Spectra of large diluted but bushy random graphs

Laurent Ménard Joint work with Nathanaël Enriquez Modal'X Université Paris Ouest

Erdős-Rényi random graphs

- vertex set $\{1, \dots n\}$
- vertices linked by an edge independently with probability \boldsymbol{p}
- G(n,p)

Erdős-Rényi random graphs

- vertex set $\{1, \dots n\}$
- vertices linked by an edge independently with probability p
 - symmetric

Adjacency matrix A

- if $i \neq j$, $P(A_{i,j} = 1) = 1 P(A_{i,j} = 0) = p$
 - for every i, $A_{i,i} = 0$

Erdős-Rényi random graphs

- vertex set $\{1, \ldots n\}$
- G(n,p)• vertices linked by an edge independently with probability p
 - symmetric

- Adjacency matrix A if $i \neq j$, $P(A_{i,j} = 1) = 1 P(A_{i,j} = 0) = p$
 - for every i, $A_{i,i} = 0$

What does the spectrum of A look like ?

- if $np \rightarrow 0$, single atom mass at 0
- if $np \to \infty$, semi-circle law
- if $np \rightarrow c > 0$, not much is known...

$$c = 0, 5$$

c = 0, 5 (zoomed in)

$$c = 1$$

c = 1 (zoomed in)

$$c = 1, 5$$

c = 1, 5 (zoomed in)

$$c = 2$$

c = 2 (zoomed in)

$$c = 2, 5$$

c = 2, 5 (zoomed in)

$$c = 2, 8$$

c = 2, 8 (zoomed in)

$$c = 3$$

c = 3 (zoomed in)

$$c = 4$$

$$c = 5$$

$$c = 10$$

$$c = 20$$

 $\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_{\lambda} : \text{ empirical spectral distribution of } G(n, c/n)$

 $\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_{\lambda} : \text{ empirical spectral distribution of } G(n, c/n)$

Fact : as $n \to \infty$, μ_n^c converges weakly to a probability measure μ^c

 $\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_{\lambda} : \text{ empirical spectral distribution of } G(n, c/n)$

Fact : as $n \to \infty$, μ_n^c converges weakly to a probability measure μ^c

Known properties of μ^c :

- if $c \to \infty$, μ^c converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms

 $\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_{\lambda} : \text{ empirical spectral distribution of } G(n, c/n)$

Fact : as $n \to \infty$, μ_n^c converges weakly to a probability measure μ^c

Known properties of μ^c :

- if $c \to \infty, \ \mu^c$ converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- $\mu^{c}(\{0\})$ known explicitly [Bordenave, Lelarge, Salez 2011]

 $\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_{\lambda} : \text{ empirical spectral distribution of } G(n, c/n)$

Fact : as $n \to \infty$, μ_n^c converges weakly to a probability measure μ^c

Known properties of μ^c :

- if $c \to \infty$, μ^c converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- $\mu^{c}(\{0\})$ known explicitly [Bordenave, Lelarge, Salez 2011]
- μ^c is not purely atomic *iif* c > 1 [Bordenave, Sen, Virág 2013]

Asymptotic expansion of the spectrum

Asymptotic expansion of the spectrum

If μ is a (signed) mesure and $\int |x|^k |d\mu(x)| < \infty$, denote $m_k(\mu) = \int x^k d\mu(x)$

Asymptotic expansion of the spectrum

If μ is a (signed) mesure and $\int |x|^k |d\mu(x)| < \infty$, denote $m_k(\mu) = \int x^k d\mu(x)$

Theorem: For every $k \ge 0$ and as $c \to \infty$

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + o\left(\frac{1}{c}\right)$$

where σ is the semi-circle law having density $\frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{|x|<2}$ and $\sigma^{\{1\}}$ is a measure with total mass 0 and density

$$\frac{1}{2\pi} \frac{x^4 - 4x^2 + 2}{\sqrt{4 - x^2}} \,\mathbf{1}_{|x| < 2}$$

Asymptotic expansion of the spectrum – numerical simulations

100 matrices of size 10000 with c = 20

Asymptotic expansion of the spectrum – numerical simulations

100 matrices of size 10000 with c = 20

Proposition: For every $k \ge 0$ we have the following asymtotic expansion in c:

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

where the numbers d_k are **NOT** the moments of a measure!

Proposition: For every $k \ge 0$ we have the following asymtotic expansion in c:

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

where the numbers d_k are **NOT** the moments of a measure!

