Random triangulations coupled with an Ising model

Laurent Ménard (Paris Nanterre)

joint work with Marie Albenque and Gilles Schaeffer (CNRS and LIX)

Bordeaux, November 2018

Outline

1. Introduction: 2 DQG and planar maps
2. Local weak topology
3. Adding matter: Ising model
4. Combinatorics of triangulations with spins
5. Local limit of triangulations with spins

2D Quantum Gravity?

"We have to develop an art of handling sums over
[Polyakov 81] random surfaces. These sums replace the old fashioned (and extremely useful) sums over random paths."

2D Quantum Gravity?

"We have to develop an art of handling sums over
[Polyakov 81] random surfaces. These sums replace the old fashioned (and extremely useful) sums over random paths."

Sums over random paths: Feynman path integrals.

Well understood question:

Pick $a, b \in \mathbb{R}^{2}$, what does a random path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ chosen
"uniformly at random" between all paths from a to b look like?

2D Quantum Gravity?

"We have to develop an art of handling sums over
[Polyakov 81] random surfaces. These sums replace the old fashioned (and extremely useful) sums over random paths."

Sums over random paths: Feynman path integrals.

```
Well understood question:
Pick \(a, b \in \mathbb{R}^{2}\), what does a random path \(\gamma:[0,1] \rightarrow \mathbb{R}^{2}\) chosen "uniformly at random" between all paths from \(a\) to \(b\) look like?
```


Brownian motion!

2D Quantum Gravity?

"We have to develop an art of handling sums over
[Polyakov 81] random surfaces. These sums replace the old fashioned (and extremely useful) sums over random paths."

Sums over random paths: Feynman path integrals.

Well understood question:

Pick $a, b \in \mathbb{R}^{2}$, what does a random path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ chosen "uniformly at random" between all paths from a to b look like?

Brownian motion!

Not so well understood question:
What does a random metric on \mathbb{S}^{2} distributed "uniformly" look like?

Brownian surface?

2D Quantum Gravity?

"We have to develop an art of handling sums over
[Polyakov 81] random surfaces. These sums replace the old fashioned (and extremely useful) sums over random paths."

Sums over random paths: Feynman path integrals.

Well understood question:

Pick $a, b \in \mathbb{R}^{2}$, what does a random path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ chosen
"uniformly at random" between all paths from a to b look like?

Brownian motion!

Not so well understood question:
What does a random metric on \mathbb{S}^{2} distributed "uniformly" look like?

Brownian surface?

First idea: try discrete metric spaces (Donsker)

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

\neq

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

faces: connected components of the complement of edges
p-angulation: each face is bounded by p edges

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

faces: connected components of the complement of edges
p-angulation: each face is bounded by p edges

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

faces: connected components of the complement of edges
p-angulation: each face is bounded by p edges

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

faces: connected components of the complement of edges
p-angulation: each face is bounded by p edges
This is a triangulation

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

M Planar Map:

- $V(M):=$ set of vertices of M
- $d_{g r}:=$ graph distance on $V(M)$
- $\left(V(M), d_{g r}\right)$ is a (finite) metric space

Planar Maps as discrete planar metric spaces

Definition:

A planar map is a proper embedding of a finite connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

M Planar Map:

- $V(M):=$ set of vertices of M
- $d_{g r}:=$ graph distance on $V(M)$
- $\left(V(M), d_{g r}\right)$ is a (finite) metric space

Rooted map: mark an oriented edge of the map

"Classical" large random triangulations

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

"Classical" large random triangulations

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

Global :

Rescale distances to keep diameter bounded
[Le Gall 13, Miermont 13]:
converges to the Brownian map.

- Gromov-Hausdorff topology
- Continuous metric space
- Homeomorphic to the sphere
- Hausdorff dimension 4
- Universality

"Classical" large random triangulations

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root

"Classical" large random triangulations

Euler relation in a triangulation: number of edges / vertices / faces linked Take a triangulation of size n uniformly at random. What does it look like if n is large ?

