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Abstract

In this work, we investigate links between the formulation of the flow of
marginals of reversible diffusion processes as gradient flows in the space of prob-
ability measures and path wise large deviation principles for sequences of such
processes. An equivalence between the LDP principle and Gamma-convergence
for a sequence of functionals appearing in the gradient flow formulation is proved.
As an application, we study large deviations from the hydrodynamic limit for
two variants of the Ginzburg-Landau model endowed with Kawasaki dynamics.

Introduction
In this work, we are interested in the links between the gradient flow formulation of the
flow of marginals of stochastic differential equations, and path wise large deviations
for sequences of such processes.
Interest in gradient flows on the space of probability measures goes back to [20],
where it was observed that the heat equation can be viewed as the gradient flow of
the entropy

Ent(ρ) =

∫
ρ log ρdx

for the Wasserstein distance W2. Note that what we will call here entropy is the
negative of the physical entropy. This was later developed into a notion of formal
Riemannian structure on P(Rn) by Otto in [32]. While a powerful tool to predict the
behavior of certain partial differential equations, the point of view of Otto is formal,
and we must rely on other tools for proofs.
Another point of view was developed by Ambrosio, Gigli and Savaré in [3], which uses
the notion of ‘minimizing movement’ schemes, developed by De Giorgi and which first
appeared in [8], to provide a rigorous framework to define gradient flows on spaces of
probability measures. It is based on the idea that gradient flows on Rn of the form

ẋ(t) = −∇F (x(t))
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are the only solutions of

F (x(T ))− F (x(0)) +
1

2

∫ T

0
|∇F (x(t))|2dt+

1

2

∫ T

0
|ẋ(t)|2dt = 0. (0.1)

While the usual gradient flow equation only makes sense in a Riemannian setting (at
least in the classical sense), this alternative formulation can be given a meaning in a
purely metric setting, as long as we can define a ‘length of the gradient’ functional
|∇F |. Section 1.1 concerns this formulation in the setting of the space of probability
measures on Rn endowed with a Wasserstein distance W2, when the functional F is
the relative entropy with respect to a nonnegative measure µ, that is

Entµ(ν) :=

∫
f log fdµ

if ν = fµ, and +∞ if ν is not absolutely continuous with respect to µ. This is the
framework developed in the first sections of [3].
Several recent papers have been interested in using abstract gradient flow formula-
tions to study convergence of sequences of solutions to partial differential equations.
One method, tailored for the case of diffusion processes and based on the discrete ap-
proximation of gradient flows, has been devised in [4]. Another, more general, method
has been presented in [38] (generalizing previous results of [37]). It consists in study-
ing the asymptotic behavior of sequence of functionals of the form (0.1) for given
functions Fn. Informally, it consists in showing that, if the sequence converges in a
certain sense to a limiting functional F∞, we can directly identify limits of solutions
of (0.1) as gradients flows for the limiting function F∞.
In the context of statistical physics, the method developed in [38] can be used to
prove convergence to the hydrodynamic limit for some models of interacting diffusion
processes, such as the Ginzburg-Landau model (see [19] or [18] for a presentation of
the model, and its hydrodynamic limit). Such results consist in proving convergence
in probability of the dynamics of some family of N -particle systems to a deterministic
limiting object as the number of particles N goes to infinity. The limit generally
appears as the solution to some partial differential equation. Gradient flows have
also been used in [34] to study convergence to the hydrodynamic limit for microscopic
models describing heat conduction.
Our aim here is to use the notion of gradient flows to study large deviations from the
hydrodynamic limit for interacting spin systems. Such a result consists in proving
that the probabilities of a significant deviation from the hydrodynamic limit decays
exponentially fast in the system size. A standard textbook on the topic of large
deviations is [11], and [22] contains a review of the literature in the context of large
deviations from the hydrodynamic limit for particle systems.
In the work [1] (and its sequels [2] and [6]), links between gradient flows in spaces of
probability measures and large deviations have been investigated for many examples
of processes arising in statistical physics. The main contribution of [1] is to show that
the gradient flow formulation for partial differential equations such as the heat equa-
tion can be deduced from the large deviation principle for N independent stochastic
processes given by the stochastic differential equation whose flow of marginals is the
solution to the PDE.
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In this paper, we are interested in whether this link works both ways: can we use gra-
dient flow structures to prove large deviation principles? We prove that process-level
large deviations for sequences of diffusion processes are equivalent to the Gamma-
convergence of a sequence of functionals that naturally appear in the gradient-flow
formulation of these processes. (By process-level large deviations, we mean large
deviations for the laws of trajectories of the processes, and not just the law at a
given time.) This result generalizes a method used in [7] and [16] to obtain process-
level large deviations for the empirical measure of independent Brownian motions
to the case of interacting diffusion processes. Although these previous works do not
discuss gradient flows or optimal transport, there are a lot of similarities between
the formalism we use here and their framework, and the proof is based on a similar
method.
The point of view developed here can be thought of in the following way: to study
large deviations for sequences of reversible diffusion processes, it is enough (and
even equivalent) to understand the asymptotic behavior of an underlying sequence of
metric-measure spaces. In particular, the rate function arises as a limit of the inter-
play between the sequence of invariant (or equilibrium) measures and the sequence
of (Riemannian) metric structures which is used in the gradient flow formulation.
As an application of this equivalence, we investigate the large deviations for two
variants of the Ginzburg-Landau model endowed with Kawasaki dynamics, giving an
alternative approach to obtaining the results of [10] and [35]. The first model is a
random conductance model, and the second one is the non-gradient Ginzburg-Landau
model of [39] and [35]. As far as the author knows, the large deviation principle for
the random conductance model obtained here is new. The large deviations principle
for the non-gradient model obtained here is not new, it was first proven in [35] (up to
some extra technical assumptions), but is included to show that the method developed
here also applies to non-gradient models.
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Notations and terminology

• If A is a symmetric positive matrix, then
√
A is the unique symmetric positive

matrix whose square is A;

• P2(Rd) is the space of probability measures on Rd with finite second moment;

• W2,G is the Wasserstein distance on P2(Rd) for the Riemannian distance dG on
Rd endowed with the metric tensor G : Rd −→ S++(Rd). It is given by

W 2
2,G(µ0, µ1) := inf

π

∫
dG(x, y)2π(dx, dy)

where the infimum is taken over all coupling π of the probability measures µ0

and µ1. Such a coupling is a probability measure on the product space whose
first (resp. second) marginal is µ0 (resp. µ1). We refer to [40] and [41] for more
information about optimal transport and Wasserstein distances;

• Z is a constant enforcing unit mass for a probability measure;

• C is a constant that may change from line to line, or even within a line;

• Cb(X) is the space of real-valued, continuous bounded functions on the space
X;

• div(A)(x) is the vector of Rd with coordinates (div(A)(x))i :=
d∑
j=1

∂Aij
∂xj

(x),

where A : Rd −→Md(R)

• Given the law P of a random curve x : [0, T ] −→ Rd, we call flow of marginals
the family (νt)t∈[0,T ] the of probability measures on Rd which describe the law
of xt for each time t;

• We shall use both the notations Entµ(ν) and H(ν;µ) to denote the relative
entropy of a probability emasure ν with respect to the nonnegative measure µ.
The notation Ent shall be used when dealing with the gradient flow side, while
the notation H will be used when directly dealing with the probabilistic/large
deviations side of the exposition.

1 Framework and Method

1.1 Gradient flows in P2(Rn)

In this section, we endow Rd with a Riemannian structure, given by a metric tensor
G(x), and a positive measure µ that is absolutely continuous with respect to the
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Lebesgue measure, with density of the form µ(dx) = exp(−H(x))dx. We shall always
assume that H is smooth, has a Hessian uniformly bounded from below, and grows
at least quadratically at infinity (these are not optimal assumptions, but are more
than sufficient for our purpose). We also consider the functional on the space of
probability measures

Entµ(ν) :=

∫
f log fdµ (1.1)

when dν = fdµ, and that takes value +∞ for probability measures that are not
absolutely continuous with respect to µ. Note that although we call this functional
the entropy, it is the negative of the physical entropy. When µ = exp(−H), this
functional can be written as

Entµ(ν) = Entdx(ν) +

∫
H(x)ν(dx)

where

Entdx(ν) =

∫
fe−H log(fe−H)dx

is the relative entropy with respect to the Lebesgue measure, also known as the
Boltzman entropy.
We can endow the space of probability measures with finite second moments with the
Wasserstein distance associated to the Riemannian metric structure W2,G.
In the sequel, we will consider curves (νt)t∈[0,T ] in P2(Rd) which are absolutely con-
tinuous, that is there exists a nonnegative function ` ∈ L1([0, T ]) (which depends on
(νt)t∈[0,T ]) such that for any s ≤ t we have

W2,G(νs, νt) ≤
∫ t

s
`(r)dr. (1.2)

We will require the following technical assumptions on the metric tensor G (which
are taken from [24]):

1

c
|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ c|ξ|2,∀x ∈ Rn, ∀ξ ∈ Rd (1.3)

for some constant c, and

x −→ 〈G(x)ξ, ξ〉 is lower semicontinuous ∀ξ ∈ Rd. (1.4)

Since we now have a metric structure on P2(Rd), we can define the metric derivative
of an absolutely continuous curve (νt) as

|ν̇|(t) := lim sup
h→0+

1

h
W2,G(νt, νt+h). (1.5)

Definition 1.1. We denote by ||h||ν the H1 norm of the smooth function h, defined
by

||h||2ν :=

∫
〈A∇h,∇h〉dν (1.6)

where A(x) is the inverse of the matrix G(x), and ||ρ||ν,∗ its dual norm, given by
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||ρ||2ν,∗ := sup
h

2

∫
hρdν − ||h||2ν , (1.7)

where the supremum runs over all smooth functions h : Rd → R.

Let g be defined by

g(ν) :=

(∫ 〈
A∇ν
ν

+A∇H, ∇ν
ν

+∇H
〉
dν

)1/2

(1.8)

if ν is absolutely continuous with respect to the Lebesgue measure, and +∞ if not. By
∇ν, we mean the gradient of the density of ν with respect to the Lebesgue measure.
Recall that A is the inverse of G, and H is the opposite of the logarithm of the
density of the reference measure µ(dx) = exp(−H(x))dx. This functional is known
as the Fisher information with respect to µ, and will later also appear as the entropy
production for the Fokker-Planck equation.
The following result explains how the functional g can be used to control the varia-
tion in relative entropy for absolutely continuous curves in the space of probability
measures. Its proof in this context can be found in [24] (which generalizes previous
results of [3]).

Proposition 1.2. g is an upper gradient for Entµ, i.e. for every absolutely contin-
uous curve (νt)0≤t≤T we have

|Entµ(νt)− Entµ(νs)| ≤
∫ t

s
g(νr)|ν̇|(r)dr

for every 0 ≤ s ≤ t ≤ T .

The setting of [24] only concerns curves satisfying a continuity equation ν̇t = div(Avtνt)
in the weak sense, for some vector field vt, but it is also proven in Theorem 2.4 of
[24] that such a vector field automatically exists for the absolutely continuous curves
we shall consider here.

