Ḡµ̄ is given by

Ḡ(y)µ̄(dy) =
1

Z̄
exp

(
N(∇H̄(η) · y − H̄(y))

)
dy.
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(ii) At the macroscopic scale, we have the following bound of the Wasserstein dis-
tance between the local Gibbs state given by Ḡ(·)dµ̄ and δη :∫

|y − η|2Y Ḡ(y)µ̄(dy) ≤ M

λN
.

(iii) The free energy associated with Gη is close to the energy associated with η,
with the explicit bound∣∣∣∣ 1

N

∫
Φ(Gη)dµ− H̄(η)

∣∣∣∣
≤ (M − 1)

2N
max

(∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)∣∣∣∣∣ ,
∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

λN

)∣∣∣∣∣
)

+

√
M

λN
|∇H̄(η)|.

Remark. We can use the same techniques as in 7] to pass from macroscopic to
microscopic scale, and deduce from (ii) a bound on the penalized Wasserstein distance

1
NWA−1(Gdµ, δNP tη(t)) = 1

N

∫
〈A−1(x−NP tη), x−NP tη〉 G(x)µ(dx).

Part (iii) will be how we deduce the convergence of the entropy from the local Gibbs
behavior. The proof of this proposition will hinge on the following lemma, which tells
us that among all the probability measures on RM of the form exp(−f(x))dx, with
Hessf ≥ λId and where f reaches its minimum in 0, the one with the highest second
moment is the centered Gaussian of covariance matrix λ id.

Lemma 2.2. If f : RM → R is C2 and uniformly convex, with Hess f ≥ λId, λ > 0,
and min f = f(0), then ∫

|x|2e−f(x)dx ≤ M

λ

∫
e−f(x)dx.

The following proof of this lemma was pointed out to us by S.R.S. Varadhan.

Proof. Fix x ∈ RM . The function g(t) = f(tx) − λ
2 ||tx||

2
2 is convex, and reaches its

minimum for t = 0. Therefore, we have g′(1) ≥ g′(0) = 0. Since g′(1) = 〈x,∇f(x)〉 −
λ|x|2, we obtain

λ

∫
|x|2e−f(x)dx ≤

∫
〈x,∇f(x)〉e−f(x)dx

and, by integration by parts, the term on the right-hand side is equal to M
∫
e−f(x)dx,

which concludes the proof.
�

This lemma will allow us to bound the Wasserstein distance in (ii).

Proof of Proposition 2.1. The proof of (i) is trivial, since we have constructed our
local Gibbs state such that G(x) actually only depends on Px. For all t, since y →
ψt(y) = H̄(y) − ∇H̄(η(t)) · y is uniformly convex, with its Hessian bound below by
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λId, and reaches its minimum for y = η(t), applying lemma 2.2 with f = Nψt, after
translating by η(t), we obtain∫

|y − η|2Y Ḡ(y)µ̄(dy) =
1

Z̄

∫
|y − η|2Y e−Nψt(y)dy

≤ MZ̄

λNZ̄
(2.1)

which yields (ii).
For (iii), we have∣∣∣∣ 1

N

∫
Φ(Gη)dµ− H̄(η)

∣∣∣∣ =

∣∣∣∣ 1

N

∫
(N∇H̄(η) · y − log Z̄)Ḡη(y)µ̄(dy)− H̄(η)

∣∣∣∣
≤
∣∣∣∣− 1

N
log Z̄ − H̄(η) +∇H̄(η) · η

∣∣∣∣+

∣∣∣∣ 1

N

∫
∇H̄(η) · (y − η)Ḡ(y)µ̄(dy)

∣∣∣∣ (2.2)

Since λ Id ≤ Hess H̄ ≤ Λ Id, we have the bounds

λ

2
|y − η|2 ≤ −∇H̄(η) · (y − η)− H̄(η) + H̄(y)

≤ Λ

2
|y − η|2

for all y ∈ Y . We now multiply by N and integrate. We obtain the upper bound

− 1

N
log Z̄−H̄(η) +∇H̄(η) · η

= − 1

N
log

∫
exp(N(∇H̄(η) · y − H̄(y)))dy − H̄(η) +∇H̄(η) · η

= − 1

N
log

∫
exp(N(∇H̄(η) · (y − η)− (H̄(y))− H̄(η)))dy

≤ − 1

N
log

∫
exp(−ΛN

2
|y − η|2Y )dy

= − 1

N
log

((
1√
ΛN

)M−1 ∫
exp(−|y|2Y /2)dy

)

= −M − 1

2N
log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)
In the same way, we obtain a lower bound, so that when we take the absolute value
we get the bound ∣∣∣∣ 1

N
log Z̄ − H̄(η) +∇H̄(η) · η

∣∣∣∣
≤ M − 1

2N
max

(∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

λN

)∣∣∣∣∣
∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)∣∣∣∣∣
)
. (2.3)
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Combined with (2.2), this means the final element we need is a bound on the quantity∫
∇H̄(η) · (y − η)Ḡη(y)µ̄(dy), and simply using the Cauchy-Schwartz inequality and

(ii) gives us the desired result.
�

We shall now use these properties of the local Gibbs State to prove Theorem 1.5.

