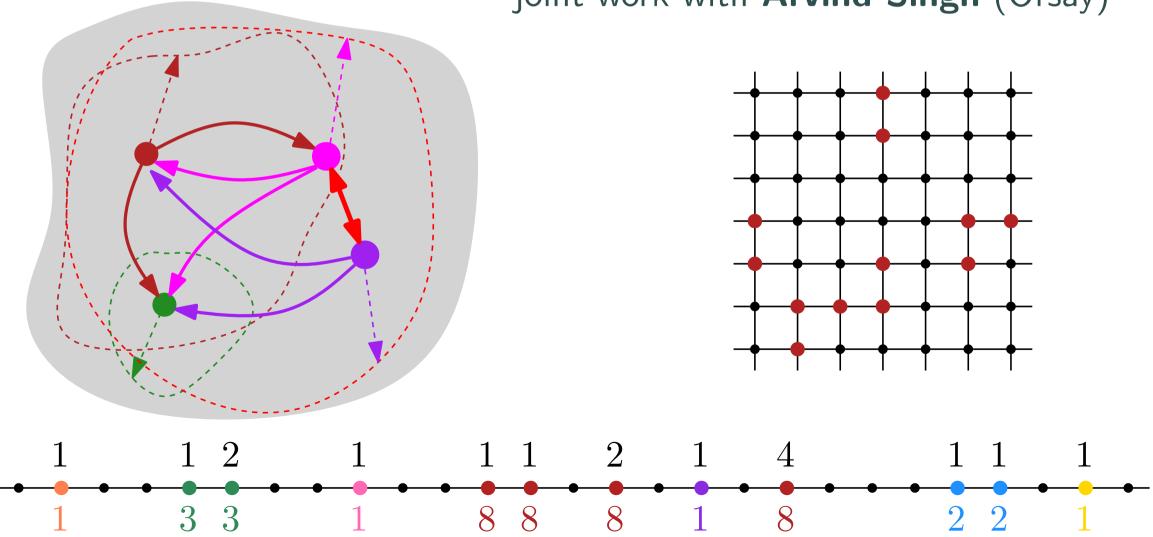
Percolation by cumulative merging and phase transition of the contact process

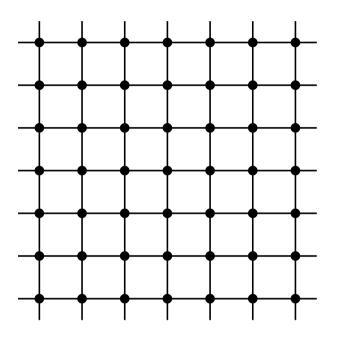
Laurent Ménard (Modal'X)

joint work with **Arvind Singh** (Orsay)



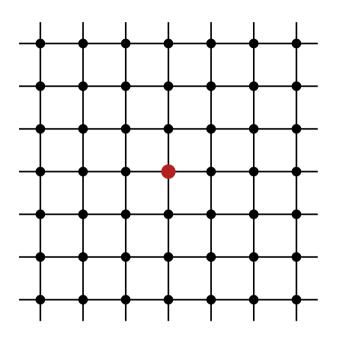
Outline

- 1. The contact process and main result
- 2. Heuristics for the contact process
- 3. Cumulative merging
- 4. Phase transition for cumulative merging percolation
- 5. Link with the contact process



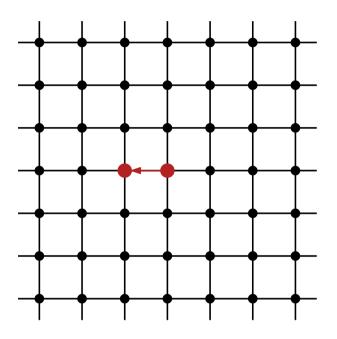
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



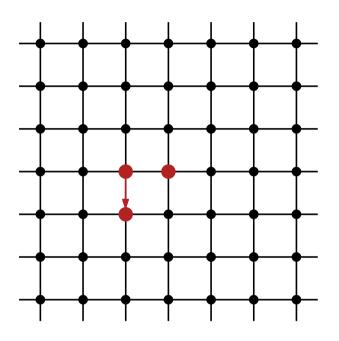
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



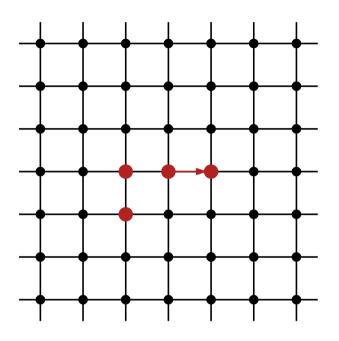
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



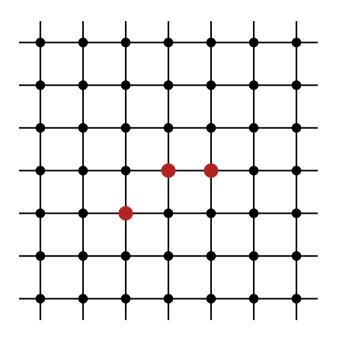
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



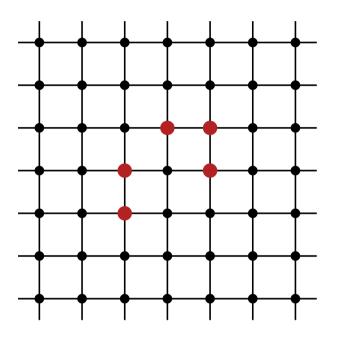
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



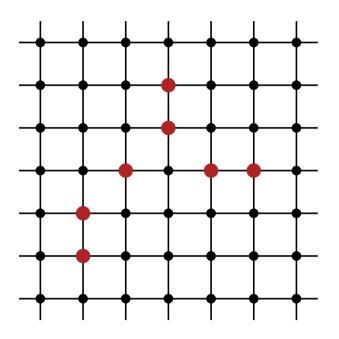
$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

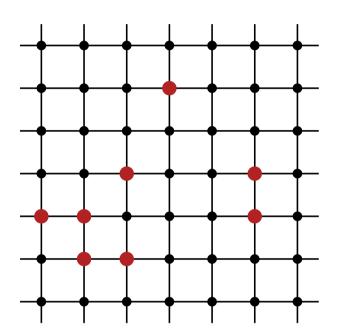
- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.



