Spectra of large diluted but bushy random graphs

Laurent Ménard
Joint work with Nathanaël Enriquez
Modal'X Université Paris Ouest

Erdős-Rényi random graphs

- vertex set $\{1, \ldots n\}$
$G(n, p)$
- vertices linked by an edge independently with probability p

Erdős-Rényi random graphs

- vertex set $\{1, \ldots n\}$
$G(n, p) \quad$ - vertices linked by an edge independently with probability p
- symmetric

Adjacency matrix $A \bullet$ if $i \neq j, P\left(A_{i, j}=1\right)=1-P\left(A_{i, j}=0\right)=p$

- for every $i, A_{i, i}=0$

Erdős-Rényi random graphs

- vertex set $\{1, \ldots n\}$
$G(n, p) \quad$ - vertices linked by an edge independently with probability p
- symmetric

Adjacency matrix $A \bullet$ if $i \neq j, P\left(A_{i, j}=1\right)=1-P\left(A_{i, j}=0\right)=p$

- for every $i, A_{i, i}=0$

What does the spectrum of A look like ?

- if $n p \rightarrow 0$, single atom mass at 0
- if $n p \rightarrow \infty$, semi circle law
- if $n p \rightarrow c>0$, not much is known...

Numerical simulations on diluted graphs with 5000 vertices

$$
c=0,5
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=0,5 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=1
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=1 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=1,5
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=1,5 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2,5
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2,5 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2,8
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=2,8 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=3
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=3 \text { (zoomed in) }
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=4
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=5
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=10
$$

Numerical simulations on diluted graphs with 5000 vertices

$$
c=20
$$

État de l'art

$\mu_{n}^{c}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(c^{-1 / 2} A\right)} \delta_{\lambda}:$ empirical spectral distribution of $G(n, c / n)$

État de l'art

$\mu_{n}^{c}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(c^{-1 / 2} A\right)} \delta_{\lambda}:$ empirical spectral distribution of $G(n, c / n)$

Fact: as $n \rightarrow \infty, \mu_{n}^{c}$ converges weakly to a probability measure μ^{c}

État de l'art

$\mu_{n}^{c}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(c^{-1 / 2} A\right)} \delta_{\lambda}:$ empirical spectral distribution of $G(n, c / n)$

Fact: as $n \rightarrow \infty, \mu_{n}^{c}$ converges weakly to a probability measure μ^{c}

Known properties of μ^{c} :

- if $c \rightarrow \infty, \mu^{c}$ converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms

État de l'art

$\mu_{n}^{c}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(c^{-1 / 2} A\right)} \delta_{\lambda}:$ empirical spectral distribution of $G(n, c / n)$

Fact: as $n \rightarrow \infty, \mu_{n}^{c}$ converges weakly to a probability measure μ^{c}

Known properties of μ^{c} :

- if $c \rightarrow \infty, \mu^{c}$ converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- $\mu^{c}(\{0\})$ known explicitly [Bordenave, Lelarge, Salez 2011]

État de l'art

$\mu_{n}^{c}=\frac{1}{n} \sum_{\lambda \in \operatorname{Sp}\left(c^{-1 / 2} A\right)} \delta_{\lambda}:$ empirical spectral distribution of $G(n, c / n)$

Fact: as $n \rightarrow \infty, \mu_{n}^{c}$ converges weakly to a probability measure μ^{c}

Known properties of μ^{c} :

- if $c \rightarrow \infty, \mu^{c}$ converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- $\mu^{c}(\{0\})$ known explicitly [Bordenave, Lelarge, Salez 2011]
- μ^{c} is not purely atomic iif $c>1$ [Bordenave, Sen, Virág 2013]

Asymptotic expansion of the spectrum

Asymptotic expansion of the spectrum

If μ is a (signed) mesure and $\int|x|^{k}|d \mu(x)|<\infty$, denote $m_{k}(\mu)=\int x^{k} d \mu(x)$