Proof of Theorem 1.5. We shall divide this proof into three steps : first we shall
reduce the problem to the study of the time-integrated relative entropy between the
macroscopic state f̄(t, ·)µ̄ and the local Gibbs state Ḡη(t)µ̄, then we shall use the HWI
interpolation inequality to show that this relative entropy goes to 0. Finally, we shall
reintroduce the microscopic terms to get the full bound (a). Then (b) shall follow,
since we have already proved in Proposition 2.2 that the free energy associated with
Gη is asymptotically close to H̄(η(t)).

Step 1 : Let us consider

1

N
HN (t) =

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µN (dx)

=
1

N
Entµ(f)− 1

N

∫
f log(G)µ(dx)

=
1

N

∫
Entµ(dx|y)(f)µ̄(dy) +

1

N
Entµ̄(f̄)− 1

N

∫
f log(G)µ(dx)

=
1

N

∫
Entµ(dx|y)(f)µ̄(dy) +

1

N
EntḠµ̄(

f̄

Ḡ
). (2.4)

where the last equality is obtained because G(x) only depends on the macroscopic
state Px. Therefore, to reduce the problem to the study of the macroscopic entropy,
we just have to produce an appropriate bound on

1
N

∫
Entµ(dx|y)(f)µ̄(dy). Since µ(dx|y) satisfies the condition LSI(ρ) by assumption

(ii), we have

1

N

∫
Y

Entµ(dx|y)(f)µ̄(dy)

≤ 1

Nρ

∫
X

|(idX − P tNP )∇f(x)|2

2f(x)
µ(dx)

≤ γ

2NM2ρ

∫
〈∇f(x), A∇f(x)〉

f(x)
µ(dx), (2.5)

where the last inequality is due to hypothesis (vi). By integrating by parts (1.4), as
was done in [GOVW, Proposition 24], we deduce that∫

f(T, x) log f(T, x)µ(dx) +

∫ T

0

(∫
∇f ·A∇f

f
(t, x)µ(dx)

)
dt

=

∫
f(0, x) log f(0, x)µ(dx). (2.6)
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Since, by assumption (vii),
∫

Φ(f(0, x))µ(dx) ≤ C1N and the (mathematical) entropy
is non-negative, this tells us that∫ T

0

1

N

∫
Entµ(dx|y)(f(t, ·))µ̄(dy)dt ≤ γC1

2M2ρ
, (2.7)

which concludes this first step of the proof.

Step 2 : We shall now study the macroscopic relative entropy. This is where we
shall use he HWI inequality (Theorem 1.7), applied at the macroscopic scale with
reference measure µ̄. Indeed, since Ḡµ̄ is log-concave, we have for all T > 0∫ T

0

1

N
EntḠ(t,·)µ̄

(
f̄(t, ·)
Ḡ(t, ·)

)
dt ≤

∫ T

0

1

N
W2(f̄(t, ·)µ̄, Ḡ(t, ·)µ̄)

√
IḠ(t,·)µ̄(f̄(t, ·)µ̄)dt

≤

√∫ T

0
W2(f̄(t, ·)µ̄, Ḡ(t, ·)µ̄)2dt

√
1

N2

∫ T

0
IḠ(t,·)µ̄(f̄(t, ·)µ̄)dt (2.8)

We already know that both f̄ µ̄ and Ḡµ̄ are asymptotically close to δη. By the triangle
inequality for the Wasserstein distance,

W2(f̄(t, ·)µ̄, Ḡ(t, ·)µ̄)2 ≤ 2 W2(f̄(t, ·)µ̄, δη(t))
2 + 2 W2(δη(t), Ḡ(t, ·)µ̄)2 (2.9)

Theorem 1.3 states that∫ T

0
W2(f̄(t, ·)µ̄, δη(t))

2dt =

∫ T

0

∫
|y − η(t)|2Y f̄(t, y)µ̄(dy)dt

≤ 2

λ
Ξ(T,M,N) (2.10)

where Ξ was defined in Theorem 1.3. Moreover, part (ii) of Proposition 2.1 tells us
that ∫ T

0

∫
|y − η(t)|2Y Ḡ(t, y)µ̄(dy)dt ≤ T M

λN
(2.11)

so we have a bound on the time-integral of the Wasserstein distance that, under
suitable assumptions, will go to 0.