$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]



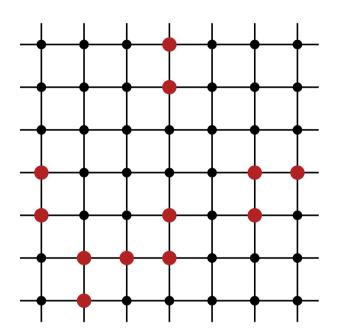
$$G=(V,E)$$
 locally finite graph, $\lambda>0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty]$ such that

- if $\lambda < \lambda_c$, the infection dies out a.s.;
- if $\lambda > \lambda_c$, the infection survives a.s..

Epidemic model on graphs introduced by [Harris 74]



$$G=(V,E)$$
 locally finite graph, $\lambda>0$.

- Vertices are either healthy or infected.
- An infected site recovers at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty[$ such that

- if $\lambda < \lambda_c$, the infection dies out a.s.;
- if $\lambda > \lambda_c$, the infection survives a.s..

Question: condition on G to ensure $\lambda_c > 0$?

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- ullet particles give birth to new particles on neighboring sites at rate λ .

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- ullet particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- ullet particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with **unbounded** degrees: BRW survives locally on large degree star-graphs.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with branching random walk:

- No interaction between particles;
- particles die at rate 1;
- ullet particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with unbounded degrees: BRW survives locally on large degree star-graphs.

- No other method to prove that contact process dies out.
- No example of graph with unbounded degrees for which we know $\lambda_c > 0$.

Main result

Theorem

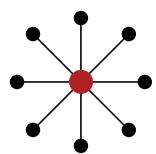
Let G be either a

- (supercritical) random geometric graph
- ullet Delaunay triangulation constructed from a Poisson point process on \mathbb{R}^d with Lebesgue intensity. Then one has $\lambda_c>0$.

Proof:

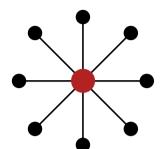
Criterion on G for $\lambda_c > 0$ in terms of a percolation model, Cumulative Merging.

Contact process on a star graph of large degree d:



- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

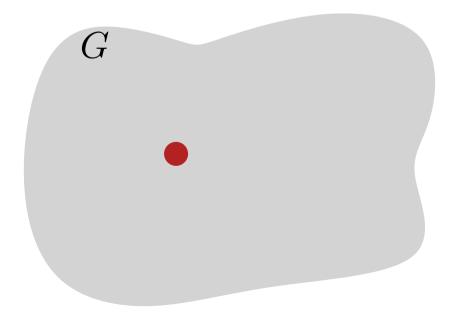
Contact process on a star graph of large degree d:



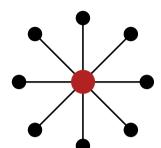
- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex () has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.



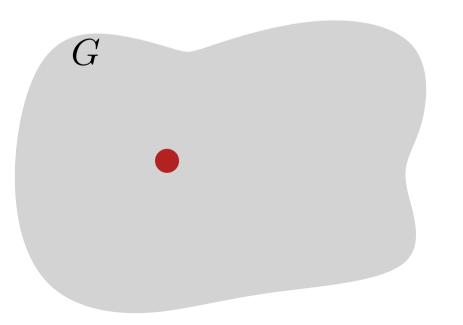
Contact process on a star graph of large degree d:



- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

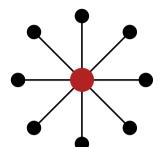
Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex () has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.



- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around • to recover.

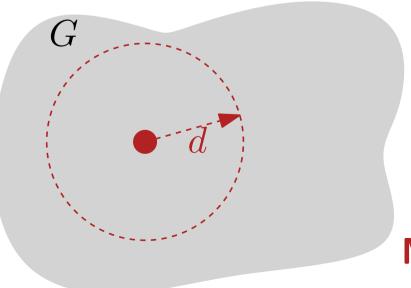
Contact process on a star graph of large degree d:



- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

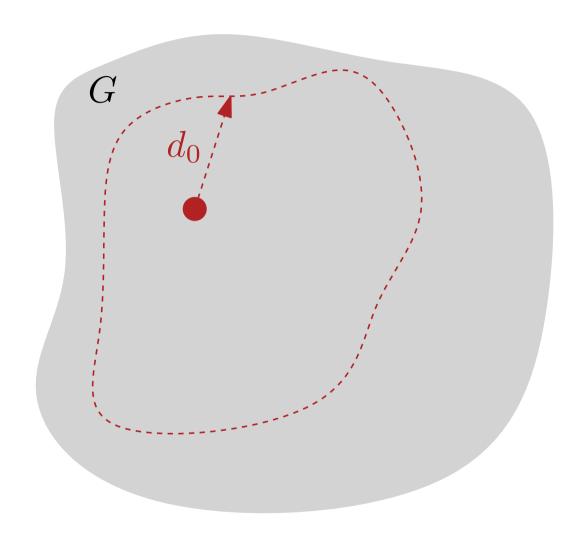
- One vertex () has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.



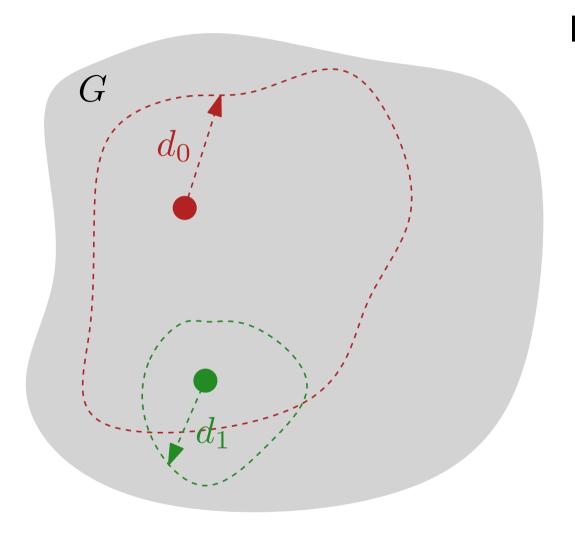
- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around • to recover.

Maximal distance reached by infection is $\approx d_0$.

Same as before for • and start of the infection.