Definition 1.3. Let (νt)t∈[0,T ] be a time-dependent family of measures that is abso-
lutely continuous.We say it is a gradient flow of the functional Entµ if

d

dt
Entµ(νt) = −1

2
g(νt)

2 − 1

2
|ν̇|(t)2 (1.9)

for almost every t ∈ [0, T ].

Gradient flows for the Wasserstein structure on P(Rd) endowed with an Euclidean
structure have been studied in [3], and it turns out they are related to the heat
equation. Their results were then generalized to the case of a Riemannian structure
in [24]:

Proposition 1.4. (νt)t∈[0,T ] satisfies (1.9) iff the densities f(t, ·) = dνt
dµ form a weak

solution of the parabolic PDE

∂(fµ)

∂t
= div(A(∇f)µ), (1.10)

where A = G−1.
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As a consequence of this result and Ito’s formula, we also have a representation of a
gradient flow as the flow of laws of the solution to a SDE:

Proposition 1.5. If (νt)t is a gradient flow of Entµ with µ = exp(−H)dx, then it is
the flow of marginals of the law of a solution to the stochastic differential equation

dXt = −A(Xt)∇H(Xt)dt+ div(A)(Xt)dt+
√

2A(Xt) dBt (1.11)

with initial condition X0 that has law ν0. Here Bt is a standard Brownian motion on
Rd.

We refer the reader unfamiliar with stochastic differential equations and stochastic
calculus to the textbook [36] for more information about these notions.

Remark 1.1. Diffusion processes that can be written in the form (1.11) are neces-
sarily reversible.

We shall now give the definition of a key functional, which allows us to characterize
gradient flows:

Proposition 1.6. Let

J((νt)t) := Entµ(νT )− Entµ(ν0) +
1

2

∫ T

0
g(νt)

2 + |ν̇|(t)2dt. (1.12)

Then (νt)t∈[0,T ] is a gradient flow of the functional Entµ iff J((νt)t) = 0.

Remark 1.2. In this setting, we have the following alternate formulation for the
functional J :

J((νt)t) =
1

2

∫ T

0
||ν̇ −∇ · (A(∇f)µ)||2ν,∗dt, (1.13)

at least for smooth functions. This formulation may seem more convenient, but in
this context, (1.12) will be easier to manipulate.

Remark 1.3. We can make an interpretation of the notion of gradient flows in a
statistical physics framework. It is a well-known principle in equilibrium statisti-
cal physics that steady states can be identified as minimizers of a thermodynamic
functional, such as free energy, as a consequence of the second principle of thermo-
dynamics. Here it is the relative entropy Entµ which plays the role of free energy (at
least in isothermal situations, for non-isothermal situations it is the Massieu potential,
see [28]) and indeed its minimizer is the equilibrium state µ. The gradient flow for-
mulation identifies the correct trajectory as the minimizer of some action functional.
This can be seen as an extension of the minimization principle to non-equilibrium
statistical physics, with correct trajectories being those that decrease the free energy
as fast as possible.
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1.2 Large deviations

In this section, we introduce the notion of large deviations. This will only constitute
a brief presentation of the topic, and we refer to the textbooks [11] and [15] for more
information. The reader already familiar with this notion can easily skip this part.
Lets start with the definition of large deviations:

Definition 1.7. Let I be a lower semicontinuous, nonnegative function on a Polish
space X and (an) a sequence of increasing, positive real numbers that goes to infin-
ity. A sequence of probability measures Pn on X is said to satisfy a large deviation
principle with speed (an) and good rate function I iff
(i) For any closed set F , lim sup a−1

n logPn(F ) ≤ − inf
x∈F

I(x);

(ii) For any open set O, lim inf a−1
n logPn(O) ≥ − inf

x∈O
I(x).

Informally, we can think of a large deviations principle as making rigorous the state-
ment that when n is large

Pn(Xn ≈ x) ≈ exp(−anI(x)).

In particular, if the rate function I cancels at a single point x∗ ∈ X, the large
deviations principle implies weak convergence of the probability measures to the Dirac
mass δx∗ . In such situations, the large deviations principle therefore quantifies the
likelihood of observing a significant deviation from the typical asymptotic behavior
of a sequence of random variables with laws Pn, in the exponential scale.
There are many situations in which large deviations principles have been established.
For example, Sanov’s theorem states that empirical averages of n independent, iden-
tically distributed random variables satisfy a large deviations principle with speed
n and rate function the relative entropy with respect to the law of a single random
variable (see [11]).
A notion related to large deviations, and which we shall need in the sequel to state
our results, is that of exponential tightness:

Definition 1.8 (Exponential tightness). A sequence of probability measures (µn) on
a topological space X is said to be exponentially tight with speed (an) if, for any α > 0,
there exists a compact set Kα such that

lim sup
n−→∞

1

an
logµn(Kc

α) ≤ −α.

1.3 Main result

In this section, we shall state our main abstract result, relating the notions of gradient
flows and of large deviations.
We consider a sequence of diffusion processes of the form (1.11). The parameters
we allow to vary are the drift ∇H, the diffusion coefficient A, and the dimension of
the underlying space dn. We shall denote by Qn the law of a trajectory on the time
interval [0, T ] of the diffusion process

dXn
t = −An(Xn

t )∇Hn(Xn
t )dt+ div(An)(Xn

t ) +
√

2An(Xn
t )dBn

t (1.14)
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on Rdn , with initial condition Xn
0 distributed according to some law Q0,n.

To be able to state a large deviation principle for the laws of these diffusion processes,
we need to embed their trajectories into a single space. We therefore implicitly
assume that all the spaces Rdn have been embedded into a single metric space X. In
practice, the choice of the embedding will be suggested by the particular problem that
is considered. We then endow the space C([0, T ], X) with some topology that makes
it a metric, separable space. A typical choice would be the supremum norm. Note
that the choice of the topology affects the statement of the large deviations principle,
since the open and closed sets for which the estimates are valid are specified by the
topology we use.
To state the result, we must first define the notion of Γ-convergence of functionals:

Definition 1.9 (Gamma convergence). Let X be a space endowed with a notion of
convergence. A sequence (In) of functionals on X is said to Γ-converge to a functional
I at point x ∈ X if the two following conditions are met:
(i) For any sequence (xn) that converges to x, we have lim inf

n→∞
In(xn) ≥ I(x);

(ii) There exists a sequence (xn) that converges to x such that lim
n→∞

In(xn) = I(x).

The sequence (In) is said to Γ-converge to I if it Γ-converges to I at every point.

We can now state the main result, relating large deviations and Γ-convergence of
functionals of the form (1.12):

Theorem 1.10. Let Qn be the law of a trajectory on [0, T ] of a solution to a stochastic
differential equation of the form (1.14), with Q0,n the law of the initial condition,
and let Jn be the functional involved in the gradient flow formulation of the flow of
marginals of (1.12), associated to the same SDE.
Assume that the sequence (Qn)n∈N is exponentially tight, with speed (an). Then it sat-
isfies a large deviations principle with speed (an) and rate function I iff the functionals
(νt)t∈[0,T ]) −→ 1

an
(H(ν0;Q0,n)+ 1

2Jn((νt))) Γ-converge to I at the Dirac measure δ(xt),
for every continuous trajectory t→ xt.

Strictly speaking, the convergence used here is not a full Γ-convergence, but only
Γ-convergence at every Dirac mass. For convenience, we shall still call this a Γ-
convergence.
We expect the rate function I to be of the form I(xt) = I0(x0) + J(xt), with J the
function involved in the formulation (0.1) of a gradient flow in a certain metric space.
This comes from the fact that often the rate function I will have a unique minimizer,
which will be the deterministic limit of our sequence of processes, and in practice is
defined as the solution to some PDE. So we can reformulate the actual limit as the
unique minimizer of a function. But gradient flow formulations also characterize the
solution to a PDE as the unique minimizer of a functional. The similarity between
these two points of views makes us expect that they will be related, and this turns
out to be the case in all the examples we are currently aware of. The idea that
large deviations rate fucntionals often characterize a gradient flow structure has been
explored in [31].
In the contributions [1], [2], [6] and [31], it is shown that the rate function for the large
deviations principle for the empirical measure of independent copies of a diffusion
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process on a small time interval (given by Sanov’s theorem) asymptotically behaves
(in the sense of Gamma-convergence) like the function J giving the gradient flow
formulation of the law of a single copy of the diffusion process. These works show
the strong connection between gradient flows and large deviations, and explain why
some PDEs such as Fokker-Planck equations have a gradient flow structure. However
they only concern the case of independent processes, and cannot be used to prove the
validity of a large deviations principle, which is our main aim here.
An important element of the study of the functional J is the study of the Fisher in-
formation, or entropy-production functional. The importance of this functional can
be understood in terms of statistical physics. It is a well-known principle in equilib-
rium statistical physics that equilibrium states can be obtained by optimizing some
thermodynamic quantity, such as the free energy. This principle sometimes carries
through to non-equilibrium statistical physics. Since the system seeks to increase the
physical entropy (and therefore decrease the mathematical entropy), we can look at
the entropy production functional, which we seek to optimize. Gamma-convergence
corresponds to convergence of minimizers, so we can expect the most likely trajecto-
ries to be those that, in the limit, make the entropy production functional as small
as possible.

Remark 1.4. For the lower bound in the Γ-convergence, it is enough to check the
existence of a recovery sequence for every point y in a subset Y of X, such that given
x ∈ X, there exists a sequence (yk) of elements of Y that converges to x, and such
that I(yk) converges to I(x).

1.4 Some questions

• Is there a similar phenomenon for the large deviations of discrete systems,
such as interacting particle systems? In the recent papers [26] and [29], Maas
and Mielke independently showed that any reversible Markov chain on a finite
space can be written as a gradient flow of a relative entropy for a well-chosen
Riemannian structure on the space of probability measures. Can we exploit this
structure to get the large deviations of systems such as a zero-range process, or
exclusion processes?

• We apply in Section 3 this principle to get the large deviations for a system
of diffusions with nearest neighbor interaction. It would also be interesting to
look at mean-field models, where each diffusion interacts with all the others. In
the case of smooth mean-field interactions, the question has been solved in [7],
with a method that is very similar to the one we use here. A natural question
is whether this extends to singular interactions. A case of particular interest
would be that of Coulomb interactions.

• Another natural question is whether we can use this principle in a context of
modeling. Say we wish to approximate a phenomenon characterized as the
unique solution to a partial differential equation of the form ∂tρ = H(ρ,∇ρ, ..)
with a system of N interacting diffusions, with N large. If we can find a
sequence of diffusion processes on RN and a sequence of positive numbers aN
such that 1

aN
JN Gamma-converges to a lower semicontinuous functional that
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has the solution to the PDE as sole minimizer, then these diffusion processes
form a good approximation. Can this idea be exploited in this context? This
would be particularly interesting if we can extend our results to sequences of
interacting particle systems.