Two points of view: global/local, continuous/discrete

Local :

Don't rescale distances and look at neighborhoods of the root
[Angel - Schramm 03, Krikun 05]:
Converges to the Uniform Infinite Planar Triangulation

- Local topology
- Metric balls of radius R grow like R^{4}
- "Universality" of the exponent 4 .

Local Topology for planar maps

$$
\mathcal{M}_{f}:=\{\text { finite rooted planar maps }\} .
$$

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

Local Topology for planar maps

$\mathcal{M}_{f}:=\{$ finite rooted planar maps $\}$.

Definition:

The local topology on \mathcal{M}_{f} is induced by the distance:

$$
d_{l o c}\left(m, m^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(m)=B_{r}\left(m^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(m)$ is the graph made of all the vertices and edges of m which are within distance r from the root.

- $\left(\mathcal{M}, d_{l o c}\right)$: closure of $\left(\mathcal{M}_{f}, d_{l o c}\right)$. It is a Polish space (complete and separable).
- $\mathcal{M}_{\infty}:=\mathcal{M} \backslash \mathcal{M}_{f}$ set of infinite planar maps.

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Local convergence: simple examples

Root does not matter

Local convergence: simple examples

Root does not matter

Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:

Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:

$n=1000$

Local convergence: more complicated examples

Uniform plane rooted trees with n vertices:

The limit is a probability distribution on infinite trees with one infinite branch.

$$
n=500
$$

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Courtesy of Igor Kortchemski

Courtesy of Timothy Budd

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel - Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.

For example $\mathbb{E}\left[\left|B_{r}\left(\mathbf{T}_{\infty}\right)\right|\right] \sim \frac{2}{7} r^{4}$ [Angel '04, Curien - Le Gall '12]

- Volume of hulls explicit [M. 16]
- "Uniqueness" of geodesic rays and horofunctions [Curien - M. 18]
- Bond and site percolation well understood [Angel, Angel-Curien, M.-Nolin]
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13]

Local convergence of uniform triangulations

Theorem [Angel - Schramm, '03]
As $n \rightarrow \infty$, the uniform distribution on triangulations of size n converges weakly to a probability measure called the Uniform Infinite Planar Triangulation (or UIPT) for the local topology.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel - Schramm, '03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.

For example $\mathbb{E}\left[\left|B_{r}\left(\mathbf{T}_{\infty}\right)\right|\right] \sim \frac{2}{7} r^{4}$ [Angel '04, Curien - Le Gall '12]

- Volume of hulls explicit [M. 16]
- "Uniqueness" of geodesic rays and horofunctions [Curien - M. 18]
- Bond and site percolation well understood [Angel, Angel-Curien, M.-Nolin]
- Simple random Walk is recurrent [Gurel-Gurevich and Nachmias '13] Universality: we expect the same behavior for slightly different models (e.g. quadrangulations, triangulations without loops, ...)

Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:
$G=(V, E)$ finite graph

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\}
$$

Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:
$G=(V, E)$ finite graph

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\} .
$$

Ising model on G : take a random spin configuration with probability

$$
P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v^{\prime}} \mathbf{1}_{\left\{\sigma(v) \neq \sigma\left(v^{\prime}\right)\right\}}}
$$

$\beta>0$: inverse temperature.

Adding matter: Ising model on triangulations

How does Ising model influence the underlying map?

First, Ising model on a finite deterministic graph:
$G=(V, E)$ finite graph

Spin configuration on G :

$$
\sigma: V \rightarrow\{-1,+1\}
$$

Ising model on G: take a random spin configuration with probability

$$
P(\sigma) \propto e^{-\frac{\beta}{2} \sum_{v \sim v^{\prime}} \mathbf{1}_{\left\{\sigma(v) \neq \sigma\left(v^{\prime}\right)\right\}}}
$$

$\beta>0$: inverse temperature.

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$ with $m(\sigma)=$ number of monochromatic edges and $\nu=e^{\beta}$.

Adding matter: Ising model on triangulations

$\mathcal{T}_{n}=\{$ rooted planar triangulations with $3 n$ edges $\}$.
Random triangulation in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?