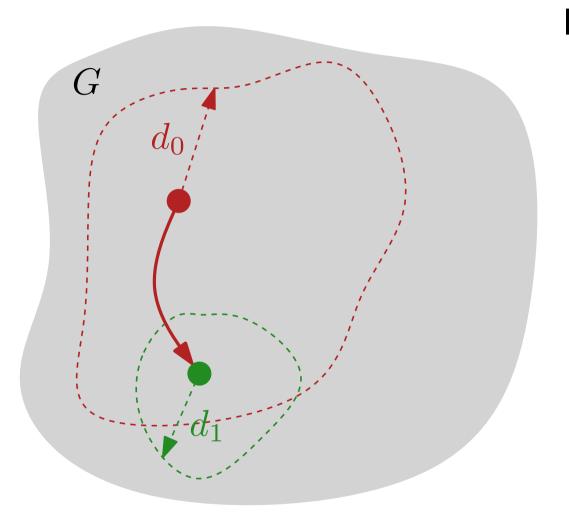
Same as before for • and start of the infection.



In addition suppose:

- At distance < d from , there is another vertex (•) with large degree d_1 s.t. $\lambda > \lambda_c(d_1)$.
- Suppose also $d_1 \ll d_0$.

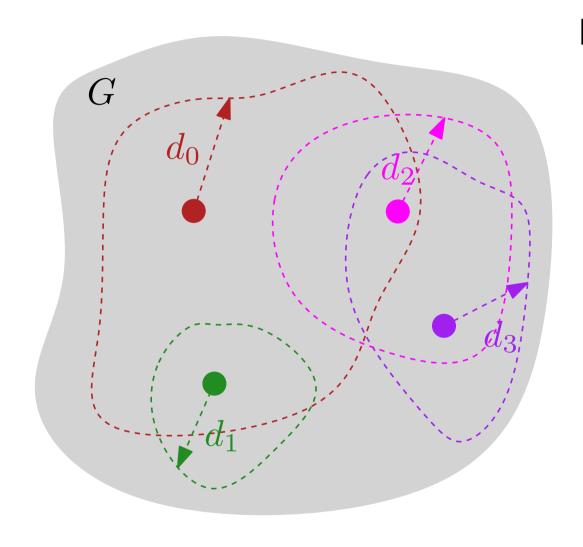
Same as before for • and start of the infection.



In addition suppose:

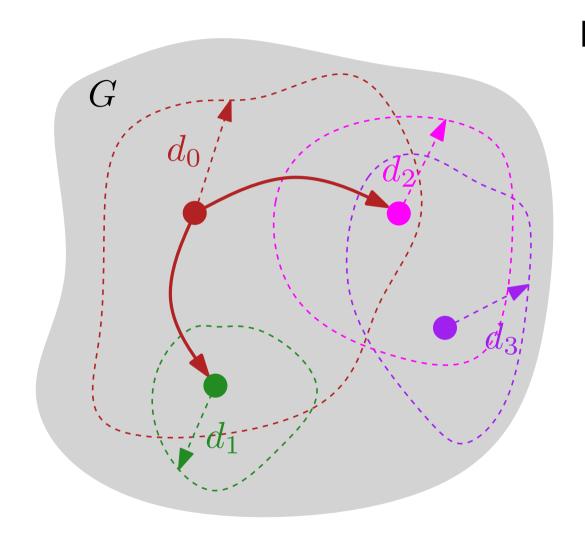
- At distance < d from , there is another vertex (•) with large degree d_1 s.t. $\lambda > \lambda_c(d_1)$.
- Suppose also $d_1 \ll d_0$.
- cannot send infections to and the survival time of the process is $\approx \exp(d_0) + \exp(d_1) \approx \exp(d_0)$.

Same as before for • and start of the infection.



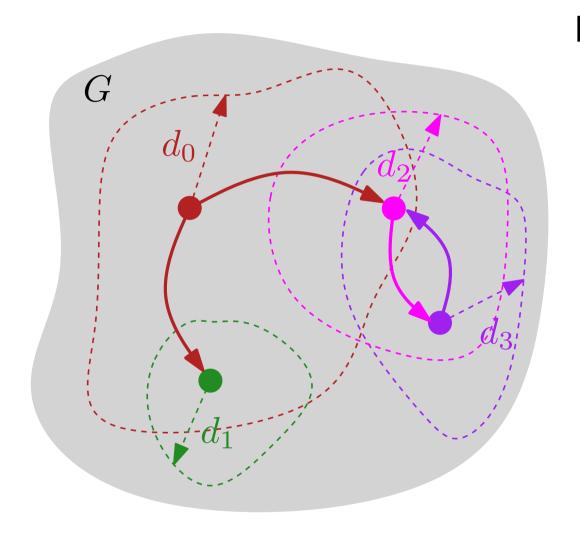
- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- $\operatorname{dist}(\bullet, \bullet) < d_2 \wedge d_3$

Same as before for • and start of the infection.



- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- dist(•,•) $< d_2 \wedge d_3$

Same as before for • and start of the infection.

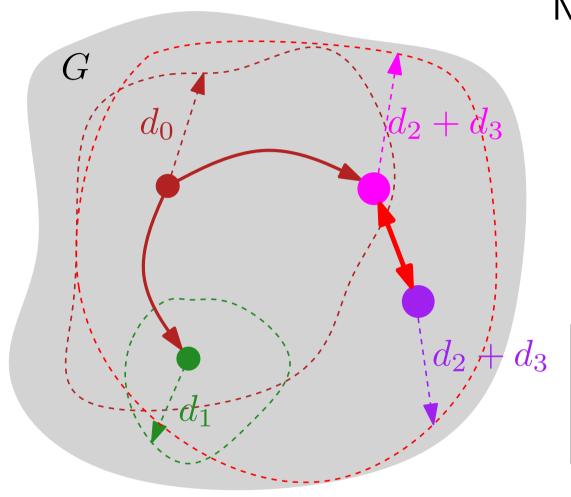


Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- $\operatorname{dist}(\bullet, \bullet) < d_2 \wedge d_3$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for • and start of the infection.

