INTERGENERATIONAL PHENOTYPIC MIXING IN VIRAL EVOLUTION

Claude Loverdo¹,² and James O. Lloyd-Smith¹,³
¹Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095
²E-mail: loverdo@ucla.edu
³Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892

Received July 8, 2012
Accepted December 25, 2012

Viral particles (virions) are made of genomic material packaged with proteins, drawn from the pool of proteins in the parent cell. It is well known that when virion concentrations are high, cells can be coinfected with multiple viral strains that can complement each other. Viral genomes can then interact with proteins derived from different strains, in a phenomenon known as phenotypic mixing. But phenotypic mixing is actually far more common: viruses mutate very often, and each time a mutation occurs, the parent cell contains different types of viral genomes. Due to phenotypic mixing, changes in viral phenotypes can be shifted by a generation from the mutations that cause them. In the regime of evolutionary invasion and escape, when mutations are crucial for the virus to survive, this timing can have a large influence on the probability of emergence of an adapted strain. Modeling the dynamics of viral evolution in these contexts thus requires attention to the mutational mechanism and the determinants of fitness.

KEY WORDS: Adaptation, extinction, fitness, models/simulations, mutations.

Viruses have a unique life history. Unlike most organisms, the molecules that make up viruses’ “bodies” are made not only from their own genome, but also from their parent’s, siblings’, or neighbors’ genomes. Viral particles (virions) are composed of genomic material packaged with proteins (and sometimes lipids). The proteins are drawn from a pool of proteins translated from viral genomes in the parent cell, so a genome does not necessarily match the proteins that package it. This phenotypic mixing is well recognized when a cell is coinfected with different viruses (Zavada 1976). Coinfection has even been used as a tool to characterize the effect of mutations, because viruses carrying a mutation in the same functional region cannot complement each other, and thus are of the same “complementation class” (Fields and Mahan-Knipe 1990). Other classic, and extreme, examples of phenotypic mixing are the phenomena of defective viruses and interfering particles, whose genomes carry lethal genetic changes but are packaged using proteins produced by functional viruses (Aaskov et al. 2006; Pathak and Nagy 2009; Manrubia et al. 2010; Metzger et al. 2011).

Previous work has assumed that high multiplicity of infection is necessary for phenotypic mixing to occur. However, because mutation rates in viruses are high (the mean number of mutations per new genome for single-stranded DNA and RNA viruses ranges at least from 0.005 to 1 [Sanjuan et al. 2010]), even a cell infected with only one virion very often contains a diversity of genomes once replication is underway. Phenotypic mixing between viral generations in the absence of coinfection has been almost entirely overlooked in the literature (but see Wilke 2002; Wilke and Novella 2003). There are many situations where multiplicity of infection is low. For many viruses, such as HIV-1 (Keele et al. 2008) or Hepatitis C (Wang et al. 2010), infections are often initiated by one or very few virions. This is particularly important in situations of evolutionary invasion, that is, when the virus is initially not very fit in a new environment, such as a new host species or a different tissue within a host, and therefore must mutate to adapt (Antia et al. 2003; Iwasa et al. 2004; Moya et al. 2004; Pybus and Rambaut 2009). Similarly, when a virus needs to mutate to escape adaptive immunity, or a drug administered to
the host, these adverse conditions may have decreased the initial viral population to levels where coinfection is negligible.

Viral evolution is an essential process in these settings. Most models of evolutionary dynamics assume a direct genotype–phenotype mapping, in the sense that when a mutation occurs, the mutant genotype is immediately associated with the mutant phenotype. We explore basic scenarios of viral replication to describe intergenerational phenotypic mixing, relate it to an established model for viral evolution, and show that it can impact evolutionary dynamics.