Adding matter: Ising model on triangulations

$\mathcal{T}_{n}=\{$ rooted planar triangulations with $3 n$ edges $\}$.
Random triangulation in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?
Generating series of Ising-weighted triangulations:

$$
Q(\nu, t)=\sum_{T \in \mathcal{T}_{f}} \sum_{\sigma: V(T) \rightarrow\{-1,+1\}} \nu^{m(T, \sigma)} t^{e(T)}
$$

Adding matter: Ising model on triangulations

$\mathcal{T}_{n}=\{$ rooted planar triangulations with $3 n$ edges $\}$.
Random triangulation in \mathcal{T}_{n} with probability $\propto \nu^{m(T, \sigma)}$?
Generating series of Ising-weighted triangulations:

$$
Q(\nu, t)=\sum_{T \in \mathcal{T}_{f}} \sum_{\sigma: V(T) \rightarrow\{-1,+1\}} \nu^{m(T, \sigma)} t^{e(T)}
$$

Theorem [Bernardi - Bousquet-Mélou 11]

For every ν the series $Q(\nu, t)$ is algebraic, has $\rho_{\nu}>0$ as unique dominant singularity and satisfies

$$
\left[t^{3 n}\right] Q(\nu, t) \underset{n \rightarrow \infty}{\sim} \begin{cases}\kappa \rho_{\nu_{c}}^{-n} n^{-7 / 3} & \text { if } \nu=\nu_{c}:=1+\frac{1}{\sqrt{7}} \\ \kappa \rho_{\nu}^{-n} n^{-5 / 2} & \text { if } \nu \neq \nu_{c} .\end{cases}
$$

This suggests an unusual behavior of the underlying maps for $\nu=\nu_{c}$. See also [Boulatov - Kazakov 1987], [Bousquet-Mélou - Schaeffer 03] and [Bouttier - Di Francesco - Guitter 04].

Adding matter: the model and Watabiki's predictions
Probability measure on triangulations of \mathcal{T}_{n} with a spin configuration:

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Adding matter: the model and Watabiki's predictions

Probability measure on triangulations of \mathcal{T}_{n} with a spin configuration:

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Counting exponent:

coeff [t^{n}] of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge c :
$\alpha=\frac{25-c+\sqrt{(1-c)(25-c)}}{12}$

Hausdorff dimension: [Watabiki 93]

$$
D_{H}=2 \frac{\sqrt{25-c}+\sqrt{49-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

Adding matter: the model and Watabiki's predictions

Probability measure on triangulations of \mathcal{T}_{n} with a spin configuration:

$$
\mathbb{P}_{n}^{\nu}(\{(T, \sigma)\})=\frac{\nu^{m(T, \sigma)}}{\left[t^{3 n}\right] Q(\nu, t)}
$$

Counting exponent:

coeff [t^{n}] of generating series of (decorated) maps $\sim \kappa \rho^{-n} n^{-\alpha}$

Central charge c :
$\alpha=\frac{25-c+\sqrt{(1-c)(25-c)}}{12}$

- $\alpha=5 / 2$ gives $D_{H}=4$
- $\alpha=7 / 3$ gives $D_{H}=\frac{7+\sqrt{97}}{4} \approx 4.21$

Hausdorff dimension: [Watabiki 93]

$$
D_{H}=22 \frac{\sqrt{25-c}+\sqrt{49-c}}{\sqrt{25-c}+\sqrt{1-c}}
$$

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

Local Topology for planar maps : balls

Definition:

The local topology on \mathcal{T}_{f} is induced by the distance:

$$
d_{l o c}\left(T, T^{\prime}\right):=\left(1+\max \left\{r \geq 0: B_{r}(T)=B_{r}\left(T^{\prime}\right)\right\}\right)^{-1}
$$

where $B_{r}(T)$ is the submap (with spins) of T composed by the faces of T with a vertex at distance $<r$ from the root.

- $\left(\mathcal{T}, d_{l o c}\right)$: closure of $\left(\mathcal{T}_{f}, d_{l o c}\right)$. It is a Polish space.
- $\mathcal{T}_{\infty}:=\mathcal{T} \backslash \mathcal{T}_{f}$ set of infinite planar triangulations.