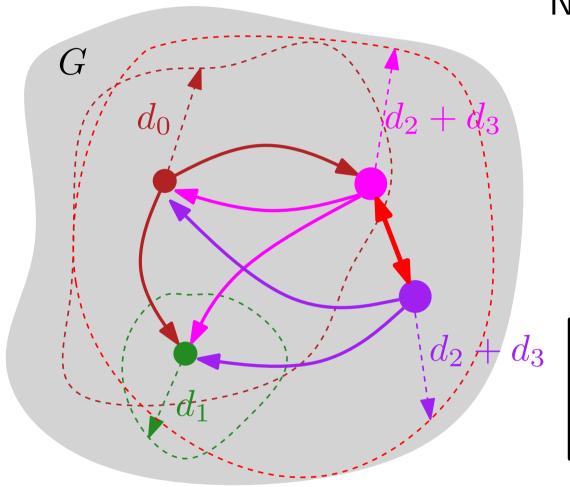


Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- $\operatorname{dist}(\bullet, \bullet) < d_2 \wedge d_3$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for • and start of the infection.

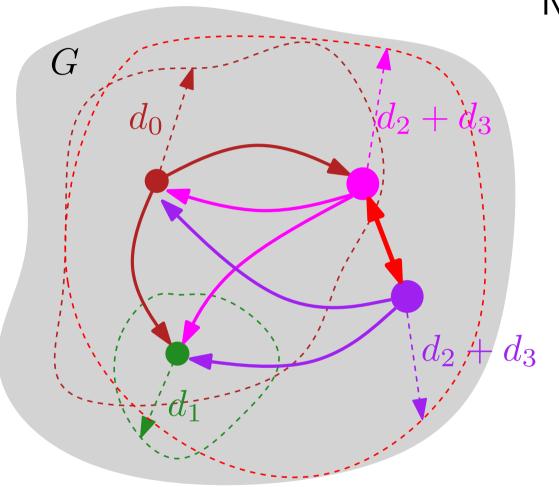


Now suppose:

- another vertex () with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- dist(•,•) $< d_2 \wedge d_3$
- and interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

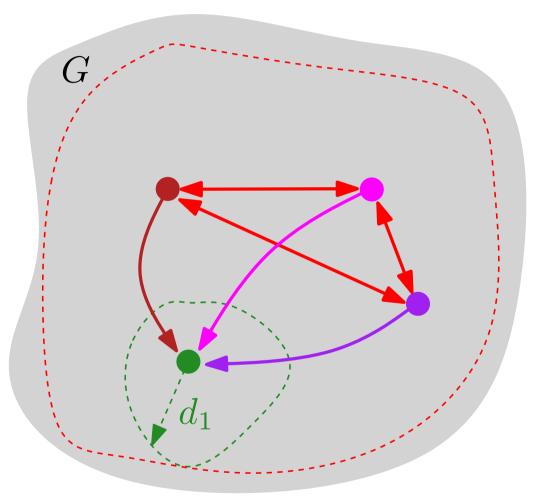
 \longrightarrow Now \bigcirc and \bigcirc can reach \bigcirc or \bigcirc !

Same as before for • and start of the infection.



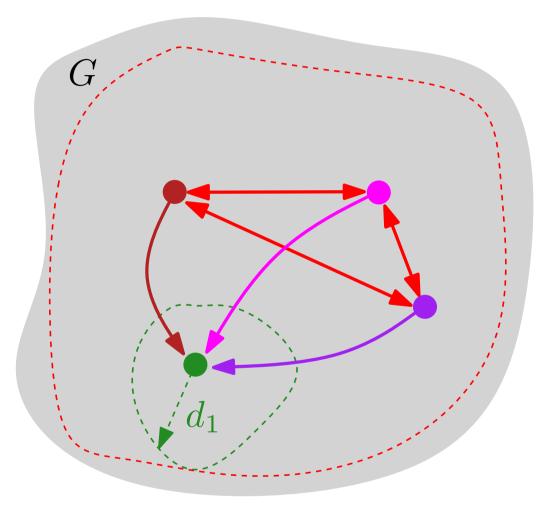
- another vertex () with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- $\operatorname{dist}(\bullet, \bullet) < d_2 \wedge d_3$
- and interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$
- Now and can reach or !
- → , and are all in interaction.

Same as before for • and start of the infection.

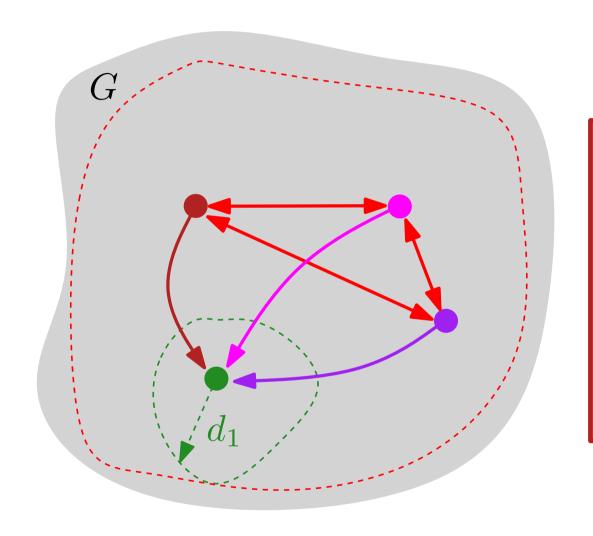


- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- $\operatorname{dist}(\bullet, \bullet) < d_2 \wedge d_3$
- and interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$
- Now and can reach or ●!
- → , and are all in interaction.

Same as before for • and start of the infection.



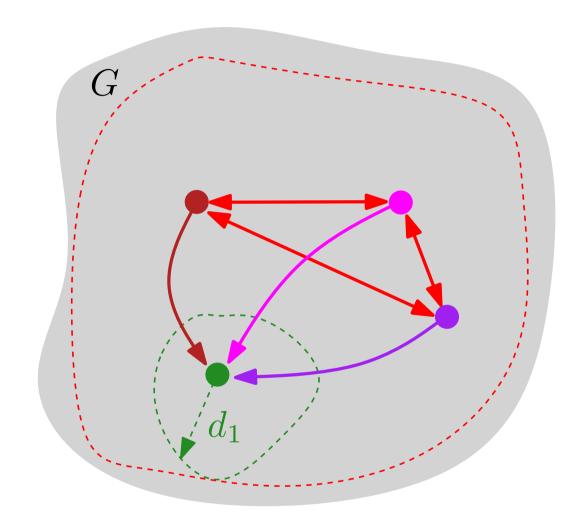
- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one () with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- dist(•,•) $< d_2 \wedge d_3$
- and interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$
- Now and can reach or !
- → o, o and o are all in interaction.
- still cannot reach the other 3 vertices to interact.