**Model**

**VIRAL LIFE HISTORY**

Most models of evolutionary dynamics assume perfect mapping between genotype and phenotype. If the probability for a virion to successfully infect a cell is denoted $q$, and the mean number of virions produced by an infected cell is denoted $N$ (Pearson et al. 2011; Loverdo et al. 2012), this assumption means that $q$ takes the value associated with the genome inside the virion, and $N$ depends on the genotype of the virion which entered the cell (Fig. 1). However, the unique life history of viruses can lead to other outcomes. We first discuss when in the replication cycle mutations may occur, and then the implications for the phenotypic values $N$ and $q$.

Depending on when a mutation occurs, the number of mutants produced among the offspring genomes of an infected cell and the timing of phenotypic expression of the mutation will be different. Let us discuss the case of a stamping machine replication mechanism, when the initial viral genome is used to make a template from which all new viral genomes are produced (Luria 1951). An example is retroviruses: the information from the viral RNA is incorporated into the host genomic DNA, which is then used as a template to synthesize the new viral RNA copies. A mutation that occurs during the first copying step (hereafter named an “early mutation”) makes all subsequent copies mutant, whereas a mutation occurring in the second copying step (hereafter named a “late mutation”) produces one mutant genome independently of the others. In the case of binary replication (an alternate mechanism for viral genome replication), the genome of the virion that initially infects a cell undergoes successive rounds of duplication, with each generation of new genomes being used as a template for the next (Luria 1951). In this case, a mutation in the first round of genome duplication causes half of the viral genomes produced by the cell to be mutants, approaching the case of an early mutation, whereas a mutation in the last round of duplication is equivalent to a late mutation. For simplicity, we focus on the limits of early (all genomes mutant except for the infecting genome) and late (only one mutant genome if the mutation rate is small) mutations. We will discuss the phenotypic values $N^*$ and $q^*$ of the “mixed” generation that occurs when an initial strain $i$ with “pure” phenotypic parameters $N_i$ and $q_i$ mutates to a strain $j$ with “pure” phenotypic parameters $N_j$ and $q_j$ (Fig. 1).

We first consider the number of offspring virions $N^*$ produced by an infected cell in which a mutation from strain $i$ to strain $j$ occurs during viral replication. The standard genotype–phenotype mapping assumes that $N^*$ takes the value $N_i$ associated with the infecting genome. However, $N^*$ depends directly on the new genomic material, as it needs to fold properly to be packaged with specific proteins to make offspring virions (D’Souza and Summers 2005; Mir et al. 2006). Proteins are also crucial, both for replication (e.g., RNA-dependent RNA polymerase for RNA viruses) and as building blocks for the new virions (e.g., capsid...
proteins). These proteins can be produced by translation from the initial genome (e.g., for +ssRNA viruses), from the template (e.g., retroviruses or −ssRNA viruses), or from the new genomes before they are packaged (e.g., for +ssRNA viruses). For an early mutation, most of these proteins are mutant. For a late mutation, in the limit of low mutation rates, most of these proteins are of the initial type \(i\). Thus, though the exact \(N^*\) value depends on the virus and on the mutation, \(N^*\) seems more likely to be close to \(N_j\) for an early mutation (representing a phenotypic advance relative to the standard genotype–phenotype mapping), and close to \(N_i\) for a late mutation (no shift in the genotype–phenotype mapping).

A first generation mutant virion then has a probability \(q^*\) to infect a cell and successfully initiate replication before being degraded or neutralized by the host immune response. The genome itself contributes to the success of cell infection: it may be used for translation before the first round of replication (e.g., +ssRNA virus), it needs to remain conformationally stable, and it has to interact successfully with both viral and host proteins (Wang and White 2007; Costantino et al. 2008; Gultyaev et al. 2010; Cuevas et al. 2011). Viral proteins enable the virion to interact with a susceptible cell, enter it, transport the genome to the right place within the cell, and initiate replication. An early mutation makes most proteins mutant, thus \(q^*\) likely tends to \(q_j\), the value assumed by the standard genotype–phenotype mapping. For a late mutation, the properties of the genome are already mutant, but the proteins are mainly from the initial strain. Consequently, the value of \(q^*\) depends on the virus and the particular mutation considered. An important example is when the main effect of a mutation is to modify the viral protein that interacts with the host receptor-binding proteins. Then the phenotypic change is driven chiefly by the proteins in the coat of the new virion, and \(q^*\) tends toward the value \(q_f\) for a late mutation, that is, the phenotypic effect of the mutation is delayed relative to the standard model.