Asymptotic expansion of the spectrum

If μ is a (signed) mesure and $\int|x|^{k}|d \mu(x)|<\infty$, denote $m_{k}(\mu)=\int x^{k} d \mu(x)$

Theorem: For every $k \geq 0$ and as $c \rightarrow \infty$

$$
m_{k}\left(\mu^{c}\right)=m_{k}(\sigma)+\frac{1}{c} m_{k}\left(\sigma^{\{1\}}\right)+o\left(\frac{1}{c}\right)
$$

where σ is the semi-circle law having density $\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbf{1}_{|x|<2}$ and $\sigma^{\{1\}}$ is a measure with total mass 0 and density

$$
\frac{1}{2 \pi} \frac{x^{4}-4 x^{2}+2}{\sqrt{4-x^{2}}} \mathbf{1}_{|x|<2} .
$$

Asymptotic expansion of the spectrum - numerical simulations

100 matrices of size 10000 with $c=20$

Asymptotic expansion of the spectrum - numerical simulations

100 matrices of size 10000 with $c=20$

Asymptotic expansion of the spectrum: second order (I)

Proposition: For every $k \geqslant 0$ we have the following asymtotic expansion in c :

$$
m_{k}\left(\mu^{c}\right)=m_{k}(\sigma)+\frac{1}{c} m_{k}\left(\sigma^{\{1\}}\right)+\frac{1}{c^{2}} d_{k}+o\left(\frac{1}{c^{2}}\right)
$$

where the numbers d_{k} are NOT the moments of a measure!

Asymptotic expansion of the spectrum: second order (1)
Proposition: For every $k \geqslant 0$ we have the following asymtotic expansion in c :

$$
m_{k}\left(\mu^{c}\right)=m_{k}(\sigma)+\frac{1}{c} m_{k}\left(\sigma^{\{1\}}\right)+\frac{1}{c^{2}} d_{k}+o\left(\frac{1}{c^{2}}\right)
$$

where the numbers d_{k} are NOT the moments of a measure!
\rightarrow The asymptotic expansion must take into account the fact that

$$
\mu^{c}(\mathbb{R} \backslash[-2 ; 2])=\mathcal{O}\left(\frac{1}{c^{2}}\right) .
$$

Asymptotic expansion of the spectrum: second order (1)
Proposition: For every $k \geqslant 0$ we have the following asymtotic expansion in c :

$$
m_{k}\left(\mu^{c}\right)=m_{k}(\sigma)+\frac{1}{c} m_{k}\left(\sigma^{\{1\}}\right)+\frac{1}{c^{2}} d_{k}+o\left(\frac{1}{c^{2}}\right)
$$

where the numbers d_{k} are NOT the moments of a measure!
\rightarrow The asymptotic expansion must take into account the fact that

$$
\mu^{c}(\mathbb{R} \backslash[-2 ; 2])=\mathcal{O}\left(\frac{1}{c^{2}}\right) .
$$

Dilation operator Λ_{α} for measures defined by $\Lambda_{\alpha}(\mu)(A)=\mu(A / \alpha)$ for a measure μ and a Borel set A.

Asymptotic expansion of the spectrum: second order (I)
Proposition: For every $k \geqslant 0$ we have the following asymtotic expansion in c :

$$
m_{k}\left(\mu^{c}\right)=m_{k}(\sigma)+\frac{1}{c} m_{k}\left(\sigma^{\{1\}}\right)+\frac{1}{c^{2}} d_{k}+o\left(\frac{1}{c^{2}}\right)
$$

where the numbers d_{k} are NOT the moments of a measure!
\rightarrow The asymptotic expansion must take into account the fact that

$$
\mu^{c}(\mathbb{R} \backslash[-2 ; 2])=\mathcal{O}\left(\frac{1}{c^{2}}\right) .
$$

Dilation operator Λ_{α} for measures defined by $\Lambda_{\alpha}(\mu)(A)=\mu(A / \alpha)$ for a measure μ and a Borel set A.
For example, $\Lambda_{\alpha}(\sigma)$ is supported on $[-2 \alpha ; 2 \alpha]$.