Questions:

• Can we recursively group vertices in classes such that for any two different classes A and B we have: $d(A,B) > \min \left\{ deg(A); deg(B) \right\}?$

• Is all this hand waving valid?



Questions:

• Can we recursively group vertices in classes such that for any two different classes A and B we have: $d(A,B) > \min \left\{ deg(A); deg(B) \right\}?$

• Is all this hand waving valid?

Cumulative Merging

Cumulative Merging: admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition

A partition \mathcal{P} of V is admissible iff $\forall A \neq B \in \mathcal{P}$:

$$d_G(A,B) > r(A) \wedge r(B)$$
.

Cumulative Merging: admissible partitions

Consider a weighted graph G = (V, E, r) with $r : V \to [0, \infty]$.

Definition

A partition \mathcal{P} of V is admissible iff $\forall A \neq B \in \mathcal{P}$:

$$d_G(A,B) > r(A) \wedge r(B)$$
.

- ullet $\{V\}$ is admissible.
- ullet If \mathcal{P}_1 and \mathcal{P}_2 are admissible, then

$$\mathcal{P}_1 \cap \mathcal{P}_2 := \{ C_1 \cap C_2 : C_1 \in \mathcal{P}_1, C_2 \in \mathcal{P}_2 \}$$

is admissible.

Cumulative Merging: admissible partitions

Consider a weighted graph G = (V, E, r) with $r : V \to [0, \infty]$.

Definition

A partition \mathcal{P} of V is admissible iff $\forall A \neq B \in \mathcal{P}$:

$$d_G(A,B) > r(A) \wedge r(B).$$

- ullet $\{V\}$ is admissible.
- ullet If \mathcal{P}_1 and \mathcal{P}_2 are admissible, then

$$\mathcal{P}_1 \cap \mathcal{P}_2 := \{ C_1 \cap C_2 : C_1 \in \mathcal{P}_1, C_2 \in \mathcal{P}_2 \}$$

is admissible.

Definition

$$\mathscr{C}(G,r) := \bigcap_{\substack{\text{admissible } \mathcal{P}}} \mathcal{P}$$
 (finest admissible partition)

Merging operators

Definition: Merging operators

For $x \neq y \in V$, $M_{x,y}: \{\text{partitions of } V\} \rightarrow \{\text{partitions of } V\}$ defined by

$$M_{x,y}(\mathcal{P}) := \begin{cases} (\mathcal{P} \setminus \{\mathcal{P}_x, \mathcal{P}_y\}) \cup \{\mathcal{P}_x \cup \mathcal{P}_y\} & \text{if } \mathcal{P}_x \neq \mathcal{P}_y \text{ and} \\ d(x,y) \leq r(\mathcal{P}_x) \wedge r(\mathcal{P}_y), \end{cases}$$

$$\mathcal{P} \qquad \qquad \text{otherwise.}$$

for every partition \mathcal{P} , where \mathcal{P}_x is the cluster of x in \mathcal{P} .

Merging operators

Definition: Merging operators

For $x \neq y \in V$, $M_{x,y}$: {partitions of V} \rightarrow {partitions of V} defined by

defined by
$$M_{x,y}(\mathcal{P}) := \begin{cases} (\mathcal{P} \setminus \{\mathcal{P}_x, \mathcal{P}_y\}) \cup \{\mathcal{P}_x \cup \mathcal{P}_y\} & \text{if } \mathcal{P}_x \neq \mathcal{P}_y \text{ and} \\ d(x,y) \leq r(\mathcal{P}_x) \wedge r(\mathcal{P}_y), \\ \\ \mathcal{P} & \text{otherwise.} \end{cases}$$

for every partition \mathcal{P} , where \mathcal{P}_x is the cluster of x in \mathcal{P} .

Proposition:

The merging operators are monotone: for every $x \neq y \in V$ and every partitions \mathcal{P} and \mathcal{P}'

- ullet \mathcal{P} is finer than $M_{x,y}(\mathcal{P})$;
- If $\mathcal P$ is finer than $\mathcal P'$, then $M_{x,y}(\mathcal P)$ is finer than $M_{x,y}(\mathcal P')$.

Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n, y_n\} = \{x, y\}$$
 for infinitely many n .

Then

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

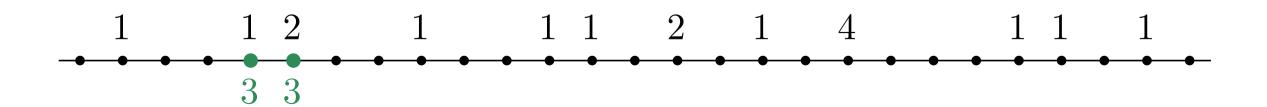
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

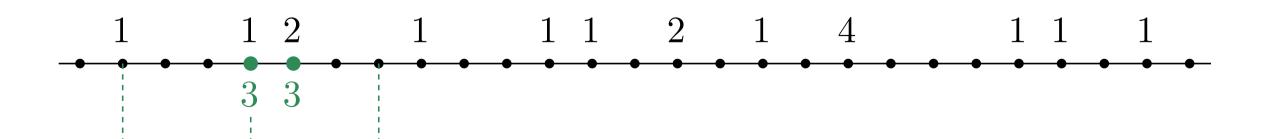
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

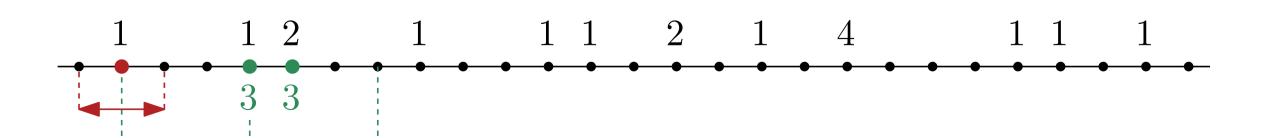
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

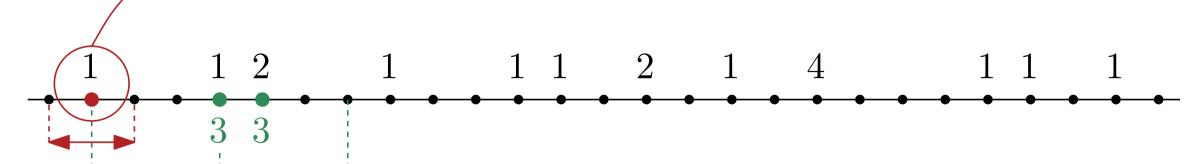
Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

No merging!