• Our method works for reversible diffusion processes. Is there a similar method
that works for non reversible processes, such as interacting diffusion processes
with a boundary condition, or second-order diffusion processes? A possible
candidate for a framework in which to work is the GENERIC framework studied
in [9].

2 Proof of Theorem 1.10

The proof of Theorem 1.10 is essentially based on the following two arguments:

• The validity of a large deviations principle of a sequence of probability mea-
sures (Qn)n∈N is equivalent to Gamma-convergence of the relative entropy with
respect to Qn to the rate function. This is a result du to Mariani, which we
shall explain in more details in Section 2.1.

• We can relate relative entropy with respect to Qn and the functional Jn, in
such a way that Gamma-convergence of the sequences are equivalent. More
precisely, we have the following result:

Theorem 2.1. Let Q be the law of a solution to a SDE of type (1.11) on a space Rd,
and P the law of a process with finite relative entropy with respect to Q, with flow of
marginals (νt). Then:
(i) We have the lower bound

H(P ;Q) ≥ H(P0;Q0) +
1

2
J((νt))

where P0 and Q0 are the laws of the initial conditions.
(ii) There exists a process with law P̃ that has the same flow of marginals as P , such
that

H(P̃ ;Q) = H(P0;Q0) +
1

2
J((νt)).

This result implies that studying the Gamma-convergence of a−1
n H(·;Qn) and that

of a−1
n (H(·, Qn,0) + J(·)/2 is equivalent. An application of Theorem 2.3 then yields

Theorem 1.10.
Of course, studying relative entropy to understand large deviations is a known tech-
nique (see [7] and [16]). Our contribution is to connect relative entropy to the frame-
work of gradient flows in spaces of probability measures. Instead of studying relative
entropy (which depends on the law of the whole trajectory), we can study the func-
tional J , which only depends on the flow of marginals, and is easier to manipulate, at
least in some cases of interest, due to its connection with optimal transport. It should
be noted that some of the ideas we use here (relative entropy, variational formulations
for rate functions) are reminiscent of those used in [7] to study large deviations for
weakly-interacting mean-field models.
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2.1 Relative entropy and large deviations

We would like to start by restating the two (equivalent) definitions of relative entropy:

Definition 2.2 (Relative entropy). Given two probability measures P and Q on a
Polish space X, the relative entropy of P with respect to Q is given by

H(P ;Q) := sup
f∈Cb(X)

EP (f)− logEQ(ef ).

Equivalently, we have

H(P ;Q) = EP
[
ln

(
dP

dQ

)]
if P is absolutely continuous with respect to Q, and H(P ;Q) = +∞ if not.

This equivalence is well-known, and is obtained by a computation of the Legendre
transform (see Lemma 6.2.13 in [11]).
Mariani’s result relating entropy and large deviations can be stated as follows :

Theorem 2.3 ([27], 2012). Let (µn) be a sequence of probability measures on a Polish
space X, (an) a sequence of positive real numbers such that lim

n→∞
an = +∞ and

I : X −→ [0,+∞] a measurable, lower semicontinuous functional. We endow the
space of probability measures with the topology of weak convergence.
(i) The sequence (µn) satisfies a large deviations upper bound with speed (an) and rate
function I iff it is exponentially tight with speed (an) and if for any sequence (νn) of
probability measures on X that weakly converges to a Dirac measure δx, we have

lim inf
n−→∞

1

an
H(νn;µn) ≥ I(x);

(ii) The sequence (µn) satisfies a large deviations upper bound with speed (an) and
rate function I iff for any point x, there exists a sequence (νn) of probability measures
on X that weakly converges to δx such that

lim sup
n−→∞

1

an
H(νn;µn) ≤ I(x).

A heuristic explanation of Theorem 2.3 can be made in terms of the Bryc-Varadhan
theorem (see Sections 4.3 and 4.4 in [11]). One can relate the relative entropy func-
tional and exponential moments of functions by the relation∫

exp(f)dµ = sup
ν∈P(X)

∫
fdν − Entµ(ν).

Since the Bryc-Varadhan lemma states that we can understand the large deviations
for sequences of measures by looking at 1

an
log
∫

exp(anf)dµn for bounded continuous
functions, the above relation translates the problem to investigating the behavior of
the sequence of relative entropy functionals.
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2.2 Proof of Theorem 2.1

The proof is a generalization of ideas coming from Part II of [16]. It will consist in
three steps : first we shall use Girsanov’s theorem to give a representation of the law
of processes that are absolutely continuous with respect to the law of the gradient
flow. In a second step, we shall give a representation of the relative entropy of such
a process, and finally we shall use this representation to obtain the lower bound of
our theorem.
The following result is a direct application of Girsanov’s theorem (see for example
Theorem 2.4 in [25]):

Proposition 2.4. Let Q be the law of the solution of (1.11) on [0, T ], and P the
law of a process that is absolutely continuous with respect to Q. Then there exists an
adapted process (bt) valued in Rd such that

dP

dQ
((Xt)0≤t≤T ) = 1 dP

dQ
>0

dP0

dQ0
(X0) exp

(∫ T

0
bt ·
√

2A(Xt)dB
P
t +

∫ T

0
〈A(Xt)bt, bt〉dt

)
.

(2.1)
In this equation, BP is a P-Brownian motion, that is a local martingale under P
which P -almost surely has quadratic variation equal to t. Moreover, P can be viewed
as the law of a solution to the SDE

dXt = A(Xt)(2bt −∇H(Xt))dt+ div(A)(Xt)dt+
√

2A(Xt)dB
P
t (2.2)

As a consequence, the relative entropy is given by

H(P ;Q) = H(P0;Q0) + EP
[∫ T

0
〈A(Xt)bt, bt〉dt

]
. (2.3)

Note that the relative entropy does not only depend on the flow of marginals (Pt),
but on the law of the whole trajectory, unlike the functional J .

Lemma 2.5 (Markov version of the process). Let bt = b(t, (Xs)0≤s≤t) be the adapted
process associated to a law P . Define

b̃t(x) := EP [b(t, (Xs)0≤s≤t)|Xt = x]. (2.4)

Then the process defined by

dXt = A(Xt)(2b̃t(Xt)−∇H(Xt))dt+ div(A)(Xt)dt+
√

2A(Xt)dBt (2.5)

with initial condition X0 ∼ P0 is a Markov process, and its law has the same flow of
marginals as P .

Proof. The fact that this process is a Markov process is a classic result on SDEs, so
we shall concentrate on proving that both processes have same marginals. Let g be
a smooth function, Xt be a solution of (2.2) and X̃t a solution of (2.5). Using Ito’s
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formula, we have

E[g(X̃t)] =

∫ t

0
E
[
A(X̃s)∇g(X̃s) · (2b̃s(Xs)−∇H(Xs))

]
ds

+

∫ t

0
E
[
div(A(X̃s)∇g(X̃s))

]
ds

=

∫ t

0
E
[
A(X̃s)∇g(X̃s) · (2EP [b(s, (Xr)0≤r≤s)|Xs]−∇H(Xs))

]
ds

+

∫ t

0
E
[
div(A(X̃s)∇g(X̃s))

]
ds

and

E[g(Xt)] =

∫ t

0
E [A(Xs)∇g(Xs) · (2b(s, (Xr)0≤r≤s)−∇H(Xs))] ds

+

∫ t

0
E [div(A(Xs)∇g(Xs))] ds

=

∫ t

0
E [A(Xs)∇g(Xs) · (2EP [b(s, (Xr)0≤r≤s)|Xs]−∇H(Xs))] ds

+

∫ t

0
E [div(A(Xs)∇g(Xs))] ds

=

∫ t

0
E
[
A(Xs)∇g(Xs) · (2b̃(Xs)−∇H(Xs))

]
ds

+

∫ t

0
E [div(A(Xs)∇g(Xs))] ds.

This shows that the marginals of the laws of X and X̃ satisfy the same parabolic
PDE

∂f

∂t
= div(A∇f) + div(A(2b̃−∇H)f).

Since they have the same initial condition, and since solutions to such PDEs are
unique, they are the same.

Lemma 2.6. Let P̃ be the law of the solution of (2.4).
We have

H(P ;Q) ≥ H(P̃ ;Q) (2.6)

Proof. We already know that

H(P̃ ;Q) = H(P0;Q0) + EP̃

[∫ T

0
〈A(Xt)b̃t, b̃t〉dt

]
. (2.7)
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An application of Jensen’s inequality and the definition of b̃ yields

H(P ;Q)−H(P0;Q0) = EP
[∫ T

0
〈A(Xt)bt, bt〉dt

]
=

∫ T

0
EP [〈A(Xt)bt, bt〉] dt

=

∫ T

0
EPt [EP [〈A(Xt)bt, bt〉|Xt]] dt

≥
∫ T

0
EPt

[
〈A(Xt)b̃(Xt), b̃(Xt)〉

]
dt

= H(P̃ ;Q)−H(P0;Q0), (2.8)

which is the desired lower bound.

Lemma 2.7 (Entropy of the Markov process). The entropy of the Markov version
of the process satisfies

H(P̃ ;Q) = H(ν0;Q0) +
1

2
J((νt))

where (νt) is the flow of marginals of the process P .

Proof. Let g be a smooth, compactly supported function. Itô’s formula applied to
the SDE (2.5) yields

E[g(Xt)] = E[g(X0)] +

∫ t

0
E[A∇g(Xs) · (2b̃s(Xs)−∇H(Xs))]ds

+

∫ t

0
E[(∇ ·A(Xs)∇g(Xs))]ds. (2.9)

It is easy to deduce from the Ito formulation (2.9) that the flow of marginals (νt)
solves (in a weak sense) the PDE

ν̇t = −div
(

2Ab̃tνt − νtA∇H −A∇νt
)
.

(2.10)

Therefore the variation of the entropy of the marginals is given by

Entµ(νT )− Entµ(ν0) =

∫ T

0

∫
A∇νt(x) · (2b̃t(x)−∇H(x))dxdt

−
∫ T

0

∫
〈A(x)∇νt(x),∇νt(x)〉

νt(x)
dxdt

+

∫ T

0

∫
A(2b̃t −∇H) · ∇Hdνtdt−

∫ T

0

∫
A∇H · ∇νtdxdt

=

∫ T

0

∫
2Ab̃t · ∇νt + νt∇Hdxdt−

∫
A(∇νt + νt∇H) · (∇νt + νt∇H)

νt
dx

(2.11)
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From the Benamou-Brenier formula for W2,G (see for example [40]):

W 2
2,G(ν0, ν1) = inf

{∫ 1

0

∫
〈Gv, v〉dνtdt; ν̇ + div(vνt) = 0

}
we deduce

1

2

∫ T

0
|ν̇t|2dt

=
1

2

∫ T

0

〈
A

(
2b̃t −∇H −

∇νt
νt

)
,

(
2b̃t −∇H +

∇νt
νt

)〉
dνtdt

= 2

∫ T

0

∫
〈Ab̃t, b̃t〉dνtdt+

1

2

∫ T

0

∫ 〈
A

(
∇H +

∇νt
νt

)
,

(
∇H +

∇νt
νt

)〉
dνtdt

−
∫ T

0

∫ 〈
2Ab̃t,

(
∇H +

∇νt
νt

)〉
dνtdt. (2.12)

By the definition (1.8) of the upper gradient g, we have

1

2

∫ T

0
g(νt)

2dt =
1

2

∫ T

0

∫ 〈
A∇νt
νt

+A∇H, ∇νt
νt

+∇H
〉
dνtdt. (2.13)

Summing (2.11), (2.12) and (2.13), we get

J((νt)) = 2

∫ T

0

∫
〈Ab̃t, b̃t〉dνtdt, (2.14)

and then the lemma immediately follows from (2.7).