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
A sequence of measures measures $\left(P_{n}\right)$ on \mathcal{T}_{f} converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every $r>0$ and every possible r-ball Δ
$P_{n}\left(\left\{(T, v) \in \mathcal{T}_{f}: B_{r}(T, v)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} P\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
A sequence of measures measures $\left(P_{n}\right)$ on \mathcal{T}_{f} converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every $r>0$ and every possible r-ball Δ
$P_{n}\left(\left\{(T, v) \in \mathcal{T}_{f}: B_{r}(T, v)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} P\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
Problem: not sufficient since the space $\left(\mathcal{T}, d_{\text {loc }}\right)$ is not compact!

Weak convergence for the local topology

Portemanteau theorem + Levy - Prokhorov metric:
A sequence of measures measures $\left(P_{n}\right)$ on \mathcal{T}_{f} converge weakly to a measure P on \mathcal{T}_{∞} if:

1. For every $r>0$ and every possible r-ball Δ
$P_{n}\left(\left\{(T, v) \in \mathcal{T}_{f}: B_{r}(T, v)=\Delta\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} P\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)$.
2. No loss of mass at the limit: Tightness of $\left(P_{n}\right)$, or the measure P defined by the limits in 1 . is a probability measure.

- Vertex degrees are tight (at finite distance from the root)
- $\forall r>0, \quad \sum_{r-\text { balls } \Delta} P\left(\left\{T \in \mathcal{T}_{\infty}: B_{r}(T)=\Delta\right\}\right)=1$.

Local convergence and generating series

Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)

Local convergence and generating series

Need to evaluate, for every possible ball Δ
(here, one boundary to keep it simple)

Simple (rooted) cycle, spins given by a word ω

Local convergence and generating series

Need to evaluate, for every possible ball Δ (here, one boundary to keep it simple)

Simple (rooted) cycle, spins given by a word ω
$\mathbf{Z}_{\omega}(\nu, t):=$ generating series of triangulations with simple boundary ω

Local convergence and generating series

Need to evaluate, for every possible ball Δ
(here, one boundary to keep it simple)

Simple (rooted) cycle, spins given by a word ω
$\mathbf{Z}_{\omega}(\nu, t):=$ generating series of
triangulations with simple boundary ω

Theorem [Albenque - M. - Schaeffer 18+]
For every ω and ν, the series $t^{|\omega|} Z_{\omega}(\nu, t)$ is algebraic, has $\rho_{\nu}=t_{\nu}^{3}$ as unique dominant singularity and satisfies

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}(\nu, t) \underset{n \rightarrow \infty}{\sim} \begin{cases}\kappa_{\omega}\left(\nu_{c}\right) \rho_{\nu_{c}}^{-n} n^{-7 / 3} & \text { if } \nu=\nu_{c}:=1+\frac{1}{\sqrt{7}} \\ \kappa_{\omega}(\nu) \rho_{\nu}^{-n} n^{-5 / 2} & \text { if } \nu \neq \nu_{c}\end{cases}
$$

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu .
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu .
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Tutte's equation (or peeling equation, or loop equation...):

Triangulations with simple boundary

Fix a word ω, with injections from and into triangulations of the sphere:

$$
\left[t^{3 n}\right] t^{|\omega|} Z_{\omega}=\Theta\left(\rho_{\nu}^{-n} n^{-\alpha}\right), \text { with } \alpha=5 / 2 \text { of } 7 / 3 \text { depending on } \nu \text {. }
$$

To get exact asymptotics we need, as series in t^{3},

1. algebraicity,
2. no other dominant singularity than ρ_{ν}.