In our analysis, we translate these biological complexities into modeling assumptions as follows. We assume that the probability that proteins are passed through several viral generations is low enough that phenotypic delay and advance act over one generation at most. When we study early mutants, we assume \(q^* = q_j\) as in the standard genotype–phenotype mapping (i.e., assuming that offspring virions do not include proteins produced directly from the infecting genome) but consider \(N^*\) over a range from \(N_j\) up to \(N_i\) to represent increasing phenotypic advance. When we study late mutants, we assume \(N^* = N_i\) as in the standard genotype–phenotype mapping (i.e., assuming that late mutations are sufficiently rare that they do not change the overall viral production of an infected cell) but consider \(q^*\) over a range from \(q_j\) down to \(q_i\) to represent the increasing phenotypic delay. In both cases, we allow the parameters subject to phenotypic advance/delay (\(N^*\) for early mutants and \(q^*\) for late mutants) to take any value between the values for the pure phenotypes \(i\) and \(j\). Intermediate values could represent the net effect of a mix of proteins, for example, different kinds of viral polymerases determining \(N\), or different cell receptors carried by newly produced virions determining \(q\). For instance, if mutant proteins are translated in very low numbers after a late mutation, their effect may be not negligible if the assortment between genomes and proteins is not random, either because of how they interact with each other, or if mutant proteins are produced close in time with mutant genomes. Intermediate values could also represent a mix of phenotypic effects of the proteins of and of the genome itself.

**VIRAL EVOLUTIONARY DYNAMICS**

If the survival of a viral lineage does not depend strongly on a set of mutations, then a minor shift in timing of the phenotypic effect of these mutations will not make a significant difference. However, mutations can be crucial to the fate of a viral lineage if there are many lethal or very deleterious mutations, or if an initially unfit virus can be rescued by adaptive mutations. In the case of a deleterious mutational load high enough to cause viral extinction, if coinfection by different lineages is negligible and back or compensatory mutations are very unlikely, then the mutant lineage is doomed in any case. The exact assumptions about \(q\) and \(N\) may introduce a slight shift in the timing of extinction, but do not change the ultimate survival probability. On the contrary, for the scenario of evolutionary invasion and escape (Iwasa et al. 2004) when an unfit initial strain (basic reproductive number \(R_{0,1} = q_1N_1 < 1\) can be rescued by a mutant \((R_{0,2} = q_2N_2 > 1\), intergenerational phenotypic mixing matters. We analyze this regime using the simple model described below.

We aim to calculate the probability of emergence, that is, the probability that the initial viral population produces an adapted mutant leading to the survival of the viral lineage. We assume that the ratio of viruses to host target cells is low enough so that we can neglect coinfection. More broadly, we assume that host cells are present in excess and all interactions between virions are negligible. Then the probability of emergence for the founding population is the probability that at least one of the founding virions leads to emergence, computed independently for each virion. Consequently, we can focus on the case of a single founding virion without loss of generality.

We neglect back mutations from the adapted strain to the initial less fit strain, a standard assumption (Antia et al. 2003; Iwasa et al. 2004; Weissman et al. 2009). We derive rigorous results in Appendix S1, which coincide for small mutation rates with the more heuristic results of the main text. Despite the high overall mutation rates in viruses, very few mutations increase fitness sufficiently to allow emergence, thus the rate of appearance of such mutations, denoted \(\mu\), is very small. Additionally, we assume that an infected cell releases new virions continuously according to a budding model, so that the number of virions produced follows
a geometric distribution. Under this assumption, a mutant viral lineage survives with probability $s_2 = q_2 - 1/N_2$ (Pearson et al. 2011). As discussed in the last section of Appendix S1, this latter assumption is unlikely to affect our results substantially.