The combination of Lemmas 2.6 and 2.7 then immediately yields Theorem 2.1
To deduce Corollary 1.10 from Theorem 2.1, the only thing we still have to prove is
that, if (νt) is a flow of marginals such that J((νt)) is finite, there exists a process
whose law is absolutely continuous with respect to Q, and with flow of marginals (νt).
Let (νt) be an absolutely continuous flow of marginals such that J((νt)) is finite.
From Theorem 2.4 in [24], we know that there exists a vector field (vt) such that the
continuity equation

ν̇t = ∇ · (Avtνt) (2.15)

is satisfied. On the other hand, we know that (νt) is the flow of marginals of the
solution to an SDE of type

dXt = 2A(Xt)bt(Xt)dt+
√

2A(Xt)dBt,

whose law would then be absolutely continuous with respect to Q, if the flow solves
in a weak sense the PDE

ν̇t = div(A(∇νt + 2btνt)).

Since J((νt)) is finite, the upper gradient g(νt) is finite for almost every t, and ∇νt
exists. We therefore only have to take 2bt(x) = vt(x) − ∇νtνt (x) to see that the flow
given by (2.15) solves the above PDE.
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3 Large deviations for the Ginzburg-Landau model

3.1 The model

The (classical) Ginzburg-Landau model equipped with Kawasaki dynamics is a se-
quence of N diffusions, interacting according to the SDE

dXi
t = N2(ψ′(Xi+1

t ) + ψ′(Xi−1
t )− 2ψ′(Xi

t))dt+
√

2N(dBi+1
t − dBi

t).

This model can be viewed as an overdamped limit of chains of interacting anharmonic
oscillators. It can also be seen as a continuous-spin version of the Ising model endowed
with Kawasaki dynamics. Beyond its relevance as a physical model, it is also widely
used in the litterature as a prototype of dynamics governed by differential operators,
on which we can test techniques to study large-scale behavior of interacting systems.
We refer to [19], [42] and the references contained therein for more information on
the history of the model.
The drift is given by the derivative of a potential ψ : R −→ R, which we assume to
be C2. This diffusion is not ergodic on the whole space RN , since it preserves the
mean spin m = N−1

∑
Xi
t , but it is ergodic when restricted to a hyperplane

XN,m :=

{
x ∈ RN ;

1

N

N∑
i=1

xi = m

}
. (3.1)

It then has an invariant measure

µN,m(dx) :=
1

Z
exp

(
− 1

N

N∑
i=1

ψ(xi)

)
1x∈XN,mL

N−1(dx), (3.2)

where LN−1 is the Lebesgue measure on the (N − 1)-dimensional hyperplane XN,m.
Equivalently, its law is given by the solution of the PDE

∂fµN,m
∂t

= div(A0∇fµN,m), (3.3)

where f is the density with respect to µN,m, and A0 is the discrete Laplacian scaled
by N2, that is

(A0)i,j := N2(δi,j+1 + δi,j−1 − 2δi,j).

To embed all the spaces XN,m in a single space, and conveniently formulate limit
results, we associate to a an element x = (x1, .., xN ) ∈ XN,m a step function on the
torus x̄, given by

x̄(θ) = xi ∀θ ∈
(
i− 1

N
,
i

N

]
.

Note that
∫
x̄(θ)dθ = m. Through this procedure, we can embed all the spaces XN,m

in the space of functions on the torus, which we endow with the usual H−1 norm,
and which we denote by H−1(T).
The notion of convergence we shall use in the sequel is the following
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Definition 3.1. Let νN be a probability measure on XN,m. A sequence (νN ) is said
to weakly converge to a deterministic profile ρ ∈ L2(T) if, for all smooth test functions
J : T −→ R, we have∫

XN,m

∫
T
x̄(θ)J(θ)dθνN (dx) −→

∫
T
ρ(θ)J(θ)dθ.

If we denote by x̄N a random step function on the torus with law νN , this notion of
convergence corresponds to convergence in law of the sequence x̄N to ρ, in the space
H−1(T).

When N goes to infinity, if the initial condition behaves deterministically in the limit,
the (properly rescaled) solutions at time t weakly converge to a deterministic profile
ρ(t, ·) ∈ L2(T), called the hydrodynamic limit, which has been studied in [19]. Large
deviations from this hydrodynamic limit have been studied in [10]. The scaling limit
is given by the PDE

∂ρ

∂t
=

∂2

∂θ2
ϕ′(ρ),

where ϕ is the Cramer transform of ψ, given by

ϕ(m) := sup
σ∈R

(
σm− log

∫
exp(σx− ψ(x))dx

)
.

For technical reasons, we shall assume that the initial data follows a local Gibbs state,
that is

f0(x) =
1

Z
exp

(∑
xiϕ
′(ρ0(i/N))

)
(3.4)

for some continuous function ρ0. We will later see that this initial data concentrates
around the deterministic profile ρ0. It can be shown that, for initial data that behaves
deterministically in the limit, solutions at any positive time are close (in the sense of
relative entropy) to such a local Gibbs state. See [21] or [12] for a proof.
We will also assume that the single-site potential ψ is of the form

ψ(x) =
1

p
xp + δψ(x) (3.5)

for some p ≥ 2 and a perturbation δψ that is C2, bounded and with bounded first
and second derivative.
It is likely that the results we shall obtain hold for more general functions ψ, but such
a result would require more general technical tools than those developed in the next
section. For example, if ψ does not grow at least as |x|2 as x goes to infinity, then
the logarithmic Sobolev inequality does not hold. In [10], the LDP is proved for the
case where ψ is only superquadractic, and ψ′ = o(ψ).
Although the method can be used to reprove the result of [10], rather than work on
the classical Ginzburg-Landau model we just described, we shall focus on two variants
of the model, with the extra input of a non-constant conductance. The first model
will involve random conductances, and the second will be the model of [35], with
conductances that depend on the configuration of spins. Our method will rely on
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Theorem 1.10, and reduce the problem to the study of the behavior of the functional
JN associated with the gradient flow formulation of these dynamics.
There are several technical elements of our approach that are in common with the one
of [10], such as tightness estimates and gradient replacement estimates. In particular,
it turns out that the proof of the upper bound in the convergence of JN is the same
as the proof of [35] of the lower bound for the LDP. We shall therefore only sketch
the proofs of the upper bounds, and concentrate on the lower bounds in the Γ-
convergence.

3.2 Some technical estimates

In this section, we give a few technical results, collected from various sources, which
we shall use in the proofs of the large deviation principles. Most of them are classical
results in the study of hydrodynamic limits, and we will often only give a brief sketch
of the proofs, or simply refer to the original source.
We will use logarithmic Sobolev inequalities, which we now define:

Definition 3.2 (Logarithmic Sobolev inequality). Let X be a Riemannian mani-
fold. A probability measure µ on X is said to satisfy a logarithmic Sobolev inequality
(which we shall abbreviate into LSI) with constant ρ > 0 if, for any locally Lipschitz,
nonnegative function f ∈ L1(µ),∫

f log(f)dµ−
(∫

fdµ

)
log

(∫
fdµ

)
≤ 1

ρ

∫
|∇f |2

2f
dµ.

The following result was proven in [30]:

Theorem 3.3 ([30]). Under the assumption (3.5), the measures µN,m defined by
(3.2) satisfy the logarithmic Sobolev inequality

EntµN,m(g) ≤ C
∫
|∇g|2

g
dµN

for any nonnegative, locally Lipschitz function g, with constant C independent of the
dimension N and the mean spin m. This implies the inequality

EntµN,m(g) ≤ C
∫
〈A0∇g,∇g〉

g
dµN

for some constant C that is independent of the dimension and the mean spin. As
previously, A0 is the (scaled) discrete Laplacian.

As a consequence of this result and of Lemma 26 in [18], we have the following result:

Lemma 3.4. Let fN be a sequence of probability densities with respect to µN,m such
that

sup
N

1

N

∫
〈A0∇fN ,∇fN 〉

f
dµN,m < +∞.

Then we also have

sup
N

1

N

∫ ∑
|xi|2fN (x)µN,m(dx) < +∞.
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This result still holds if we replace µN,m by another sequence of measures with bounded
second moment and which satisfy a LSI with uniform constant.

This can be generalized to the following result:

Lemma 3.5. Assume that ψ is of the form 1
p |x|

p + δψ(x). Let fN be a sequence of
probability densities with respect to µN,m such that

sup
N

1

N

∫
〈A0∇fN ,∇fN 〉

f
dµN,m < +∞.

Then we also have

sup
N

1

N

∫ ∑
|xi|pfN (x)µN,m(dx) < +∞.

Proof. It has been shown in [13] that, under our assumptions on ψ, µN,m satisfies the
following transport-entropy inequality: for any probability measure νN,m,

W p
p (νN , µN ) ≤ C EntµN,m(νN )

for some constant C > 0 that does not depend on N , and Wp is the Lp Wasserstein
distance

W p
p (ν, µ) := inf

π

∫ ∑
|xi − yi|pπ(dx, dy).

From the Wp-Lipschitz continuity of p-moments (see Proposition 7.29 in [41]), we
know that(∫ ∑

|xi|pνN (dx)

)1/p

−
(∫ ∑

|xi|pµN,m(dx)

)1/p

≤Wp(µN,m, νN )

so that ∫ ∑
|xi|pνN (dx) ≤ C EntµN,m(νN ) + C

∫ ∑
|xi|pµN,m(dx)

Since µN,m satisfies a logarithmic Sobolev inequality, EntµN,m(νN ) ≤ CN , and it is
also easy to see that ∫ ∑

|xi|pµN,m(dx) ≤ CN,

which concludes the proof.

We now give a version the version of the local Cramér theorem we shall use:

Theorem 3.6. Let (ai) be some sequence of real numbers. We define

ψK(m) := − 1

K
log

∫
XK,m

exp(
∑

aixi + ψ(xi))dx

and

ϕK(m) := sup
σ∈R

(
σm− 1

K

K∑
i=1

log

∫
R

exp((σ + ai)x− ψ(x))dx

)
.
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We then have, for any L > 0 and any compact subset E of R,

lim
K→∞

sup
a1..aK∈[−L,L]

||ψK − ϕK ||∞,E = 0.

In particular, if ai = λ(i/K) for some smooth function λ, then ψK converges to

ϕλ(m) := sup
σ∈R

(
σm−

∫ 1

0
log

∫
R

exp((σ + λ(θ))x− ψ(x))dxdθ

)
.

uniformly on compact sets.