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

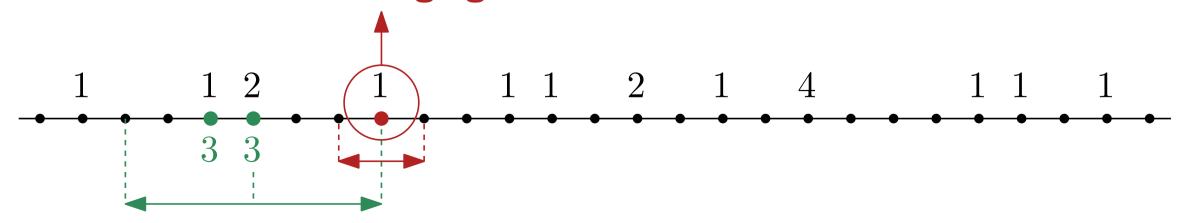
Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Example:

No merging!



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

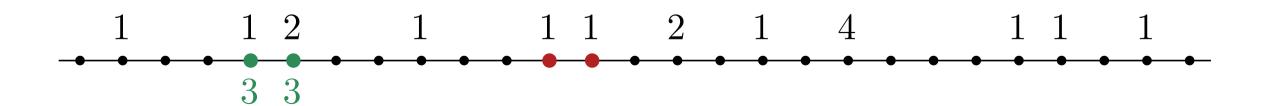
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

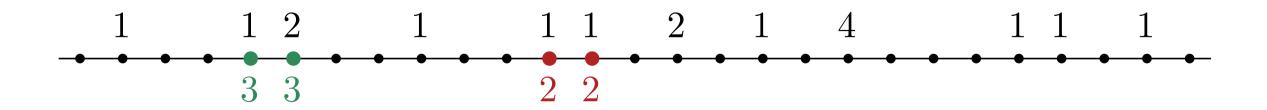
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

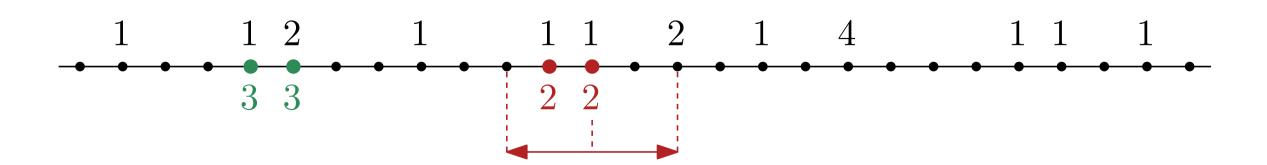
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

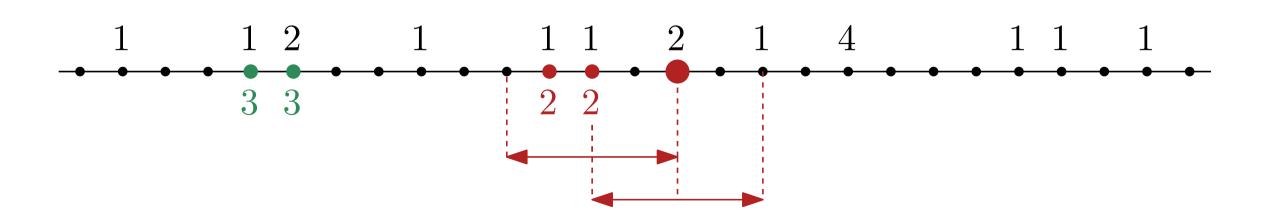
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

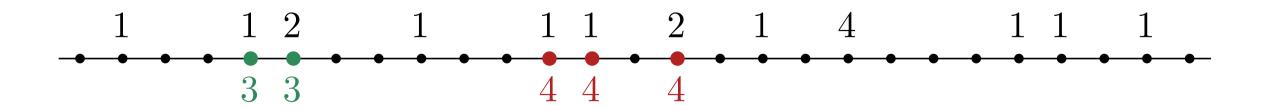
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

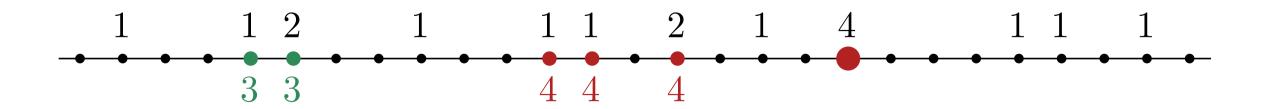
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

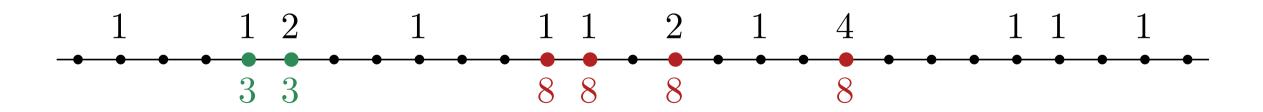
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

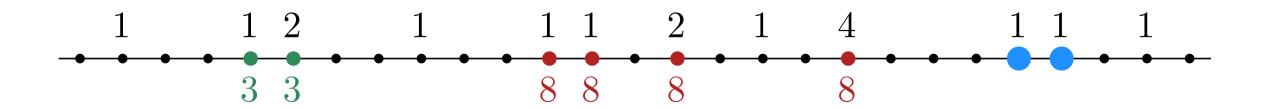
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

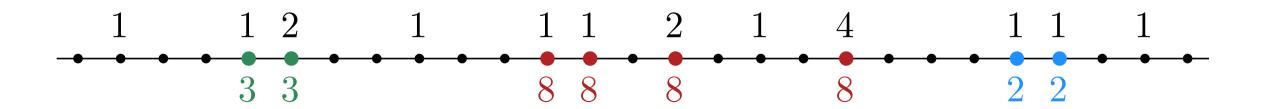
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

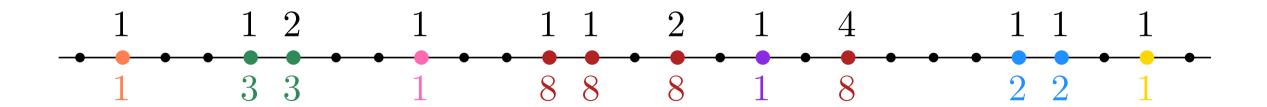
$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.