**Results**

The standard approach to modeling viral evolution makes two assumptions about phenotypes after a mutation occurs from strain 1 to strain 2: the mean number of offspring virions produced by the cell where the mutation occurred is $N^* = N_1$, and the cell infection probability of the first-generation virions carrying the mutant genome is $q^* = q_2$. However, if a mutation happens early in the replication process within a cell, most genomes and most viral proteins in the infected cell are mutant, so the phenotypic effect of mutations on $N^*$ may be advanced. Similarly, if a mutation occurs late, most genomes and proteins are of the initial type, and the phenotypic effect on $q^*$ may be delayed. To understand how this intergenerational phenotypic mixing affects the probability of emergence for a given mutation rate $\mu$.

**EARLY MUTATIONS**

An early mutation can occur with probability $\mu$ each time a cell is infected. The probability for the first virion to successfully infect a cell is $q_1$. Then, it replicates and gives an average of $R_{0,1} = q_1N_1$ successful offspring virions, and so on, leading to a total of $q_1(1 + R_{0,1} + R_{0,1}^2 + \cdots) = q_1/(1 - R_{0,1})$ opportunities for mutation. When a mutation occurs, a mean of $N^*$ offspring virions with mutant genomes is produced. If the probability for one offspring virion with mutant genome to lead to survival of the lineage is $s_2$, then the probability for an early mutation to lead to survival is $N^*s_2/(1 + N^*s_2)$ (see first section of Appendix S1), leading to the final probability of emergence:

$$P_{\text{emergence,early}}(N^*, q^* = q_2) = \frac{q_1\mu N^*s_2}{(1 - q_1N_1)(1 + N^*s_2)}. \quad (1)$$

If we compare the probability of emergence with ($N_1 \leq N^* \leq N_2$) or without ($N^* = N_1$) taking into account the phenotypic advance, we obtain the ratio:

$$\frac{P_{\text{emergence,early}}(N^*, q^* = q_2)}{P_{\text{emergence,early}}(N^* = N_1, q^* = q_2)} = \frac{N^*(1 + N_1s_2)}{N_1(1 + N^*s_2)}. \quad (2)$$

If the mutant strain is fitter due to better cell infection, $q_2 > q_1$, then this ratio is below one. If the virus is in a new tissue or a new host species and the mutation enables interaction of the virion with cell receptors (often a crucial step to change the host range [Parrish et al. 2008]), phenotypic delay may drastically reduce the probability of emergence for viruses where mutations occur late in cellular replication (Fig. 2B).

**LATE MUTATIONS**

A late mutation can occur with probability $\mu$ each time a new virion is produced. The mean number of virions produced by an initial virion is $R_{0,1} + R_{0,1}^2 + \cdots = R_{0,1}/(1 - R_{0,1})$. The survival probability of a lineage initiated by a new mutant virion is $s_2q^*/q_2$, because for the first generation after mutation, the virion may carry nonmutant proteins along with its mutant genome, so it successfully infects the next cell with probability $q^*$ instead of $q_2$. Thus, the overall probability of emergence is:

$$P_{\text{emergence,late}}(N^* = N_1, q^*) = \frac{q_1N_1\mu s_2q^*}{(1 - q_1N_1)s_2}. \quad (3)$$

The ratio between the emergence probabilities with ($q_1 \leq q^* \leq q_2$) or without ($q^* = q_2$) taking into account the phenotypic delay is:

$$\frac{P_{\text{emergence,late}}(N^* = N_1, q^*)}{P_{\text{emergence,late}}(N^* = N_1, q^* = q_2)} = \frac{q^*_1}{q_2}. \quad (4)$$

If the mutant strain is fitter due to better cell infection, $q_2 > q_1$, then this ratio is below one. If the virus is in a new tissue or a new host species and the mutation enables interaction of the virion with cell receptors (often a crucial step to change the host range [Parrish et al. 2008]), phenotypic delay may drastically reduce the probability of emergence for viruses where mutations occur late in cellular replication (Fig. 2B).