We must now produce a bound on the macroscopic Fisher information. We have

1

N2
IḠµ̄

(
f̄

Ḡ

)
=

1

N2

∫
|∇(f̄/Ḡ)|2

f̄/Ḡ
Ḡdµ̄

=
1

N2

∫
|(∇f̄)/Ḡ− f̄∇Ḡ/Ḡ2|2

f̄
Ḡ2dµ̄

≤ 2

N2

∫
|∇f̄ |2

f̄
dµ̄+

2

N2

∫
|∇Ḡ|2

Ḡ2
f̄dµ̄

=
2

N2

∫
|∇f̄ |2

f̄
dµ̄+ 2|∇H̄(η)|2 (2.12)
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Now, since we have a lower bound τ on the spectral values of A, 1/τ is an upper
bound on the spectral values of A−1. Since for any y ∈ Y

〈Ā−1y, y〉Y = 〈PA−1NP ty, y〉Y

=
1

N
〈A−1NP ty,NP ty〉X

≤ 1

Nτ
〈NP ty,NP ty〉X

=
1

τ
|y|2Y ,

so 1/τ is an upper bound on the spectral values of Ā−1, and thus τ is also a lower
bound on the spectral values of Ā. Therefore∫ T

0
|∇H̄(η(t))|2dt ≤ 1

τ

∫ T

0
〈Ā∇H̄(η(t)),∇H̄(η(t))〉dt

= −1

τ

∫ T

0
〈dη
dt

(t),∇H̄(η(t))〉dt

=
1

τ
(H̄(η(0))− H̄(η(T )))

≤ C2 + β

τ
. (2.13)

To obtain a bound on
∫ T

0

∫ |∇f̄ |2
f̄
dµ̄dt, we shall use the following proposition, that

was proved in [GOVW, Proposition 20].

Proposition 2.3. Assume that κ as given by (1.2) is finite and that for all y ∈ Y ,
µ(dx|y) satisfies LSI(ρ). Then, for any positive, C1 function on X one has, for any
y ∈ Y and s ∈ (0, 1)

1

N

|∇Y f̄(y)|2Y
f̄(y)

≤ 1

1− s

(
κ2

ρ2

)∫
|(idX − PNP t)∇f(x)|2

f(x)
µ(dx|y)

+
1

s

∫
|PNP t∇f(x)|2

f(x)
µ(dx|y) (2.14)

Applying this bound to the density f with s = ρ2

κ2+ρ2
gives us the bound

1

N2

∫ T

0

∫
|∇f̄ |2

f̄
dµ̄dt ≤ κ2 + ρ2

ρ2

1

N

∫ T

0

∫
|∇f(x)|2

f(x)
µ(dx)dt

≤ κ2 + ρ2

ρ2

1

N

1

τ

∫ T

0

∫
∇f ·A∇f

f
dµdt

≤ C1(κ2 + ρ2)

τρ2
(2.15)

where the final inequality was already proved in step 1.
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Combining (2.8), (2.9), (2.10), (2.11), (2.12), (2.13) and (2.15) gives us the bound

∫ T

0

1

N
EntḠ(t,·)µ̄(

f̄(t, ·)
Ḡ(t, ·)

)dt

≤
√

2TM

N
+

4

λ
Ξ(T,M,N)

×

√
2
C2 + β

N2τ
+ 2

C1(κ2 + ρ2)

τρ2
. (2.16)

This concludes Step 2.

Step 3 : Recombining (2.7) and (2.16) gives us the full bound

∫ T

0

1

N

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µN (dx)dt

≤
√

2TM

N
+

4

λ
Ξ(T,M,N)×

√
2
C2 + β

N2τ
+ 2

C1(κ2 + ρ2)

τρ2
+

γC1

2M2ρ
. (2.17)

To prove (b), we have

1

N

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µN (dx)

=

∣∣∣∣ 1

N

∫
f(t, x) log f(t, x)µ(dx)− 1

N

∫
f(t, x) logG(t, x)µ(dx)

∣∣∣∣
=

∣∣∣∣ 1

N

∫
f(t, x) log f(t, x)µ(dx)− 1

N

∫
f̄(t, y) log Ḡ(t, y)µ̄(dy)