Proposition:

Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$:

$$\{x_n,y_n\}=\{x,y\}$$
 for infinitely many n .

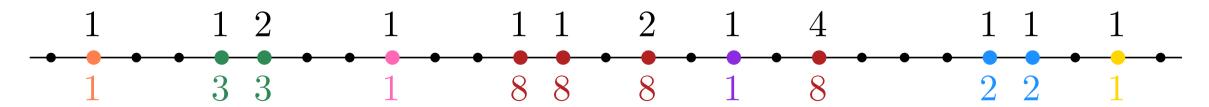
Then

Cumulatively Merged Partition (CMP)

$$\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$$

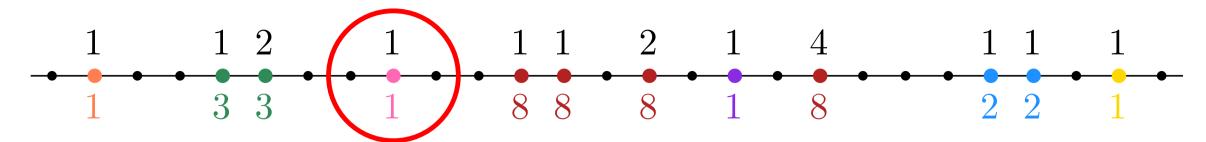
where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Example:



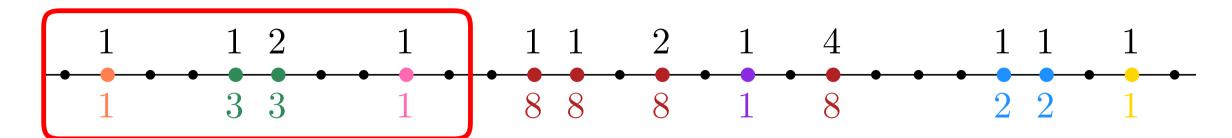
Remark: clusters in \mathscr{C} are not necessarily connected sets!

CMP: stable sets



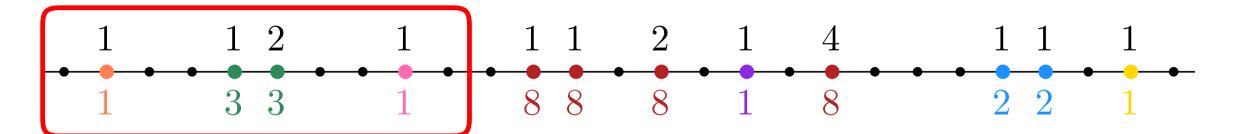
These 3 vertices will never merge with anything!

CMP: stable sets



Vertices inside that box will never merge again.

CMP: stable sets



Vertices inside that box will never merge again.

Definition:

Fix $H \subset V$. We say that H is a **stable set** *iff*:

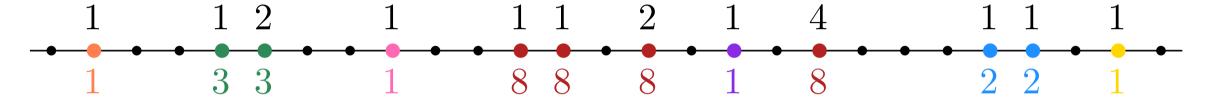
$$\forall C \in \mathscr{C}(H, E_H, r)$$
 one has $B(C, r(C)) \subset H$.

Remark:

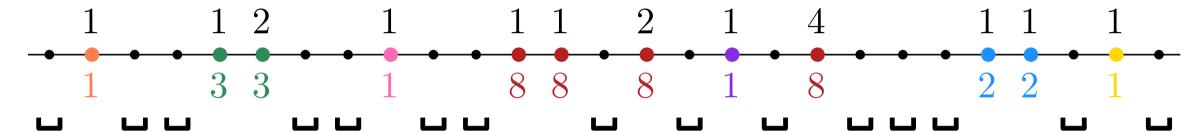
- Unions and intersections of stable sets are stable.
- Being stable is a local porperty.
- ullet If H is stable, then