Tutte's equation (or peeling equation, or loop equation...):

Double induction on $|\omega|$ and number of \ominus 's: enough to prove 1. and 2. for the $t^{p} Z_{\oplus^{p}}$'s

Positive boundary conditions: two catalytic variables

Positive boundary conditions: two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

$$
S(x, y):=\sum_{p, q \geq 1} Z_{\oplus^{p} \ominus^{q}} x^{p} y^{q}
$$

Positive boundary conditions: two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

Positive boundary conditions: two catalytic variables

Peeling equation at interface $\ominus-\oplus$:

$$
\begin{aligned}
& S(x, y):=\sum_{p, q \geq 1} Z_{\oplus^{p} \ominus^{q}} x^{p} y^{q} \\
&=t x y+\frac{t}{x}(S(x, y)-x[x]S(x, y))+\frac{t}{y}(S(x, y)-y[y] S(x, y)) \\
&+\frac{t}{x} S(x, y) A(x)+\frac{t}{y} S(x, y) A(y)
\end{aligned}
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) .
$$

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\begin{aligned}
& \text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) . \\
& I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
\end{aligned}
$$

From two catalytic variables to one: Tutte's invariants

Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\begin{aligned}
& \text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) . \\
& I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
\end{aligned}
$$

2. Work a bit with the help of $R\left(x, Y_{i} / t\right)=0$ to get a second invariant $J(y)$ depending only on $t, Z_{\oplus}(t), y$ and $A(y / t)$.

From two catalytic variables to one: Tutte's invariants
Kernel method: equation for S reads

$$
\begin{gathered}
K(x, y) \cdot S(x, y)=R(x, y) \\
\text { where } \quad K(x, y)=1-\frac{t}{x}-\frac{t}{y}-\frac{t}{x} A(x)-\frac{t}{y} A(y) .
\end{gathered}
$$

1. Find two series Y_{1} and Y_{2} in $\mathbb{Q}(x)[[t]]$ such that $K\left(x, Y_{i} / t\right)=0$.

$$
\begin{aligned}
& \text { It gives } \frac{1}{Y_{1}}\left(A\left(Y_{1} / t\right)+1\right)=\frac{1}{Y_{2}}\left(A\left(Y_{2} / t\right)+1\right) . \\
& I(y):=\frac{1}{y}(A(y / t)+1) \text { is called an invariant. }
\end{aligned}
$$

2. Work a bit with the help of $R\left(x, Y_{i} / t\right)=0$ to get a second invariant $J(y)$ depending only on $t, Z_{\oplus}(t), y$ and $A(y / t)$.
3. Prove that $J(y)=C_{0}(t)+C_{1}(t) I(y)+C_{2}(t) I^{2}(y)$ with C_{i} 's explicit polynomials in $t, Z_{\oplus}(t)$ and $Z_{\oplus^{2}}(t)$.

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$
2 t^{2} \nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y \cdot \operatorname{Pol}\left(\nu, \frac{A(y)}{y}, Z_{\oplus}, Z_{\oplus^{2}}, t, y\right)
$$

[Bousquet-Mélou - Jehanne 06] gives algebraicity and strategy to solve this kind of equation.

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$
2 t^{2} \nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y \cdot \operatorname{Pol}\left(\nu, \frac{A(y)}{y}, Z_{\oplus}, Z_{\oplus^{2}}, t, y\right)
$$

[Bousquet-Mélou - Jehanne 06] gives algebraicity and strategy to solve this kind of equation.

Much easier: [Bernardi - Bousquet Mélou 11] gives us Z_{\oplus} and $Z_{\oplus^{2}}$!

Explicit solution for positive boundary conditions

Equation with one catalytic variable reads:

$$
2 t^{2} \nu(1-\nu)\left(\frac{A(y)}{y}-Z_{\oplus}\right)=y \cdot \operatorname{Pol}\left(\nu, \frac{A(y)}{y}, Z_{\oplus}, Z_{\oplus^{2}}, t, y\right)
$$

[Bousquet-Mélou - Jehanne 06] gives algebraicity and strategy to solve this kind of equation.
Much easier: [Bernardi - Bousquet Mélou 11] gives us Z_{\oplus} and $Z_{\oplus^{2}}$!
Maple: rational (and Lagrangian) parametrization!

$$
\begin{array}{rlrl}
t^{3} & =U \frac{P_{1}(\mu, U)}{4(1-2 U)^{2}(1+\mu)^{3}} & \\
y & =V \frac{P_{2}(\mu, U, V)}{(1-2 U)(1+\mu)^{2}(1-V)^{2}} & & \text { with } \nu=\frac{1+\mu}{1-\mu} \text { and } \\
P_{i}^{\prime} \text { s explicit polynomials. } \\
t^{3} A(t, t y) & =\frac{V P_{3}(\mu, U, V)}{4(1-2 U)^{2}(1+\mu)^{3}(1-V)^{3}} &
\end{array}
$$