∣∣∣∣
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and thus∫ T

0

∣∣∣∣ 1

N

∫
f(t, x) log f(t, x)µ(dx)− H̄(η(t))

∣∣∣∣ dt
≤
∫ T

0

∣∣∣∣ 1

N

∫
f(t, x) log f(t, x)µ(dx)− 1

N

∫
f(t, x) logG(t, x)µ(dx)

∣∣∣∣ dt
+

∫ T

0

∣∣∣∣ 1

N

∫
f(t, x) logG(t, x)µ(dx)− H̄(η(t))

∣∣∣∣ dt
≤
∫ T

0

1

N

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µN (dx)dt

+

∫ T

0

∣∣∣∣ 1

N

∫
f̄(t, y) log Ḡ(t, y)µ̄(dy)− H̄(η(t))

∣∣∣∣ dt
=

∫ T

0

1

N

∫
Φ

(
f(t, x)

G(t, x)

)
G(t, x)µN (dx)dt

+

∫ T

0

∣∣∣∣ 1

N

∫
(f̄(t, y)− Ḡ(t, y)) log Ḡ(t, y)µ̄(dy)

∣∣∣∣ dt
+

∫ T

0

∣∣∣∣ 1

N

∫
Φ(G(t, ·))dµN − H̄(η(t))

∣∣∣∣ dt. (2.18)

This leaves us with three quantities to bound. The first one is exactly the quantity that
is bounded by (a). The third quantity can be bounded using part (iii) of Proposition
2.1 :

∫ T

0

∣∣∣∣ 1

N

∫
Φ(Gη)dµN − H̄(η)

∣∣∣∣ dt
≤ T (M − 1)

2N
max

(∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)∣∣∣∣∣
∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

λN

)∣∣∣∣∣
)

+

∫ T

0

√
M

λN
|∇H̄(η)|dt

≤ T (M − 1)

2N
max

(∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

ΛN

)∣∣∣∣∣
∣∣∣∣∣log

(
Γ(Y, | · |Y )2/(M−1)

λN

)∣∣∣∣∣
)

+

√
TM

λN

C2 + β

τ
(2.19)

where the final inequality is due to (2.13). To conclude, we just have to bound the
second quantity in the right-hand side of (2.18). This will be possible because, as
log Ḡ is slowly varying (it is an affine function), since f̄µ and Ḡµ are close for the
second Wasserstein distance, when integrating against log Ḡ they act the same way.
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∫ T

0

∣∣∣∣ 1

N

∫
(f̄(t, y)− Ḡ(t, y)) log Ḡ(t, y)µ̄(dy)

∣∣∣∣ dt
=

∫ T

0

∣∣∣∣ 1

N

∫
(f̄(t, y)− Ḡ(t, y))(N∇H̄(η(t)) · y)µ̄(dy)

∣∣∣∣ dt
≤
∫ T

0

∣∣∣∣∫ 〈(y − η(t)),∇H̄(η(t))〉f̄(t, y)µ̄(dy)

∣∣∣∣ dt
+

∫ T

0

∣∣∣∣∫ 〈(y − η(t)),∇H̄(η(t))〉Ḡ(t, y)µ̄(dy)

∣∣∣∣ dt
≤

√∫ T

0

∫
|y − η(t)|2Y f̄(t, y)µ̄(dy)dt

√∫ T

0
|∇H̄(η(t))|2Y dt

+

√∫ T

0

∫
|y − η(t)|2Y Ḡ(t, y)µ̄(dy)dt

√∫ T

0
|∇H̄(η(t))|2Y dt

≤
√

2(C2 + β) Ξ(T,M,N)

λτ
+

√
(C2 + β)M

Nλτ
(2.20)

which was the last element needed to get the full bound (b).
�

3. Application to Kawasaki Dynamics

3.1. Proof of Theorem 1.14. We shall now prove Theorem 1.14 as a consequence
of Corollary 1.6. We consider, in the same way as in 7], a sequence of step functions
η̄0,` ∈ Ȳ` such that

||η̄0,` − ζ0||L2 −→ 0,

canonically associate to each of them a vector η0,l ∈ Y` and consider the solution η`
of

dη`
dt

= −Ā∇H̄(η`), η`(0) = η0,`.