**COMPARISON OF EARLY VERSUS LATE MUTATIONS**

Two opposing effects contribute to the difference in emergence probabilities for early versus late mutations. Intergenerational phenotypic mixing delays phenotypic effects up to one generation for a late mutant compared to an early mutant; because evolutionary invasion and escape depend on adaptive mutations, the resulting delay in fitness gains acts to lower the probability of emergence for late mutants. At the same time, previous work has shown that early mutations yield lower emergence probabilities than late mutations because they are clustered, so their effective frequency is lower (Loverdo et al. 2012). For a given mutation rate, which gives rise to the same expected number of mutant genomes under the early and late mutation models, whether early or late mutations lead to a higher probability of emergence depends on the strength of intergenerational phenotypic mixing, which will follow from the biology of a particular virus (Fig. 2C). The thick line
Figure 2. How the probability of emergence is changed by intergenerational phenotypic mixing. (A) Probability of emergence when mutations occur early in viral replication. In this plot, $q_{early} = q_2$ (as assumed in the standard genotype–phenotype mapping), and $N_{early}^*$ ranges from $N_1$ up to $N_2$ to represent phenotypic advance. The three lines show different parameters describing the cell infection probability $q$ for each strain. (B) Probability of emergence when mutations occur late in viral replication. In this plot, $N_{late}^* = N_1$ (as assumed in the standard genotype–phenotype mapping), and $q_{late}$ ranges from $q_2$ down to $q_1$ to represent phenotypic delay. The three lines show different scenarios for the mean number of virions produced, $N$, for each strain. (C) Ratio of the probability of emergence in the case of early and late mutations $P_{emergence, early}(N_{early}^*, q_{early} = q_2)/P_{emergence, late}(N_{late}^* = N_1, q_{late})$ as a function of $q_{late}$ for the late mutant and $N_{early}^*$ for the early mutant. This plot shows the combined effects of intergenerational phenotypic mixing (which decreases the probability of emergence for late mutations, relative to early mutations, because the beneficial phenotypes are delayed) and correlations among mutations (which increases the probability of emergence for late mutations, relative to early mutations). For all plots, $\mu = 0.001$. 
in Figure 2C shows where the emergence probabilities are equal for the two types of mutation. Late mutations are more likely to emerge for scenarios close to the standard genotype–phenotype mapping, without intergenerational phenotypic mixing (bottom right corner of Figure 2C). In contrast, when the phenotypic delay and advance are strongest (top left corner):

\[
P_{\text{emergence}}(\text{early}, N^* = N_2, q^* = q_2) = \frac{1}{N_1 q_1 (1 + N_2 s_2)} > 1,
\]
where we used the relation \(s_2 = q_2 - 1/N_2\) (Pearson et al. 2011). In this regime, the probability of emergence is larger for early mutations, reversing the conclusion of Loverdo et al. (2012). This shows that intergenerational phenotypic mixing can be a quantitatively significant effect when modeling evolutionary invasion and escape.

**Discussion**

Viral particles are made of a genome and proteins, produced in an infected cell. If there were several different viral genomes in the infected cell, the proteins and genome in an offspring virion may not match. Although phenotypic mixing is a well recognized phenomenon at high multiplicity of infection, it is almost always overlooked in the limit of no coinfection. However, because viruses have a high mutation rate, phenotypic mixing can happen between generations in a single viral lineage. This effect is neglected in most models of viral evolution, where phenotypic effects are assumed to be expressed immediately after a mutation.