A proof of this result can be found in [14] or Appendix A in [21]. Roughly speaking,
it says that local averages of a large number K of spins behave like random variables
satisfy a large deviation principle of speed K and rate function ϕ.
The following proposition is a consequence of Theorem 4.1 in [19].

Proposition 3.7. Let fN be a sequence of probability densities with respect to µN
which weakly converges to a deterministic profile ρ. Assume that

1

N

∫
〈A0∇fN ,∇fN 〉

fN
dµN,m ≤ C.

Then, for any smooth function J : T → R and bounded continuous function F :
R2k+1 → R, we have

1

N

∫ ∑
J(i/N)F (xi−k, .., xi+k)fN (x)µN (dx) −→

∫
T
J(θ)F̃ (ρ(θ))dθ

where

F̃ (y) :=

∫
F (x1, .., x2k+1)µλ,⊗2k+1(dx), (3.6)

with µλ(dx) = 1
Z exp(λx− ψ(x))dx and λ = ϕ′(y).

Note that, in [19], it was also required that there exists a superlinear function ω
such that

∫ ∑
ω(xi)f(x)µN (dx) ≤ CN . However, under our assumptions on ψ, the

bound on
∫ 〈A0∇f,∇f〉

f dµN implies that
∫ ∑

|xi|2f(x)µN (dx) ≤ CN , as we have seen
in Lemma 3.4.

Proposition 3.8. Let ρ be a smooth function on the torus, and define the probability
density with respect to µ

GN (x) =
1

Z
exp

(
N∑
i=1

ϕ′(ρ(i/N))xi

)
.

Then
(i) The measures GNµN,m weakly converge to the deterministic profile ρ;
(ii) They satisfy a logarithmic Sobolev inequality, with a constant that only depends
on ρ and ψ, but which is uniform in N ;
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(iii) For any sequence of probability measures νN on RN , if

1

N
EntGNµN,m(νN ) −→ 0,

then the sequence weakly converges to the deterministic profile ρ. Moreover, we then
have

1

N
EntµN,m(νN ) −→

∫
ϕ(ρ)dθ − ϕ

(∫
ρdθ

)
.

Proof. (i) is a classic hydrodynamic limit result. See for example [42]. (ii) was proven
in [14]. (iii) is a consequence of these two results, and we can prove it as follows.
Since the measures GNµN satisfy a logarithmic Sobolev inequality, they also satisfy
a transport entropy inequality, that is

W2,A−1
0

(νN , GNµN,m)2 ≤ C EntGNµN,m(νN ).

The fact that we can use the inner product given by A0 rather than the usual inner
product follows from the discrete Poincaré inequality. Therefore, we have

1

N
W2,A−1

0
(νN , GNµN,m)2 −→ 0.

The result then follows from the fact that (GNµN,m) weakly converges to ρ, and that
1
N 〈A0x, x〉 ≤ C||x̄||2H−1 .
The second part is a consequence of the identity

1

N
EntµN,m(νN ) =

1

N
EntGNµN,m(νN ) +

1

N

∫
logGNdνN

and the convergence

1

N

∫
logGNdνN =

1

N

∫ N∑
i=1

ϕ′(ρi)xiνN (dx)

− 1

N
log

∫
exp

(
N∑
i=1

ϕ′(ρ(i/N))xi − ψ(xi)

)
dx+

1

N
log

∫
exp

(
N∑
i=1

−ψ(xi)

)
dx

−→
∫
ϕ(ρ(θ))dθ − ϕ

(∫
ρ(θ)dθ

)
. (3.7)

This last convergence follows from the convergence of (νN ) to the deterministic profile
ρ and Theorem 3.6. A complete proof is given in Lemma 7.1 of [21].

Proposition 3.9. Let fN be a sequence of probability densities with respect to µN,mN
which weakly converges to a deterministic profile ρ. Assume that

1

N

∫
〈A0∇f,∇f〉

f
dµN,m ≤ C

and that
1

N

∫ ∑
|xi|2fN (x)µN,m(dx) ≤ C.
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Then, for any sequence (JN ) of step functions on the torus that are constant on the
intervals ((i− 1)/N, i/N ] and which converges in H1 to a function J , we have

1

N

∫ ∑
JN (i/N)xifNµN,m(dx) −→

∫
T
J(θ)ρ(θ)dθ (3.8)

and
1

N

∫ ∑
JN (i/N)ψ′(xi)fNµN,m(dx) −→

∫
T
J(θ)ϕ′(ρ(θ))dθ. (3.9)

Proof. For the first part, notice that∣∣∣∣ 1

N

∫ ∑
JN (i/N)xifNµN (dx)−

∫ ∫
T
J(θ)x̄(θ)dθfN (x)µN,m(dx)

∣∣∣∣
≤ ||JN − J ||H1

(∫
||x̄||2H−1fN (x)µN,m(dx)

)1/2

−→ 0

and ∣∣∣∣∫ ∫
T
J(θ)x̄(θ)dθfN (x)µN,m(dx)−

∫
T
J(θ)ρ(θ)dθ

∣∣∣∣
≤ ||J ||H1

(∫
||x̄− ρ||H−1fN (x)µN,m(dx)

)
≤ ||J ||H1

(∫
||x̄− ρ||L2fN (x)µN,m(dx)

)
so we just have to show that∫

||x̄− ρ||L2fN (x)µN,m(dx) −→ 0.

This quantity is the Wasserstein distance W1 between fNµN and δρ for the L2 dis-
tance. Since we already have weak convergence, to show that there is convergence for
W1, according to Theorem 7.12 of [40], we just have to prove the following tightness
estimate

lim
R→∞

lim sup
N→∞

∫
∑
|xi|2≥NR2

√
1

N

∑
|xi|2fN (x)µN,m(dx) = 0.

This estimate automatically follows from the bound

sup
N

1

N

∫ ∑
|xi|2fN (x)µN,m(dx) < +∞

that was given by Lemma 3.4.
For the second part, we give a very brief sketch of the method of proof that was used
in [19]. Let ψ` be a cutoff of ψ′ at level ` > 0, that is

ψ`(x) = ψ′(x) if |ψ′(x)| ≤ `, ψ`(x) = ±` if not.
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From the bound of Lemma 3.5, we can deduce

1

N

∫ ∑
JN (i/N)ψ′`(xi)fNµN,m(dx) lim

`−→∞

1

N

∫ ∑
JN (i/N)ψ′(xi)fNµN,m(dx)

(3.10)
uniformly in N , since ψ goes to infinity faster than |ψ′|. Moreover, from Proposition
3.7, we obtain

1

N

∫ ∑
JN (i/N)ψ′`(xi)fNµN,m(dx) lim

N−→∞

∫
T
J(θ)ψ̃`(ρ(θ))dθ, (3.11)

so all we need to do is show that ψ̃` converges to ϕ′, which was done in Lemma 6.4
of [19].

Remark 3.1. Similarly, under the assumption that
∫ T

0

∫ 〈A0∇fN ,∇fN 〉
fN

fNµN,mdt ≤
CN uniformly in N , then (3.8) and (3.9) hold in a time-integrated sense.

We also give a priori estimates on weak limits of sequences of probability measures,
obtained as direct consequences of [19], Lemmas 6.3 and 6.6:

Lemma 3.10. Under our assumptions on ψ, for any sequence of probabilities with
density fN with respect to µN,m that weakly converges to a deterministic trajectory ρ,
such that

sup
N

1

N

∫
〈A0∇fN ,∇fN 〉

f
dµN,m ≤ C

we have ∫
T
ϕ(ρ(θ))dθ ≤ C

and ∫
T

(∂θϕ(ρ)(θ))2dθ ≤ C.

Finally, we shall need the following lower bound on the slope of absolutely continuous
curves.

Lemma 3.11. Let (νt) be an absolutely continuous curve of probability measures on
Rn, which is equipped with a Riemannian tensor (A−1(x)) satisfying the assumptions
(1.3) and (1.4). Then we have, for any smooth function V : [0, T ]× Rn −→ R,∫

|ν̇t|2dt ≥ 2

∫
V (T, x)νT (dx)− 2

∫
V (0, x)ν0(dx)

− 2

∫ T

0

∫
∂V

∂t
(t, x)νt(dx)dt−

∫ T

0

∫
〈A(x)∇V,∇V 〉νt(dx)dt (3.12)

Proof. From Theorem 2.4 of [24], we know that there exists a vector field vt such that

ν̇t + div(vtνt) = 0 (3.13)

and ∫ T

0
|ν̇t|2dt =

∫ T

0

∫
〈A−1(x)vt(x), vt(x)〉νt(dx)dt. (3.14)



25

Since we have

〈A−1(x)vt(x), vt(x)〉 ≥ 2〈vt(x),∇V (t, x)〉 − 〈A(x)∇V (t, x),∇V (t, x)〉

for any t and x, we get∫ T

0
|ν̇t|2dt ≥ 2

∫ T

0

∫
〈vt(x),∇V (t, x)〉νt(dx)dt

−
∫ T

0

∫
〈A(x)∇V (t, x),∇V (t, x)〉νt(dx)dt

Using (3.13) to do an integration by parts on the first term, the result immediately
follows.

3.3 Large deviations for the GL model in a random environment

In this section, we shall be interested in the large deviations for a version of the process
(3.3) in a random environment, where the operator A is replaced by a realization of
the symmetric random matrix

Ai,j(ω) := N2ai+1(ω)(δi,j−1 − δi,j)−N2ai(ω)(δi,j − δi,j+1) (3.15)

where the ai are iid random variables defined on a probability space Ω, and we assume
there exists a constant c > 0 such that we almost surely have

c ≥ ai ≥ 1/c. (3.16)

This assumption corresponds to an ellipticity assumption on the operator A that is
uniform in the realization of the random field. Therefore, for any x and any realization
of the random field, we have

1

c
〈A0x, x〉 ≤ 〈Ax, x〉 ≤ c〈A0x, x〉. (3.17)

Under these assumptions, the quantity

ā := E
[

1

a1

]
(3.18)

is well defined and finite.
The associated SDE is

dXi
t = N2

(
ai(ψ(Xi+1

t )− ψ(Xi
t))− ai−1(ψ(Xi

t)− ψ(Xi−1
t ))

)
+
√

2aidB
i
t−
√

2ai−1dB
i−1
t .

(3.19)
Given a realization of the random environment, we denote by La,N the generator of
this diffusion.
The following hydrodynamic limit result for the random environment model has been
proven in [17]:
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Theorem 3.12 ([17]). Assume that the sequence of initial data fN,0µN,m weakly
converges to a deterministic profile ρ0 ∈ H1(T). Then, for any time t > 0 the
sequence fN,tµN,m giving the distributions of the systems at time t weakly converges
to a deterministic profile ρ(t, θ), which is given by the unique solution of the PDE

∂ρ

∂t
= ā∆ϕ′(ρ)

with initial condition ρ0. This convergence holds for almost every realization of the
random field.