Going back to local convergence

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta=\left(\omega_{1}, \ldots, \omega_{k}\right)$:

$$
\begin{aligned}
\mathbb{P}_{n}\left(B_{r}(T, v)=\Delta\right)= & \frac{\nu^{m(\Delta)-m(\partial \Delta)}\left[t^{3 n-e(\Delta)+|\partial \Delta|}\right]\left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3 n}\right] Q(\nu, t)} \\
& \xrightarrow[n \rightarrow \infty]{\rightarrow}\left(\prod_{i=1}^{k} Z_{\omega_{i}}\left(\nu, t_{\nu}\right)\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta)-m(\partial \Delta)} t_{\nu}^{|\Delta|-|\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{\left|\omega_{j}\right|} Z_{\omega_{j}}\left(\nu, t_{\nu}\right)} .
\end{aligned}
$$

Going back to local convergence

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta=\left(\omega_{1}, \ldots, \omega_{k}\right)$:

$$
\begin{aligned}
\mathbb{P}_{n}\left(B_{r}(T, v)=\Delta\right)= & \frac{\nu^{m(\Delta)-m(\partial \Delta)}\left[t^{3 n-e(\Delta)+|\partial \Delta|}\right]\left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3 n}\right] Q(\nu, t)} \\
& \underset{n \rightarrow \infty}{\rightarrow}\left(\prod_{i=1}^{k} Z_{\omega_{i}}\left(\nu, t_{\nu}\right)\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta)-m(\partial \Delta)} t_{\nu}^{|\Delta|-|\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{\left|\omega_{j}\right|} Z_{\omega_{j}}\left(\nu, t_{\nu}\right)}
\end{aligned}
$$

2. Remains to prove tightness.

Going back to local convergence

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta=\left(\omega_{1}, \ldots, \omega_{k}\right)$:

$$
\begin{aligned}
\mathbb{P}_{n}\left(B_{r}(T, v)=\Delta\right)= & \frac{\nu^{m(\Delta)-m(\partial \Delta)}\left[t^{3 n-e(\Delta)+|\partial \Delta|}\right]\left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3 n}\right] Q(\nu, t)} \\
& \underset{n \rightarrow \infty}{\rightarrow}\left(\prod_{i=1}^{k} Z_{\omega_{i}}\left(\nu, t_{\nu}\right)\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta)-m(\partial \Delta)} t_{\nu}^{|\Delta|-|\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{\left|\omega_{j}\right|} Z_{\omega_{j}}\left(\nu, t_{\nu}\right)}
\end{aligned}
$$

2. Remains to prove tightness.

- Maps are uniformly rooted:
tightness of root degree is enough

Going back to local convergence

1. Fix $r \geq 0$ and take Δ a r-ball with boundary spins $\partial \Delta=\left(\omega_{1}, \ldots, \omega_{k}\right)$:

$$
\begin{aligned}
\mathbb{P}_{n}\left(B_{r}(T, v)=\Delta\right) & =\frac{\nu^{m(\Delta)-m(\partial \Delta)}\left[t^{3 n-e(\Delta)+|\partial \Delta|}\right]\left(\prod_{i=1}^{k} Z_{\omega_{i}}(\nu, t)\right)}{\left[t^{3 n}\right] Q(\nu, t)} \\
& \xrightarrow[n \rightarrow \infty]{\rightarrow}\left(\prod_{i=1}^{k} Z_{\omega_{i}}\left(\nu, t_{\nu}\right)\right) \cdot \sum_{j=1}^{k} \frac{\nu^{m(\Delta)-m(\partial \Delta)} t_{\nu}^{|\Delta|-|\omega|} \kappa_{\omega_{j}}}{\kappa t_{\nu}^{\left|\omega_{j}\right|} Z_{\omega_{j}}\left(\nu, t_{\nu}\right)} .
\end{aligned}
$$