We also assume (1.12), that is

N` →∞; M` →∞;
M`

N`
→ 0; (3.1)

which, in this setting, will imply (1.13).
The following proposition was proven in 7]:

Proposition 3.1. With the above notations, the step functions η̄` converge strongly
in L∞(H−1) to the unique weak solution of

∂ζ

∂t
=

∂2

∂θ2
ϕ′(ζ), ζ(0, ·) = ζ0.
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We first have to check that the assumptions of Theorem 1.5 hold with uniform
constants. It has already been checked in 7] that this is the case for assumptions (i)
to (vii), so we just have to check assumptions (viii) and (ix).
• It is easy to compute the spectral values of A, since it is a circulant matrix. We

have

Sp(A) =

{
2N2

(
1− cos(

2kπ

N
)

)
, k = 0, .., N − 1

}
as an operator on RN , and the spectral value 0 corresponds to the action of A on
R(1, .., 1), which we don’t take into account, since we only consider the action of A
on the hyperplane of mean 0. The lowest spectral value of A is then

inf Sp(A) = 2N2

(
1− cos(

2π

N
)

)
−→
N↑∞

4π2 > 0.

Since the sequence of lowest spectral values converges to a strictly positive limit, we
have a strictly positive lower bound on the whole sequence, which proves assumption
(viii) with a uniform constant τ .
• Since, by Proposition 1.15, ψ′′K converges uniformly to ϕ′′ and (HessH̄(y))ij =

ψ′′K(yi)δij , to prove assumption (ix) with a uniform constant, we just have to prove
that ϕ′′ is bounded above. This was actually already proved in (7], Lemma 41), where
is proved both a lower and an upper bound on the second derivative of ϕ∗(σ) =
log
∫

exp(σx− ψ(x))dx. It is a property of the Legendre transform that, if f is a
strictly convex function, its Legendre transform f∗ satisfies (f∗)∗ = f and (f∗)′ =
(f ′)−1, so the strictly positive upper and lower bounds on the second derivative of ϕ∗

translate into strictly positive upper and lower bounds on ϕ′′.
We will also check that, in this case, (1.12) implies (1.13). This is easy to check:

since we have |y|2Y = 1
M

∑
y2
i , we can explicitly compute

Γ(Y, | · |Y ) = (
√

2πM)M−1, (3.2)

and (1.13) follows.
We can therefore apply Corollary 1.6. (1.28) is then a direct application of (a’), so

we will concentrate on the proof of (1.29). Part (b’) of Corollary 1.6 states that∫ T

0

∣∣∣∣ 1

N

∫
Φ(f`(t, x))µ`(dx)− H̄`(η`(t))

∣∣∣∣ dt −→ 0,

so we now just have to prove that∫ T

0

∣∣∣∣H̄`(η`(t))−
∫
T
ϕ(ζ(θ, t))dθ + ϕ

(∫
T
ζ(t, θ)dθ

)∣∣∣∣ dt −→`↑∞ 0. (3.3)

We have the expression

H̄(y) =
1

M

∑
ψK(yi) +

1

N
log Z̄

=

∫
T
ψK(ȳ)dθ +

1

N
log Z̄ (3.4)
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As a consequence of Proposition 3.1, we shall prove that
∫
T ψK(η̄)dθ converges to∫

T ϕ(ζ(θ, t))dθ in a time-integrated sense, and then we shall prove that 1
N log Z̄ con-

verges to −ϕ(
∫
T ζ(t, θ)dθ), which will yield (3.3). By the triangle inequality∣∣∣∣∫

T
ψK(η̄(θ, t))dθ −

∫
T
ϕ(ζ(θ, t))dθ

∣∣∣∣
≤
∫
T
|ψK(η̄`(t, θ))− ϕ(η̄`(t, θ))|dθ +

∫
T
|ϕ(η̄`(t, θ))− ϕ(ζ(t, θ))|dθ. (3.5)

But ∫
T
|ψK(η̄`(t, θ))− ϕ(η̄`(t, θ))|dθ ≤ ||ψK − ϕ||∞ −→

K→∞
0

and by convexity, and since ϕ′′ ≤ Λ,

ϕ′(ζ(t, θ)) (η̄`(t, θ)− ζ(t, θ)) ≤ ϕ(η̄`(t, θ))− ϕ(ζ(t, θ))

≤ ϕ′(ζ(t, θ))(η̄`(t, θ)− ζ(t, θ)) +
Λ

2
|η̄`(t, θ)− ζ(t, θ)|2

(3.6)

We know that η̄ converges to ζ in L∞(H−1). Since∫ T

0

∫
T

∣∣ϕ′(ζ(t, θ))(η̄`(t, θ)− ζ(t, θ))
∣∣ dθdt ≤

√∫ T

0
||ϕ′(ρ(t))||2

H1dt

√∫ T

0
||η̄`(t)− ζ(t)||2

H−1dt

and ϕ′(ζ) ∈ L2(H1) we deduce that
∫
T |ϕ(η̄`(t, θ))− ϕ(ζ(t, θ))|dθ converges to 0 in a

time-integrated sense, and thus∫ T

0

∣∣∣∣∫
T
ψK(η̄`(θ, t))dθ −

∫
T
ϕ(ζ(θ, t))dθ

∣∣∣∣ dt −→ 0.