We are interested in the following quenched large deviation principle for this model,
using the gradient flow approach we developed in section 1.

Theorem 3.13. Assume that the sequence of initial data is of the form (3.4) for some
smooth initial profile m0. Then, for almost every realization of the random field, the
sequence of laws of solutions to (3.19) on [0, T ] satisfies a LDP in L∞t (H−1

θ ) with
speed N and rate function

I(ρ) :=

∫
ϕ(ρ(0, θ))− ϕ(m0(θ))− ϕ′(m0(θ))(ρ(θ)−m0(θ))dθ

+
1

4ā

∫ T

0

∣∣∣∣∣∣∣∣∂ρ∂t − ā ∂2

∂θ2
ϕ′(ρ)

∣∣∣∣∣∣∣∣2
H−1

dt.

This generalizes the large deviations principle for the classical Ginzburg-Landau
model of [10] to the case of a random environment.
In terms of gradient flows, this result follows from two facts :

• The relative entropy with respect to the invariant measure, divided by N , Γ-
converges to ρ 7−→

∫
ϕ(ρ) − ϕ

(∫
ρ
)
. This corresponds to a large deviations

principle for the sequence of invariant measures µN,m;

• The sequence of metrics given by A−1(w) almost surely converges to the H−1

norm, divided by a factor ā.

As a technical tool, we shall need the following convergence result, which will be used
to formalize the convergence of the discrete norms.

Lemma 3.14. Let (aq)q∈Q be a sequence of positive, bounded, iid random variables,
and let aNi := ai/N . With probability one, for any sequence (hN ) of step functions on

T that converges to a function h in L1, such that hN is constant on
(
i−1
N , iN

]
, and

denoting by hNi the value of hN on such an interval, we have

lim
1

N

N∑
i=1

aNi h
N
i = E(a)

∫
h(θ)dθ.

Proof. Let M be an integer. The strong law of large numbers implies that, with
probability 1, for any step function h that is constant on the intervals

(
i−1
M , i

M

]
, we

have

lim
1

N

N∑
i=1

aNi h(i/N) = E(a)

∫
h(θ)dθ.
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This then remains true simultaneously for every integer M , still with probability 1.
An approximation argument in L1(T) then yields the desired result.

Proof of Theorem 3.13. Given a realization of our random environment, the func-
tional JN is given by

JN (νt) = EntµN,m(νT )−EntµN,m(ν0)+
1

2

∫ T

0
|ν̇t|2A−1dt+

1

2

∫ T

0

∫
〈A∇gt,∇gt〉

gt
dµN,mdt,

(3.20)
where gt is the density of νt with respect to µN,m. We add the subscript |ν̇|A−1

to emphasize the fact that we used the Euclidean norm associated to A−1 as the
quadratic cost for the Wasserstein distance.

Lemma 3.15. The functional 1
N EntµN Γ-converges at every Dirac mass to ρ →∫

ϕ(ρ)dθ − ϕ
(∫
ρdθ
)
.

Proof. Let νN be a sequence that weakly converges to a deterministic profile ρ : T→
R, and let

GN (x) :=
1

ZN
exp

(
N∑
i=1

ϕ′(ρi,N )xi

)
(3.21)

be a local Gibbs profile with respect to µN,m, where ρi,N =
∫ i/N

(i−1)/N ρ(θ)dθ and ZN
is the normalization constant such that GµN,m is a probability measure.
We then have the decomposition

EntGNµN,m(νN ) = EntµN,m(νN )−
∫

logGNdνN . (3.22)

By definition of GN , since νN weakly converges to the deterministic profile ρ, as we
have seen in the proof of Proposition 3.8, 1

N

∫
logGNdνN converges to

∫
ϕ(ρ)dθ −

ϕ
(∫
ρdθ
)
. Since the relative entropy is nonnegative, we can deduce from (3.22) the

inequality

lim inf
1

N
EntµN,m(νN ) ≥

∫
ϕ(ρ)dθ − ϕ

(∫
ρdθ

)
.

Moreover, the measures GNµN,m weakly converge to the deterministic profile ρ, so
that they provide the recovery sequence for this Gamma-convergence result.

Lemma 3.16. Let (νN ) be a sequence of probability measures that converges to a
profile ρ, such that, for any N , νN is absolutely continuous with respect to fN,0µN,m.
Then

1

N
EntfN,0µN,m(νN )− 1

N
EntµN,m(νN ) −→

∫
T
ϕ′(m0)(m0 − ρ)− ϕ(m0)dθ.
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Proof. Since νN is absolutely continuous with respect to fN,0µN,m (and therefore to
µN,m), we have

1

N
EntfN,0µN,m(νN )− 1

N
EntµN,m(νN )

= − 1

N

∫
log fN,0dνN

= − 1

N

∫ ∑
ϕ′(m0(i/N))xiνN (dx) +

1

N
log

∫
exp

(∑
ϕ′(m0(i/N))xi

)
µN,m(dx)

= − 1

N

∫ ∑
ϕ′(m0(i/N))xiνN (dx) +

1

N
log

∫
exp

(∑
ϕ′(m0(i/N))xi − ψ(xi)

)
dx

− 1

N
log

∫
exp

(∑
−ψ(xi)

)
dx

−→ −
∫
ϕ′(m0(θ))ρ(θ)dθ +

∫
ϕ′(m0(θ))m0(θ)dθ

−
∫
ϕ(m0(θ))dθ

since (νN ) has asymptotic profile ρ, and applying Theorem 3.6.

We will now investigate the behavior of the slope:

Lemma 3.17 (Lower bound for the time-derivative). For any sequence (νN,t) weakly
converging to some ρ and such that

sup
N

1

N
JN ((νN,t)) < +∞,

we have

lim inf
1

N

∫ T

0
|ν̇N,t|2A−1dt ≥

1

ā

∫ T

0
||∂ρ/∂t||2H−1dt.

Proof. Let J : [0, T ] × T −→ R be a smooth function. Applying Lemma 3.11 with

JN (t, x) := 1
N

∑
i
J(t, i/N)xi+

i−1∑
j=1

∂J
∂θ (t, j/N)bjxi and bi = ā

ai
− 1, we have

1

N

∫ T

0
|ν̇N,t|2A−1dt ≥

2

N

∫ ∑
J(T, i/N)xiνN,T (dx) +

2

N2

∫ ∑
i

i−1∑
j=1

∂J

∂θ
(T, j/N)bjxiνN,T (dx)

− 2

N

∫ ∑
J(0, i/N)xiνN,T (dx)− 2

N2

∫ ∑
i

i−1∑
j=1

∂J

∂θ
(0, j/N)bjxiνN,0(dx)

− 2

N

∫ T

0

∫ ∑ ∂J

∂t
(t, i/N)xiνN,t(dx)dt− 2

N2

∫ T

0

∫ ∑
i

i−1∑
j=1

∂2J

∂t∂θ
(t, j/N)bjxiνN,t(dx)dt

− 1

N

∫ T

0

∑
ai

(
NJ(t,

i+ 1

N
)−NJ(t,

i

N
) + bi

∂J

∂θ
(t, i/N)

)2

dt.
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Taking the limit N −→ +∞ and using the second-moment bounds of Lemma 3.4, we
get

2

N

∫ ∑
J(T, i/N)xiνN,T (dx) +

2

N2

∫ ∑
i

i−1∑
j=1

∂J

∂θ
(T, j/N)bjxiνN,T (dx)

=
2

N

∫ ∑
J(T, i/N)xiνN,T (dx) +O

(
1

N

)
−→

∫
T
J(T, θ)ρ(T, θ)dθ.

In the same way,

2

N

∫ ∑
J(0, i/N)xiνN,T (dx) +

2

N2

∫ ∑
i

i−1∑
j=1

∂J

∂θ
(0, j/N)bjxiνN,0(dx)

−→
∫
T
J(0, θ)ρ(0, θ)dθ

and

2

N

∫ T

0

∫ ∑ ∂J

∂t
(t, i/N)xiνN,t(dx)dt+

2

N2

∫ T

0

∫ ∑
i

i−1∑
j=1

∂2J

∂t∂θ
(t, j/N)bjxiνN,t(dx)dt

−→
∫ T

0

∫
T

∂J

∂t
(t, θ)ρ(t, θ)dθdt.

Finally, using Lemma 3.14, we get

1

N

∫ T

0

∑
ai

(
NJ(t,

i+ 1

N
)−NJ(t,

i

N
) + bi

∂J

∂θ
(t, i/N)

)2

dt

−→
∫ T

0

∫
T
ā

(
∂J

∂θ
(t, θ)

)2

dθdt.

Combining these lower bounds, we get

lim inf
1

N

∫ T

0
|ν̇N,t|2νN,tdt ≥ 2

∫
J(T, θ)ρ(T, θ)dθ − 2

∫
T
J(0, θ)ρ(0, θ)dθ

−2

∫ T

0

∫
T

∂J

∂t
(t, θ)ρ(t, θ)dθdt−

∫ T

0

∫
T
ā

(
∂J

∂θ
(t, θ)

)2

dθdt.

Taking the supremum over all smooth functions J yields the result.

Lemma 3.18 (Lower bound for the upper gradient). For any time t and subsequence
(νN,t) with densities gN,t with respect to µN,m and such that

sup
N

1

N

∫ 〈A0∇gN,t,∇gN,t〉
gN,t

dµN,m < +∞,

we almost surely have

lim inf
N

1

N

∫ 〈A∇gN,t,∇gN,t〉
gN,t

dµN,m ≥ ā
∫
T

(∂θϕ
′(ρ(t, θ)))2dθ.
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Proof. From Lemma 3.10, we know that, under these assumptions, ϕ′(ρ) lies inH1(T).
Let J : T→ R be a smooth function, and define

GN (x) := exp

 N∑
i=1

 i∑
j=1

ā

aj
J(i/N)

xi

 . (3.23)

Since the upper gradient takes value +∞ when νN is not absolutely continuous with
respect to µN,m, and we are looking for a lower bound, we can assume without loss
of generality that νN is absolutely continuous with respect to µN,m, and therefore to
GNµN,m. Let gN,t be the density of νN,t with respect to µN,m.

We consider the quantity
∫ 〈A∇( gN

GN

)
,∇
(
gN
GN

)
〉

gN,t/GN
GNdµN,m, which is nonnegative. We

have

∫ 〈A∇( gNGN ) ,∇( gNGN )〉
gN,t/GN

GNdµN,m

=

∫ 〈A∇gN,t,∇gN,t〉
gN,t

dµN,m − 2

∫ 〈A∇gN,t,∇GN 〉
GN

dµN,m

+

∫
〈A∇GN ,∇GN 〉

G2
N

dµN,m

=

∫ 〈A∇gN,t,∇gN,t〉
gN,t

dµN,m − 2

∫
〈A∇H,∇GN 〉

GN
gN,tdµN,m

+

∫
〈A∇GN ,∇GN 〉

G2
N

dµN,m.