2. Remains to prove tightness.

- Maps are uniformly rooted: tightness of root degree is enough
- We show that expected degree at the root under \mathbb{P}_{n} is bounded with n

A simple tightness argument

We want to study the degree of the root vertex δ :

$$
\begin{aligned}
\frac{\text { Mark a uniform edge conditionally on the triangulation }}{\overline{\mathbb{P}}_{n}}(\delta \in e) & =\sum_{k=1}^{3 n} \overline{\mathbb{P}}(\delta \in e \mid \operatorname{deg}(\delta)=k) \cdot \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k) \\
& \geq \sum_{k=1}^{3 n} \frac{k}{2 \cdot 3 n} \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k)=\frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{aligned}
$$

A simple tightness argument

We want to study the degree of the root vertex δ :

$$
\begin{aligned}
& \frac{\text { Mark a uniform edge conditionally on the triangulat }}{\overline{\mathbb{P}_{n}}(\delta \in e)} \begin{aligned}
& =\sum_{k=1}^{3 n} \overline{\mathbb{P}}(\delta \in e \mid \operatorname{deg}(\delta)=k) \cdot \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k) \\
& \geq \sum_{k=1}^{3 n} \frac{k}{2 \cdot 3 n} \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k)=\frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{aligned}
\end{aligned}
$$

Cut open the marked edge and the root:

$$
\begin{aligned}
\overline{\mathbb{P}_{n}}(\delta \in e) & \leq \max \left\{\frac{1}{\nu}, 1\right\}^{2} \frac{\left[t^{3 n+2}\right]\left(Z_{4}+Z_{2}^{2}+Z_{1}^{2}+Z_{1}^{2} Z_{2}+Z_{1} Z_{3}\right)}{3 n\left[t^{3 n}\right] \mathcal{Z}} \\
& =\mathcal{O}(1 / n)
\end{aligned}
$$

A simple tightness argument

We want to study the degree of the root vertex δ :

$$
\begin{aligned}
& \frac{\text { Mark a uniform edge conditionally on the triangulat }}{\overline{\mathbb{P}_{n}}(\delta \in e)} \begin{aligned}
& =\sum_{k=1}^{3 n} \overline{\mathbb{P}}(\delta \in e \mid \operatorname{deg}(\delta)=k) \cdot \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k) \\
& \geq \sum_{k=1}^{3 n} \frac{k}{2 \cdot 3 n} \overline{\mathbb{P}_{n}}(\operatorname{deg}(\delta)=k)=\frac{1}{6 n} \mathbb{E}_{n}[\operatorname{deg}(\delta)]
\end{aligned}
\end{aligned}
$$

Cut open the marked edge and the root:

$$
\begin{aligned}
\overline{\mathbb{P}_{n}}(\delta \in e) & \leq \max \left\{\frac{1}{\nu}, 1\right\}^{2} \frac{\left[t^{3 n+2}\right]\left(Z_{4}+Z_{2}^{2}+Z_{1}^{2}+Z_{1}^{2} Z_{2}+Z_{1} Z_{3}\right)}{3 n\left[t^{3 n}\right] \mathcal{Z}} \\
& =\mathcal{O}(1 / n)
\end{aligned}
$$

$$
\mathbb{E}_{n}[\operatorname{deg}(\delta)]=\mathcal{O}(1)
$$

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?

The story so far

What we know:

- Convergence in law for the local toplogy.
- The limiting random triangulation has one end a.s.
- A spatial Markov property.
- Some links with Boltzmann triangulations.

In progress:

- Recurrence of SRW (vertex degrees have exponential tails)
- Cluster properties.

What we would like to know:

- Singularity with respect to the UIPT?
- Volume growth?
- At least volume growth $\neq 4$ at ν_{c} ?

Summer school Random trees and graphs July 1 to 5, 2019 in Marseille France
Org. M. Albenque, J. Bettinelli, J. Rué and L.Menard

Summer school Random walks and models of complex networks July 8 to 19, 2019 in Nice
Org. B. Reed and D. Mitsche

Thank you for your attention!