Note that, if we have a time-uniform bound on ||ϕ′(ρ(t))||H1 , this convergence
actually holds uniformly in time. In the proof of Proposition 1.16, we show that such
a bound holds on time intervals [ε,+∞[, for any ε > 0.

To conclude the proof of (3.3), it is enough to prove that

1

N
log Z̄ −→ ϕ

(∫
T
ζ(t, θ)dθ

)
(3.7)

uniformly in time.
First of all, recall that at any time t we have

∫
T ζ(t, θ)dθ = m. Also recall that

Z̄ =

∫
exp

(
−N
M

M∑
i=1

ψK(yi)

)
dx.

Since y 7→ 1
M

M∑
i=1

ψK(yi) is strictly convex, it has a unique minimum on Y , and since

the variables are exchangeable this minimum can only be reached for y1 = ... = yM ,
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and by definition of Y this can only be the case if all the yi are equal to m. Since

λ ≤ ψ′′K ≤ Λ and ||y||Y = 1
M

M∑
i=1
|yi|2, by convexity, for all y ∈ Y we have

ψK(m) +
λ

2M
||y −m||22 ≤

1

M

M∑
i=1

ψK(yi) ≤ ψK(m) +
Λ

2M
||y −m||22

where || · ||2 is the usual Euclidean norm, and we identify the mean m and the vector
of Y where all coordinates are equal to m. We take the exponential of this inequality
multiplied by −N and integrate, which gives us, since for any y ∈ Y , y−m is of mean
0,

− inf ψK +
1

N
log

∫
RM−1

exp

(
−ΛN

2M
||y||22

)
dy ≤ 1

N
log Z̄

≤ − inf ψK +
1

N
log

∫
RM−1

exp

(
−λN

2M
||y||22

)
)dy.

Since
1

N
log

∫
RM−1

exp

(
−ΛN

2M
||y||22

)
dy =

M − 1

2N
log

(
ΛN

2π

)
→ 0

and the same goes for 1
N log

∫
exp(− λN

2M ||y||
2
2)dy, we deduce that | 1

N log Z̄ + inf ψK |
goes to 0 uniformly in time. Finally, since ψK converges uniformly to ϕ, ψK(m)
converges to ϕ(m), which implies the desired result.

3.2. Proof of Theorem 1.15. We shall now use the time-integrated convergence of
the entropy we just proved to show that this convergence actually holds pointwise.
Our proof closely follows an idea of 1]. This method was pointed out to us by the
(anonymous) referee. It is also possible to deduce the pointwise convergence from the
time integrated convergence by using the relative entropy method devised in 8], but
this yields a much longer proof.

In a first step, we will show pointwise convergence of the entropy, by showing that

lim inf
1

N
EntµN (fN (t)) ≥

∫
ϕ(ζ(t, θ))dθ − ϕ

(∫
ζ(t, θ)dθ

)
(3.8)

and

lim sup
1

N
EntµN (fN (t)) ≤

∫
ϕ(ζ(t, θ))dθ − ϕ

(∫
ζ(t, θ)dθ

)
. (3.9)

In a second step, we will show that this pointwise convergence actually holds uniformly
in time, as long as we stay away from time t = 0.

Let us start with the upper bound. We know that

d

dt

∫
f(t, x) log f(t, x)µ(dx) = −

∫
〈A∇f,∇f〉

f
dµ ≤ 0,

so that, for any N , the entropy 1
N EntµN (fN ) is decreasing in time. This is just the

H-theorem expressed in the context of our model.
Therefore, for any N , any t > 0 and ε small enough, we have
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1

N
EntµN (fN (t)) ≤ 1

ε

∫ t

t−ε

1

N
EntµN (fN (s))ds (3.10)

we know from Theorem 1.14 that
∫ t
t−ε

1
N EntµN (fN (s))ds converges to∫ t

t−ε
∫
T ϕ(ζ(s, θ))dθ − ϕ

(∫
ζ(s, θ)dθ

)
ds. Therefore, for any t > 0 and any ε small

enough, we have

lim sup
1

N
EntµN (fN (t)) ≤ 1

ε

∫ t

t−ε

∫
T
ϕ(ζ(s, θ))dθ − ϕ

(∫
ζ(s, θ)dθ

)
ds.