Therefore, we have

∫ 〈A∇gN,t,∇gN,t〉
gN,t

dµN,m ≥ 2

∫
〈A∇H,∇GN 〉

GN
gN,tdµN,m −

∫
〈A∇GN ,∇GN 〉

G2
N

dµN,m

(3.24)
for any realization of the random field, any N and any t.
Applying Lemma 3.14, we have

1

N

∫ 〈A∇GN,t,∇GN,t〉
G2
N,t

dµN,m =
1

N

N∑
i=1

ā2

ai
J(i/N)2

−→ ā

∫
T
J(θ)2dθ. (3.25)
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We also have

1

N

∫
〈A∇H,∇GN 〉

GN
gN,tdµN,m =

ā

N

∫ ∑
(ψ′(xi+1)− ψ′(xi))J(i/N)gN (x)µN,m(dx)

=
ā

N

∫ ∑
ψ′(xi)(J((i− 1)/N)− J(i/N))gN (x)µN,m(dx)

=
ā

N

∫ ∑
ψ′(xi)J

′(i/N)gN (x)µN,m(dx)

+O

(
1

N2

∫ ∑
|ψ′(xi)|gN (x)µN,m(dx)

)
−→ ā

∫
T
ϕ′(ρ(θ))J ′(θ)dθ. (3.26)

Combining these two lower bounds and taking the supremum over smooth functions
J , we get the lower bound of our Lemma.

From the previous Lemma and Fatou’s Lemma, we can then deduce that, for a
sequence that converges to a Dirac mass, and such that JN (fN ) ≤ CN , we have

lim inf
1

N

∫ T

0

∫
〈A(∇νt + νt∇H), (∇νt + νt∇H)〉

νt
dt ≥

∫ T

0
ā

∫
T

(∂θϕ
′(ρ(t, θ)))2dθdt,

which was the last element we needed for the lower bound of the Γ-convergence.
We now turn to the recovery sequence. Given a profile ρ(t, θ) that is weakly continu-

ous in time, and such that
∫ T

0 ||ā∂
2
θϕ
′(ρ)− ∂tρ||2H−1dt is finite, there exists a sequence

of smooth profiles ρk that converge to ρ, and such that
∫ T

0 ||ā∂
2
θϕ
′(ρk)− ∂tρk||2H−1dt

converges to
∫ T

0 ||ā∂
2
θϕ
′(ρ)− ∂tρ||2H−1dt. Therefore, in view of Remark 1.4, we only

have to prove the existence of a recovery sequence for profiles ρ that are smooth.
Given such a smooth profile ρ, there exists a continuous function h : [0, T ]×T −→ R
such that

∂ρ

∂t
= ā

∂

∂θ

(
h(t, θ) +

∂

∂θ
ϕ′(ρ)

)
. (3.27)

We now consider a dynamic with law given by the time-dependent generator

L̃a,N = La,N +N

N∑
i=1

ā

ai
h(t, i/N)

(
∂

∂xi+1
− ∂

∂xi

)
(3.28)

and initial condition given by the local Gibbs state associated to ρ(0, ·).
We need to prove two things: that the solutions to such dynamics converge to the
deterministic profile ρ, and that N−1JN ((νN,t)) has the correct limit (where νN,t are
the marginals of the law of the solution to the modified dynamic). The first part can
be done in the same way as in Section 3 of [35], so we concentrate on the second part.
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We have

1

N
JN (fN ) =

1

2

∫ T

0

∣∣∣∣∣∣∣∣∂fN∂t − La,NfN
∣∣∣∣∣∣∣∣2
H−1(A)

dt

=
1

2

∫ T

0

∣∣∣∣∣∣L̃a,NfN − La,NfN ∣∣∣∣∣∣2
H−1(A)

dt

=
1

2

∫ T

0

N∑
i=1

ā2

ai
h(t, i/N)2dt

−→ 1

2

∫ T

0

∫
T
āh(t, θ)2dθdt (3.29)

and, using (3.27), it is easy to see that this is equal to 1
2ā

∫ T
0

∣∣∣∣∣∣∂ρ∂t − ā ∂2

∂θ2
ϕ′(ρ)

∣∣∣∣∣∣2
H−1

dt,

which was what we needed to prove.
We still have to prove exponential tightness for the laws of solutions to (3.19). It is
given by the following two results:

Lemma 3.19. Let PN be the law of a solution to the SDE (3.19) with initial condition
X0 having a distribution f0µN that satisfies EntµN (f0) ≤ CN . Then

lim
`−→+∞

lim
N−→+∞

1

N
logPN

(
sup

0≤t≤T

1

N

∑
|Xi

t | ≥ `

)
= −∞.

Lemma 3.20. Under the same assumptions as the previous lemma, for any ε > 0
and any smooth function on the torus J , we have

lim
δ−→0

lim
N−→+∞

1

N
logPN

(
sup

0≤s≤t≤T,|s−t|≤δ

∣∣∣∣ 1

N

∑
J(i/N)(Xi

t −Xi
s)

∣∣∣∣ ≥ ε
)

= −∞.

Proof of Lemma 3.19. This proof is exactly the same as in [10], we give a brief sketch
to show that the random field (ai) does not make any difference.
Let P̃ eq,N be the law of a solution to the SDE starting from the equilibrium measure
µN,m. From Lemma 1.12 in [23], we know that, for any symmetric function g on RN ,
we have

P̃ eq,N

(
sup

0≤t≤T
g(Xt) ≥ `

)
≤ 3

`

√
a+ Tb

with a =
∫
g2dµN,m and b =

∫ 〈A∇g,∇g〉
g dµN,m. When g(x) = exp (

∑
|xi|), there exists

C > 0 such that a ≤ CN and b ≤ N2CN . Using the Tchebychev inequality, we obtain

P̃ eq,N

(
sup

0≤t≤T

1

N

∑
|Xi

t | ≥ `

)
≤
√
CN (1 +N2)e−N` ≤ C ′e−C′′N`.

We can then use the basic entropy inequality

PN (A) ≤ log(2) +HN

log(1 + 1/P̃ eq,N (A))
,

where HN is the relative entropy of the non equilibrium process with respect to the
equilibrium process, which satisfies the bound HN ≤ CN , to get the result.
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In the same way, we refer the reader interested in the proof of Lemma 3.20 to Lemma
2.8 in [10]. The proof is exactly the same, since the random variables ai are bounded.

3.4 Large deviations for the non-gradient Ginzburg-Landau model

We consider the SDE given by

dXi
t = N2(Wi,i+1 −Wi−1,i)dt+N

√
2a(Xi

t , X
i+1
t )dBi+1

t −N
√

2a(Xi−1
t , Xi

t)dB
i
t

(3.30)
where

Wi,i+1 = a(Xi
t , X

i+1
t )(ψ′(Xi

t)− ψ′(Xi+1
t ))− ∂a

∂x
(Xi

t , X
i+1
t ) +

∂a

∂y
(Xi

t , X
i+1
t ). (3.31)

This model is known as the non-gradient Ginzburg-Landau model. This terminology
is unrelated to gradient flow structures (since this dynamics has a gradient flow
structure), but is used to emphasize the fact that in this mdoel, currents cannot be
written as discrete gradients of some function of the spin configuration.
The marginals of the law of a solution (3.30) solve the PDE

∂fNµN,m
∂t

= ∇ · (A(x)∇fNµN,m) (3.32)

where the matrix A(x) is given by

A(x)i,j := a(xi−1, xi)(δi,j − δi,j+1) + a(xi, xi+1)(δi,j − δi,j−1).

Once more, we will assume that the initial data fN,0 is of the form (3.4).
The generator of this dynamics is given by

LNf = N2
∑

eH
(

∂

∂xi+1
− ∂

∂xi+1

)
e−Ha(xi, xi+1)

(
∂

∂xi+1
− ∂

∂xi+1

)
f (3.33)

It has been shown in [39] that trajectories of such a dynamic concentrate around the
solution to the PDE

∂ρ

∂t
=

∂

∂θ

(
â(ρ)

∂

∂θ
ϕ′(ρ)

)
(3.34)

where ϕ is the same function as in the previous section, and â is a bounded continuous
function, which we shall now define.
Let F : R2k+1 −→ R be a bounded, smooth function of a finite number of variables.

The function ξ : x ∈ R∞ −→
+∞∑
i=−∞

F (xi−k, .., xi+k) is not well-defined, but its partial

derivatives are. We can therefore define

aF (y) :=

∫
a(x0, x1)

(
1− ∂ξ

∂x1
+

∂ξ

∂x0

)2

µ∞,y(dx) (3.35)

where µ∞,y is the product measure on R∞ with every one-dimensional marginal
having density Z−1 exp(λx − ψ(x)), with λ the unique real number such that this
measure has expectation y.
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The function â is then given by

â(y) := inf
F
aF (y) (3.36)

with the infimum running over the set of all smooth, bounded functions of a finite
number of variables.
In the next proposition, we summarize a few properties of the function â:

Proposition 3.21. (i) â is a bounded, continuous function.
(ii) For any ε > 0 and C < +∞, there exists a smooth real-valued function g(xk, .., xk, y)
on R2k+2 with bounded first derivatives such that

sup
|y|≤C

(
ag(·,y)(y)− â(y)

)
< ε

and
sup
y∈R

(
ag(·,y)(y)− â(y)

)
≤ ||a||∞.

Part (i) of this Proposition comes from [39], and part (ii) from [35].
Our aim is to prove the following large deviations result:

Theorem 3.22. Assume that the sequence of initial data is of the form (3.4) for
some smooth initial profile m0. The sequence of random functions satisfies a LDP in
L∞(H−1) with speed N and rate function

I(ρ) :=

∫
ϕ(ρ(0, θ))− ϕ(m0(θ))− ϕ′(m0(θ))(ρ(θ)−m0(θ))dθ

+
1

4

∫ T

0

∣∣∣∣∣∣∣∣∂ρ∂t − ∂

∂θ

(
â(ρ)

∂

∂θ
ϕ′(ρ)

)∣∣∣∣∣∣∣∣2
H−1(â(ρ(t,·)))

dt.