The asymptotic expansion must take into account the fact that

$$\mu^{c}\left(\mathbb{R}\setminus\left[-2;2\right]\right)=\mathcal{O}\left(\frac{1}{c^{2}}\right).$$

Proposition: For every $k \ge 0$ we have the following asymtotic expansion in c:

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

where the numbers d_k are **NOT** the moments of a measure!

The asymptotic expansion must take into account the fact that

$$\mu^{c}\left(\mathbb{R}\setminus\left[-2;2\right]\right)=\mathcal{O}\left(\frac{1}{c^{2}}\right).$$

Dilation operator Λ_{α} for measures defined by $\Lambda_{\alpha}(\mu)(A) = \mu(A/\alpha)$ for a measure μ and a Borel set A.

Proposition: For every $k \ge 0$ we have the following asymtotic expansion in c:

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

where the numbers d_k are **NOT** the moments of a measure!

The asymptotic expansion must take into account the fact that

$$\mu^{c}\left(\mathbb{R}\setminus\left[-2;2\right]\right)=\mathcal{O}\left(\frac{1}{c^{2}}\right).$$

Dilation operator Λ_{α} for measures defined by $\Lambda_{\alpha}(\mu)(A) = \mu(A/\alpha)$ for a measure μ and a Borel set A.

For example, $\Lambda_{\alpha}(\sigma)$ is supported on $[-2\alpha; 2\alpha]$.

Theorem: For every
$$k \ge 0$$
 and as $c \to \infty$
 $m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} + \frac{1}{c^2} \hat{\sigma}^{\{2\}} \right) \right) + o\left(\frac{1}{c^2}\right)$
where $\hat{\sigma}^{\{1\}}$ is a measure with null total mass and density
 $-\frac{x^4 - 5x^2 + 4}{2\pi\sqrt{4 - x^2}} \mathbf{1}_{|x| < 2}$
and where $\hat{\sigma}^{\{2\}}$ is a measure with null total mass and density
 $-\frac{2x^8 - 17x^6 + 46x^4 - \frac{325}{8}x^2 + \frac{21}{4}}{\pi\sqrt{4 - x^2}} \mathbf{1}_{|x| < 2}$.

Second order – numerical simulations

100 matrices of size 10000 with $c=20\,$

Second order – numerical simulations

100 matrices of size 10000 with c=20

Histogram of $c^2 \left(\mu_n^c - \Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} \right) \right)$ Density of $\Lambda_{1+\frac{1}{2c}} \left(\hat{\sigma}^{\{2\}} \right)$

Edge of the Spectrum

$$m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} + \frac{1}{c^2} \hat{\sigma}^{\{2\}} \right) \right) + o\left(\frac{1}{c^2}\right)$$

The measure on the right hand side is supported on [-2 - 1/c; 2 + 1/c].

Edge of the Spectrum

$$m_k(\mu^c) = m_k\left(\Lambda_{1+\frac{1}{2c}}\left(\sigma + \frac{1}{c}\hat{\sigma}^{\{1\}} + \frac{1}{c^2}\hat{\sigma}^{\{2\}}\right)\right) + o\left(\frac{1}{c^2}\right)$$

The measure on the right hand side is supported on [-2 - 1/c; 2 + 1/c].

This suggests that for
$$\varepsilon > 0$$
, as $c \to \infty$,

$$\mu^{c}\left(\left]-\infty; -2 - \frac{1+\varepsilon}{c}\right] \cup \left[2 + \frac{1+\varepsilon}{c}; +\infty\right[\right) = o\left(\frac{1}{c^{2}}\right).$$

Edge of the Spectrum

$$m_k(\mu^c) = m_k\left(\Lambda_{1+\frac{1}{2c}}\left(\sigma + \frac{1}{c}\hat{\sigma}^{\{1\}} + \frac{1}{c^2}\hat{\sigma}^{\{2\}}\right)\right) + o\left(\frac{1}{c^2}\right)$$

The measure on the right hand side is supported on [-2 - 1/c; 2 + 1/c].

This suggests that for
$$\varepsilon > 0$$
, as $c \to \infty$,

$$\mu^{c}\left(\left[-\infty; -2 - \frac{1+\varepsilon}{c}\right] \cup \left[2 + \frac{1+\varepsilon}{c}; +\infty\right]\right) = o\left(\frac{1}{c^{2}}\right).$$