Since ρ is smooth, by Proposition 1.16, letting ε go to zero yields (3.9). (3.8) can
be obtained in the same way, by using the inequality

1

N
EntµN (fN (t)) ≥ 1

ε

∫ t+ε

t

1

N
EntµN (fN (s))ds.

Since the functions t → 1
N EntµN (fN (t)) are continuous and decreasing, and the

function t →
∫
ϕ(ζ(t, θ))dθ − ϕ

(∫
ζ(t, θ)dθ

)
is continuous, Dini’s second theorem

implies that this pointwise convergence is actually uniform on the compact sets [ε, T ],
for any T > ε > 0.

3.3. Proof of Proposition 1.16. To prove the regularity of the solution of the
hydrodynamic equation, we shall use the following interpolation inequality, which is
a particular case of a family of inequalities that can be found in the second chapter
of 6].

Lemma 3.2. For any u ∈ H1(T) with
∫
T udθ = 0 we have

||u||L4 ≤ 21/4||u||3/4
L2 ||u′||

1/4
L2 .

Proof. Let us take such a function u. We have

|u(θ)|4 = |u(θ)|2|u(θ)|2 ≤ |u(θ)|2
(∫

T
2|u(s)| |u′(s)|ds

)
Using Hölder’s inequality, we have∫

T
|u(s)| |u′(s)|ds ≤ ||u||L2 ||u′||L2 ,

so that ∫
T
|u(θ)|4dθ ≤ 2||u||3L2 ||u′||L2

and the result immediately follows. �

To prove the regularity of our function, we shall prove bounds on the L2 norms of
the derivatives of ϕ′(ζ), using differential inequalities, and then Sobolev injections.
We first have
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d

dt

∫
ζ(t, θ)2dθ = 2

∫
ζ
∂2

∂θ2
ϕ′(ζ)dθ

= −2

∫ (
∂ϕ′(ζ)

∂θ

)
∂ζ

∂θ
dθ

= −2

∫
ϕ′′(ζ)

(
∂ζ

∂θ

)2

dθ

≤ −2(inf ϕ′′)

∫ (
∂ζ

∂θ

)2

dθ (3.11)

Integrating this inequality yields

∫ T

0

∫ (
∂ζ

∂θ

)2

dθdt ≤ 1

2(inf ϕ′′)

(
||ζ(0, ·)||2L2 − ||ζ(T, ·)||2L2

)
≤ 1

2(inf ϕ′′)
||ζ(0, ·)||2L2 . (3.12)

Since ||ζ(0, ·)||2L2 is finite, we obtain∫ ∞
0

∫ (
∂ζ

∂θ

)2

dθdt <∞.

Moreover, since ϕ′′ is bounded, we also get the bound on ∂ϕ′(ζ)/∂θ = ϕ′′(ζ)∂ζ/∂θ :∫ ∞
0

∫ (
∂ϕ′(ζ)

∂θ

)2

dθdt <∞. (3.13)

We then have

1

2

d

dt

∫ (
∂ϕ′(ζ)

∂θ

)2

dθ =

∫
∂ϕ′(ζ)

∂θ

∂

∂θ

(
ϕ′′(ζ)

∂2

∂θ2
ϕ′(ζ)

)
dθ

= −
∫
ϕ′′(ζ)

(
∂2

∂θ2
ϕ′(ζ)

)2

dθ

≤ −λ
∫ (

∂2

∂θ2
ϕ′(ζ)

)2

dθ (3.14)

≤ −λπ2

∫ (
∂

∂θ
ϕ′(ζ)

)2

dθ (3.15)

where the last inequality is a consequence of the Poincaré inequality ||u||L2 ≤ π||u′||L2

for all functions in H1(T) with mean zero.
Combining (3.13) and (3.15), we get for any t1 > t2 > 0∫

T

(
∂ϕ′(ζ(t2, θ))

∂θ

)2

dθ ≤ C

t1
exp(−2λπ2(t2 − t1)). (3.16)
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Moreover, using (3.14), we get∫ T

ε

∫ (
∂2

∂θ2
ϕ′(ζ)

)2

dθ ≤ CT

ε
(3.17)

for any 0 < ε < T .
In the same way, we have

1

2

d

dt

∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ = −
∫ (

∂3ϕ′(ζ)