$$\mathscr{C}(G) = \mathscr{C}(H) \sqcup \mathcal{C}(G \setminus H).$$

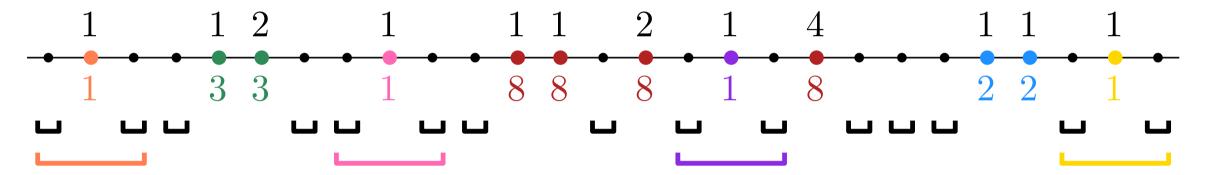
Definition



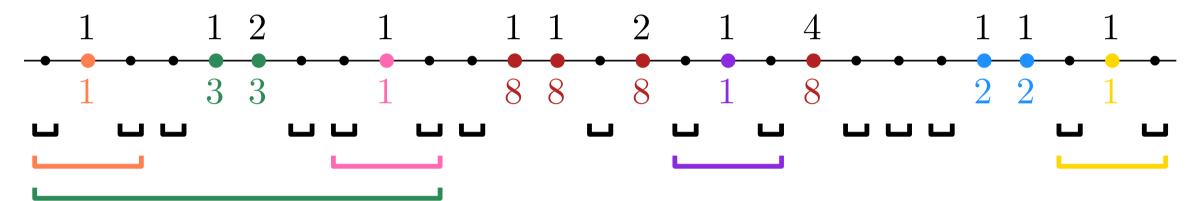
Definition



Definition



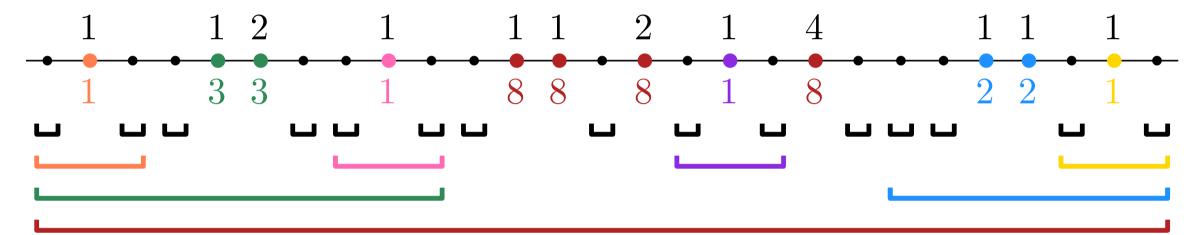
Definition



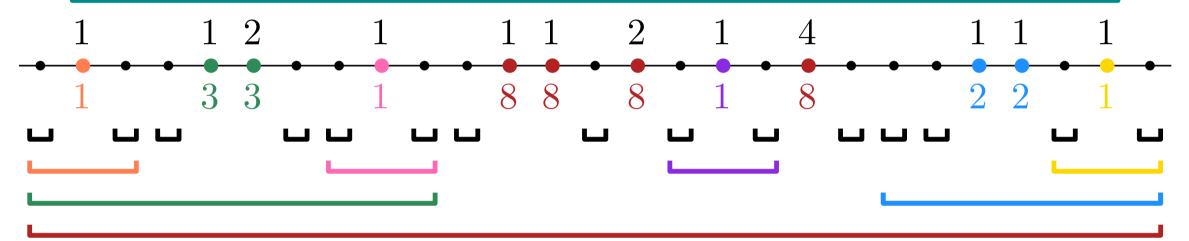
Definition



Definition



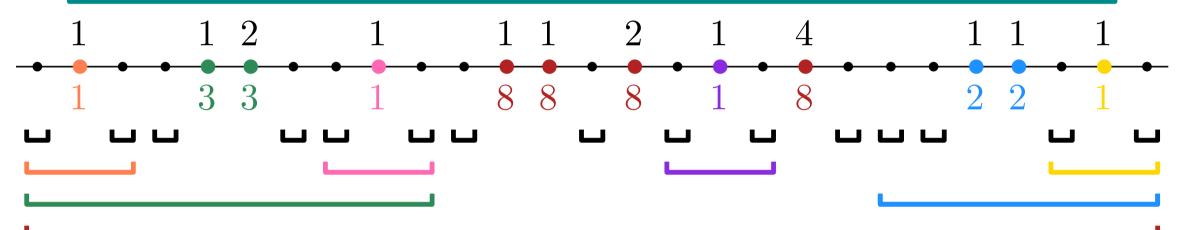
Definition



- Stabilisers are connected sets in G.
- Sabilisers are nested.
- Nice oriented graph structure on clusters and on stabilisers.

Definition

Let $H \subset V$ the **stabiliser** of H, S_H , is the smallest stable set of vertices containing H.



- Stabilisers are connected sets in G.
- Sabilisers are nested.
- Nice oriented graph structure on clusters and on stabilisers.

Theorem

Suppose *G* infinite:

- 1. $\forall x \in V : |\mathscr{C}_x| = \infty \Leftrightarrow |\mathcal{S}_x| = \infty \Leftrightarrow \mathcal{S}_x = V$.
- 2. \mathscr{C} has no infinite cluster *iff* there exists an increasing sequence of stable sets S_n s.t. $\lim \uparrow S_n = V$.

Several natural choices of weights for a locally finite graph (V,E):

Several natural choices of weights for a locally finite graph (V,E):

• $(r(x))_{x \in V}$ i.i.d. Bernoulli r.v. with parameter p.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ i.i.d. Bernoulli r.v. with parameter p.
- $(r(x))_{x\in V}$ i.i.d. r.v. with law $\lambda \times Z$, $\lambda \geq 0$ deterministic.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ i.i.d. Bernoulli r.v. with parameter p.
- $(r(x))_{x\in V}$ i.i.d. r.v. with law $\lambda \times Z$, $\lambda \geq 0$ deterministic.

•
$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ i.i.d. Bernoulli r.v. with parameter p.
- $(r(x))_{x\in V}$ i.i.d. r.v. with law $\lambda \times Z$, $\lambda \geq 0$ deterministic.

•
$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ i.i.d. Bernoulli r.v. with parameter p.
- $(r(x))_{x \in V}$ i.i.d. r.v. with law $\lambda \times Z$, $\lambda \geq 0$ deterministic.

•
$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Theorem:

- 1. CMP on \mathbb{Z}^d : $p_c \in (0,1)$. 2. CMP on \mathbb{Z}^d : if $E\left[Z^\beta\right]$ for $\beta > (4d)^2$, then $\lambda_c \in (0,\infty)$. 3. CMP on d-dimensional Delaunay triangulation or geometric graph: $\Delta_c < \infty$.

Need to change the definition of admissible partition:

$$\mathcal{P}$$
 is admissible iff $\forall A, B \in \mathcal{P}$

$$d_G(A,B) > r(A) \wedge r(B)$$
.

Need to change the definition of admissible partition:

Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$

$$d_G(A,B) > (r(A) \wedge r(B))^{\alpha}$$
.

Need to change the definition of admissible partition:

Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$

$$d_G(A,B) > (r(A) \wedge r(B))^{\alpha}$$
.

Theorem:

Let G = (V, E) be a locally finite graph. Suppose that CMP on G with weights given by:

$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (i.e. $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Need to change the definition of admissible partition:

Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$

$$d_G(A,B) > (r(A) \wedge r(B))^{\alpha}$$
.

Theorem:

Let G = (V, E) be a locally finite graph. Suppose that CMP on G with weights given by:

$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (i.e. $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Thank you!