In the rate function, the norm is defined as

||u||2H−1(â(ρ(t,·))) := sup
v∈H1(T)

2

∫
T
u(θ)v(θ)dθ −

∫
â(ρ(t, θ))

(
∂v

∂θ

)2

dθ. (3.37)

This result was already proved in [35], under the assumption that the single site
potential ψ is uniformly convex, and that its second derivative is bounded from
above. Our assumptions are a priori more general, since they allow for superquadratic
potentials, but it seems likely that, using the logarithmic Sobolev inequality proved
in [30], the method of [35] could be extended for such functions. The main aim of
this section is not to prove a new result, but to show that the ideas developed here
can be used for non-gradient models.
The following result is the key technical estimate to prove large deviations for non-
gradient models. It has been proven in [39].
Let RN be the law of the stationary solution to the SDE (3.30), with the initial
condition X0 having law µN . Let ρ(t, θ) be a deterministic profile, which we assume
to be in L∞(H1).
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Denote by ρcθ(t) :=
∫ θ+c
θ−c ρ(t, s)ds. For a given smooth function J : [0, T ] × T → R

and a function g as in part (ii) of Proposition 3.21, we define

V (t) :=

N∑
i=1

J(t, i/N)

[
Wi,i+1 −

1

N2
Lg
(
Xi−k
t , .., Xi+k

t , ρ
`/N
i/N (t)

)]

+
1

N

N∑
i=1

J(t, i/N)â(ρε1i/N (t))

(
ϕ′(ρε1i/N+ε2

(t))− ϕ′(ρε1i/N−ε2(t))

2ε2

)

− α

N

N∑
i=1

J(t, i/N)2(ag(·,ρε1
i/N

(t))(ρ
ε1
i/N (t))− â(ρε1i/N (t)) (3.38)

where α, ε1 and ε2 are positive numbers, and ` is a positive integer.
Under these notations, we have the following exponential estimate, which is due to
Varadhan [39]:

Theorem 3.23. For any profile ρ, any α > 0, any J and g, we have

lim
ε2→0

lim sup
ε1→0

lim sup
`→∞

lim sup
N→∞

1

N
logERN

[
exp

(
αN

∫ T

0
V (t)dt

)]
≤ 0.

Using the result, we obtain what is known in the hydrodynamic literature as the
gradient replacement estimate.

Corollary 3.24. Let (νN,t) be a sequence of flows of time-marginals of a a sequence
of processes that weakly converge to a deterministic flow ρ(t, θ). Assume moreover
that JN (νN,t) ≤ CN for some C > 0.
Then for any smooth, bounded functions J : [0, T ]× T → R and g : R2k+2 → R , we
have

lim
`→∞

lim
N

∫ T

0

∫ ∑
J(t, i/N)(Wi,i+1(x)− 1

N2
(Lg)(xi−k, .., xi+k, ρ

`/N
i/N ))νN,t(dx)dt

=

∫ T

0

∫
T
J(t, θ)â(ρ(t, θ))∂θϕ

′(ρ(t, θ))dθdt.

Proof. First, let us show that we can build a diffusion process of law P with time-
marginals (νN,t) such that H(PN , RN ) = O(N). Since the equilibrium process is a
solution of (3.30) with initial condition µN , we know that there exists a process with
marginals (νN,t) such that

H(PN , RN ) =
1

2
EntµN (ν0,N +

1

2
EntµN (νN,T ) +

1

4

∫ T

0

∫
〈A(∇νt + νt∇H), (∇νt + νt∇H)〉

νt
dt

+
1

4

∫ T

0
|ν̇t|2A−1dt

= JN (νN,t) + EntµN (νN,0)− Entf0,NµN (νN,0)

so we only have to get an upper bound on EntµN (νN,0)−Entf0,NµN (νN,0). Moreover,
the bound on JN (νN,t) implies that Entf0,NµN (νN,0) ≤ CN .
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Denoting νN,0 = ρNµN , we have

EntµN (νN,0)− Entf0,NµN (νN,0) =

∫
ρ log f0,NdµN

=

∫ ∑
ϕ′(m0(i/N))xiνN,0(dx)− logZN

≤ CN ×

√
1

N

∫ ∑
|xi|2νN,0(dx) + CN

≤ CN (3.39)

where the last bound follows from Entf0,NµN (νN,0) ≤ CN , Lemma 3.4 and the fact
that the measures f0,NµN satisfy a LSI with uniform constant, and have uniformly
bounded second moments.
Consequently, using the entropy inequality, we have

EPN
[∫ T

0
V (t)dt

]
≤ C

α
+

1

αN
logERN

[
exp

(
αN

∫ T

0
V (t)dt

)]
(3.40)

and the result immediately follows from Theorem 3.23 and using the fact that the
inequality is valid for both J and −J .

We also recall the exponential tightness estimates that have been proven in [39], and
which we need to apply Corollary 1.10:

Lemma 3.25. Let PN be the law of a solution to the SDE 3.30 with initial condition
X0 having a distribution f0µN that satisfies EntµN (f0) ≤ CN . Then

lim
`−→+∞

lim
N−→+∞

1

N
logPN

(
sup

0≤t≤T

1

N

∑
|Xi

t | ≥ `

)
= −∞

and for any ε > 0 and any smooth function on the torus J , we have

lim
δ−→0

lim
N−→+∞

1

N
logPN

(
sup

0≤s≤t≤T,|s−t|≤δ

∣∣∣∣ 1

N

∑
J(i/N)(Xi

t −Xi
s)

∣∣∣∣ ≥ ε
)

= −∞.

The proof of these estimates is exactly the same as for the gradient case studied in
[10]. Once more, the use of a variable function a(xi, xi+1) does not make a difference
as long as it is bounded.
Lemmas 3.15 and 3.16 remain valid, so that, to prove Theorem 3.22, we only have to
study the behavior of the slopes.

Lemma 3.26.

lim inf
N

1

N

∫ T

0
|ν̇t|2A−1dt ≥

∫ T

0
||∂tρ||2H−1(â)dt.

Proof. Let J : [0, T ] × T −→ R be a smooth function, and F : R2k+1 −→ R be a
smooth, bounded function. Applying Lemma 3.11 with V (t, x) =

∑
J(t, i/N)xi +
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1
N J
′(t, i/N)F (xi−k, .., xi+k), we get

1

N

∫ T

0
|ν̇t|2A−1dt ≥ 2

1

N

∫
V (T, x)νT (dx)− 2

1

N

∫
V (0, x)ν0(dx)

− 2
1

N

∫ T

0

∫
∂V

∂t
(x)νt(dx)dt

− 1

N

∫ T

0

∫
〈A(x)∇V (t, x),∇V (t, x)〉νt(dx)dt. (3.41)

We have

1

N

∫
V (T, x)νT (dx) =

1

N

∫
J(T, i/N)xiνT (dx) +

1

N2

∫
J ′(T, i/N)F (xi−k, .., xi+k)νT (dx)

=
1

N

∫
J(T, i/N)xiνT (dx) +O

(
1

N

)
−→

∫
J(T, θ)ρ(T, θ)dθ. (3.42)

In the same way,

1

N

∫
V (0, x)ν0(dx) −→

∫
J(0, θ)ρ(0, θ)dθ (3.43)

and
1

N

∫ T

0

∫
∂V

∂t
(x)νt(dx)dt −→

∫ T

0

∫
T

∂J

∂t
(t, θ)ρ(t, θ)dθdt. (3.44)

For the last term, we have

1

N

∫ T

0

∫
〈A(x)∇V (t, x),∇V (t, x)〉νt(dx)dt

=
1

N

∫ T

0

∫ ∑
i

N2a(xi, xi+1)

(
J(t, (i+ 1)/N)− J(t, i/N)

+
1

N

i+k∑
j=i−k

∂

∂xi+1
F (xj−k, .., xj+k)−

∂

∂xi
F (xj−k, .., xj+k)

2

νt(dx)dt

=
1

N

∫ T

0

∫ ∑
i

a(xi, xi+1)J ′
(
t,
k

N

)2

×

1−
(

∂

∂xi+1
− ∂

∂xi

) i+k∑
j=i−k

F (xj−k, .., xj+k) +O

(
k

N

)2

νt(dx)dt

−→
∫ T

0

∫
T
aF (ρ(t, θ))

(
∂J

∂θ

)2

dθdt. (3.45)

We combine these convergence estimates, and then optimize in F and J to get the
desired result.
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Lemma 3.27. For a flow of marginals νN,t that weakly converges to ρ, and such that
1
N JN ((νN,t)t) is bounded, we have

lim inf
N

1

N

∫ T

0

∫
〈A(∇νt + νt∇H), (∇νt + νt∇H)〉

νt
dt ≥

∫ T

0

∫
T
â(ρ(t, θ))(∂θϕ

′(ρ))2dθdt.

Proof. Let J(t, θ) be a smooth function, F : R2k+1 → R a smooth function and let

ξ(x) =
∑
F (xi−k, .., xi+k). We define ~JN (t, x) the element of RN given by ~JN (t, x)i :=

i−1∑
j=1

J ′(t, j/N) + ∂
∂xi

[
1
N

N∑
j=1

J ′(t, j/N)F (xj−k, .., xj+k)

]
. We have

1

N

∫ T

0

∫
〈A(∇νt + νt∇H), (∇νt + νt∇H)〉

νt
dt

≥ 2

N

∫ T

0

∫
〈A(∇νt + νt∇H), ~J〉dt− 1

N

∫ T

0

∫
〈A~J, ~J〉νt(dx)dt

= 2

∫ T

0

∫ ∑
J ′(t, i/N)Wi,i+1(x)νt(dx)dt

− 2

∫ T

0

∫ ∑ J ′(t, i/N)

N2
(LF )(xi−k, .., xi+k)νt(dx)dt

−
∫ T

0

∫ ∑
a(xi, xi+1)J ′(t, i/N)2(1− ∂ξ

∂xi+1
+

∂ξ

∂xi
)2νt(dx)dt+ o(1)

(3.46)

We then just have to use Corollary 3.24 and optimize in F to obtain

lim inf
1

N

∫ T

0

∫
〈A(∇νt + νt∇H), (∇νt + νt∇H)〉

νt
dt

≥ 2

∫ T

0

∫
T
ϕ′(ρ(t, θ))J ′(t, θ)dθdt−

∫ T

0

∫
T
â(ρ)J(t, θ)2dθdt.

Taking the supremum over all smooth functions J then yields our Lemma.
For the Gamma-convergence upper bound, the method we use is pretty much the
same as the proof of the LDP lower bound in [35], so we only give a rough sketch. We
fix a smooth profile ρ, for which there exists a continuous function h : [0, T ]×T −→ R
such that

∂ρ

∂t
=

∂

∂θ

(
â(ρ)

(
∂

∂θ
ϕ′(ρ) + h

))
. (3.47)

We consider an evolution given by the generator

L̃Nf := LNf+N

N∑
i=1

h(t, i/N)a(xi, xi+1)

(
1 +

∂

∂xi+1
ξ − ∂

∂xi
ξ

)(
∂

∂xi+1
f − ∂

∂xi
f

)
.

and initial condition the local Gibbs state associated to ρ(0, ·). It is shown in Section
3 of [35] that the solutions converge to the deterministic profile ρ. We write fN,F the
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law of the solution. We have

1

N
JN (fN ) =

1

2N

∫ T

0

∫
a(xi, xi+1)h(t, i/N)2

(
1 +

∂

∂xi+1
ξ − ∂

∂xi
ξ

)2

fN (dx)dt

−→ 1

2

∫ T

0

∫
T
aF (ρ)

(
∂h

∂θ

)2

dθdt (3.48)

If, instead of using a fixed function F , we use a sequence (FN ) such that aFN (ρ)
uniformly converges to â(ρ) on compact sets (which is possible, see Proposition 3.21),
we obtain the upper bound

lim sup
1

N
JN (fN,FN ) ≤ 1

2

∫ T

0

∫
T
â(ρ)

(
∂h

∂θ

)2

dθdt

which, by representation (3.47), is the one we needed to prove the upper bound in
the Gamma convergence.
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