∂θ3

)
∂

∂θ

(
ϕ′′(ζ)

∂2ϕ′(ζ)

∂θ2

)
= −

∫
ϕ′′(ζ)

(
∂3ϕ′(ζ)

∂θ3

)2

dθ −
∫ (

∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

≤ −λ
∫ (

∂3ϕ′(ζ)

∂θ3

)2

dθ −
∫ (

∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ. (3.18)

A simple calculation yields

∂ϕ′′(ζ)

∂θ
=
ϕ(3)(ζ)

ϕ′′(ζ)

∂ϕ′(ζ)

∂θ

and our assumption of boundedness on ϕ(3)/ϕ′′ then yields the bound∣∣∣∣∫ (∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

∣∣∣∣
≤ C

∫ ∣∣∣∣(∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′(ζ)

∂θ

)∣∣∣∣ dθ.
Using Hölder’s inequality, we then have∣∣∣∣∫ (∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

∣∣∣∣
≤

(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)1/2(∫ (
∂2ϕ′(ζ)

∂θ2

)4

dθ

)1/4(∫ (
∂ϕ′(ζ)

∂θ

)4

dθ

)1/4

(3.19)

By an application of Lemma 3.2, we have

(∫ (
∂2ϕ′(ζ)

∂θ2

)4

dθ

)1/4

≤ C

(∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ

)3/8(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)1/8

(3.20)
and

(∫ (
∂ϕ′(ζ)

∂θ

)4

dθ

)1/4

≤ C
(∫ (

∂ϕ′(ζ)

∂θ2

)
dθ

)3/8
(∫ (

∂2ϕ′(ζ)

∂θ2

)2

dθ

)1/8

. (3.21)

Plugging (3.20) and (3.21) into (3.19), we get



28 MAX FATHI

∣∣∣∣∫ (∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

∣∣∣∣
≤

(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)5/8(∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ

)1/2(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)3/8

. (3.22)

Using the classical interpolation inequality ||u′||2L2 ≤ ||u||L2 ||u′′||L2 , we get(∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ

)1/2

≤

(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)1/4(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)1/4

and therefore∣∣∣∣∫ (∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

∣∣∣∣
≤

(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)7/8(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)5/8

. (3.23)

Finally, using Young’s inequality ab ≤ 7a8/7/8 + b8/8, we get for any δ > 0∣∣∣∣∫ (∂3ϕ′(ζ)

∂θ3

)(
∂2ϕ′(ζ)

∂θ2

)(
∂ϕ′′(ζ)

∂θ

)
dθ

∣∣∣∣
≤ Cδ8/7

(∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ

)
+
C

δ8

(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)5

. (3.24)

Taking δ small enough and inserting this inequality into (3.18), we get

1

2

d

dt

∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ

≤ −λ
2

∫ (
∂3ϕ′(ζ)

∂θ3

)2

dθ + C

(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)5

≤ − λ

2π2

∫ (
∂2ϕ′(ζ)

∂θ2

)2

dθ + C

(∫ (
∂ϕ′(ζ)

∂θ

)2

dθ

)5

. (3.25)

Combining (3.16), (3.17) and (3.25), it is easy to see that
∫ (∂2ϕ′(ζ)

∂θ2

)2
dθ is uni-

formly bounded for t in [ε, T ], for all T > ε > 0. Since we can inject H2(T) into
C1+α(T) for some α > 0, ϕ′(ζ(t, ·)) lies in C1+α(T) for all t in [ε, T ]. Since ϕ′ is
invertible and ϕ′′ is positive, this implies that ζ(t, ·) also lies in C1+α(T) for all t in
[ε, T ]. Using this fact, we can rewrite the PDE as

∂ζ

∂t
= ϕ′′(ζ)

∂2ζ

∂θ2
+ ϕ(3)(ζ)

(
∂ζ

∂θ

)2

.
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Taking a(t, θ) = ϕ′′(ζ(t, θ)) and b(t, θ) = ϕ(3)(ζ)
(
∂ζ
∂θ

)
, we get that ζ is a solution

of the linear parabolic PDE

∂ζ

∂t
= a(t, θ)

∂2ζ

∂θ2
+ b(t, θ)

∂ζ

∂θ
with coefficients a and b that belong to Cα. We can then use the theory for regularity
of the solutions of linear parabolic equations (see for example 6]) to show that ζ(t, ·)
lies in C2+α(T) for all t in [ε, T ]. The fact that ∂ζ

∂t lies in Cα for all t in [ε, T ]
immediately follows from the PDE.
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