Asymptotic expansion of the spectrum: second order (II)

Theorem: For every $k \geq 0$ and as $c \rightarrow \infty$

$$
m_{k}\left(\mu^{c}\right)=m_{k}\left(\Lambda_{1+\frac{1}{2 c}}\left(\sigma+\frac{1}{c} \hat{\sigma}^{\{1\}}+\frac{1}{c^{2}} \hat{\sigma}^{\{2\}}\right)\right)+o\left(\frac{1}{c^{2}}\right)
$$

where $\hat{\sigma}^{\{1\}}$ is a measure with null total mass and density

$$
-\frac{x^{4}-5 x^{2}+4}{2 \pi \sqrt{4-x^{2}}} \mathbf{1}_{|x|<2}
$$

and where $\hat{\sigma}^{\{2\}}$ is a measure with null total mass and density

$$
-\frac{2 x^{8}-17 x^{6}+46 x^{4}-\frac{325}{8} x^{2}+\frac{21}{4}}{\pi \sqrt{4-x^{2}}} \mathbf{1}_{|x|<2} .
$$

Second order - numerical simulations

100 matrices of size 10000 with $c=20$

Second order - numerical simulations

100 matrices of size 10000 with $c=20$

Histogram of $c^{2}\left(\mu_{n}^{c}-\Lambda_{1+\frac{1}{2 c}}\left(\sigma+\frac{1}{c} \hat{\sigma}^{\{1\}}\right)\right) \quad$ Density of $\Lambda_{1+\frac{1}{2 c}}\left(\hat{\sigma}^{\{2\}}\right)$

Edge of the Spectrum

$$
m_{k}\left(\mu^{c}\right)=m_{k}\left(\Lambda_{1+\frac{1}{2 c}}\left(\sigma+\frac{1}{c} \hat{\sigma}^{\{1\}}+\frac{1}{c^{2}} \hat{\sigma}^{\{2\}}\right)\right)+o\left(\frac{1}{c^{2}}\right)
$$

The measure on the right hand side is supported on $[-2-1 / c ; 2+1 / c]$.

Edge of the Spectrum

$$
m_{k}\left(\mu^{c}\right)=m_{k}\left(\Lambda_{1+\frac{1}{2 c}}\left(\sigma+\frac{1}{c} \hat{\sigma}^{\{1\}}+\frac{1}{c^{2}} \hat{\sigma}^{\{2\}}\right)\right)+o\left(\frac{1}{c^{2}}\right)
$$

The measure on the right hand side is supported on $[-2-1 / c ; 2+1 / c]$.
\longrightarrow This suggests that for $\varepsilon>0$, as $c \rightarrow \infty$,

$$
\left.\mu^{c}(]-\infty ;-2-\frac{1+\varepsilon}{c}\right] \cup\left[2+\frac{1+\varepsilon}{c} ;+\infty[)=o\left(\frac{1}{c^{2}}\right) .\right.
$$

Edge of the Spectrum

$$
m_{k}\left(\mu^{c}\right)=m_{k}\left(\Lambda_{1+\frac{1}{2 c}}\left(\sigma+\frac{1}{c} \hat{\sigma}^{\{1\}}+\frac{1}{c^{2}} \hat{\sigma}^{\{2\}}\right)\right)+o\left(\frac{1}{c^{2}}\right)
$$

The measure on the right hand side is supported on $[-2-1 / c ; 2+1 / c]$.
\longrightarrow This suggests that for $\varepsilon>0$, as $c \rightarrow \infty$,

$$
\left.\mu^{c}(]-\infty ;-2-\frac{1+\varepsilon}{c}\right] \cup\left[2+\frac{1+\varepsilon}{c} ;+\infty[)=o\left(\frac{1}{c^{2}}\right) .\right.
$$

Thank you!