To explore this phenomenon, we studied two limits: a mutation very early in the replication process, so that most genomes and thus most proteins are mutant; and a mutation at the last replication step, so that most genomes and most proteins are of the initial type. For a viral particle that successfully infects a cell with probability \(q\) and then produces an average of \(N\) new viral particles, we consider the simplified yet plausible scenarios of an early mutation advancing the phenotypic effect on \(N\) by up to one generation, and a late mutation delaying the phenotypic effect on \(q\) by up to one generation.

We focus on the probability for a beneficial mutant to emerge when a virus faces the risk of extinction because of an environmental change (adaptive immune response, drug administered to the host, new host species, new invaded tissue type, etc.). We find that the exact timing of the phenotypic effects can be crucial. In particular, a late mutation can contribute to evolutionary invasion and escape only if the first-generation mutant genome succeeds in infecting a cell despite being associated with the unfit proteins of the initial type. This scenario could describe important phenomena such as mutations affecting a viral protein that interacts with a host cell receptor (often crucial for the expansion of a virus host range [Parrish et al. 2008]) or an enzyme needed for the first steps of cell infection (such as integrases for HIV [Menéndez-Arias 2010]). Therefore, this effect could slow down emergence of new viruses or appearance of drug resistance despite the high mutation rates and large population sizes of most viruses.

We studied simplified scenarios which enabled us to discuss a broad range of phenotypic effects. First, we have studied early and late mutations separately. When replication is a stamping machine process with mutations in both steps, the contributions from mutations at each step can be added when mutations are rare, and whether phenotypic mixing increases or decreases the probability of emergence depends on the phenotypic parameters and the relative mutation rates (see Appendix S1). Other replication processes, such as binary replication, lead to intermediate distributions of mutants and thus intermediate effects of phenotypic mixing. Another simplification in our analysis was to consider only one phenotypic parameter, \(q^*\) or \(N^*\), which was most susceptible to being modified by phenotypic mixing for each scenario. Our results could be extended readily to any \((q^*, N^*)\), and the overall effect would depend on the relative values of the phenotypic parameters. Additionally, the phenotypic values for a mixed virion need not be bounded by the values of the pure types (for instance, when proteins and genome must match to interact successfully, in which case the mixed phenotype has lower fitness). In these circumstances, equations (1) and (3) would hold, but the direction of the change in the emergence probability would be modified. Finally, we assumed that mutations are rare. This enabled us to obtain simpler mathematical expressions. In Appendix S1, we derive equations valid for any mutation rate if there is only one mutant strain. However, at high mutation rates, there will be more than one type of mutant in an infected cell, leading to the possibility of a broader range of phenotypic values.

We focused on evolutionary invasion and escape, when the initial strain cannot survive without mutations. Intergenerational phenotypic mixing could also act on the rate of fixation of beneficial mutants in a viral population fit enough to survive. For example, a newly mutated genome encoding for an immune escape variant (i.e., a viral protein that escapes antibody recognition) could be packaged with nonmutant proteins. Consequently, the phenotypic effect would be delayed, and the virion would be vulnerable to elimination by antibody-mediated host defenses, thus reducing its fixation probability. The main difference with evolutionary invasion and escape is that many cells are already infected. If cells can be superinfected, there will be additional phenotypic mixing. If not, competition for resources cannot be neglected, requiring a more detailed model of the dynamic of the susceptible cells (see first appendix of Park et al. 2013).
Phenotypic mixing is a classic subject of study at high multiplicity of infection, but to the best of our knowledge only Wilke (2002) and Wilke and Novella (2003) have explicitly modeled the case of intergenerational phenotypic mixing in the limit of no coinfected. Wilke (2002) studied evolution of asexual organisms whose fitness depends on both their own and their parent’s genome. Analyzing a quasi-species model for an infinite population, he showed that the parental fitness effect does not affect the mean fitness, but does modify the genotype frequencies. As a result, when the population is finite, the error threshold (i.e., the mutation rate at which the fittest sequence is lost) is shifted, as indicated by numerical simulations at fixed population size. Wilke and Novella (2003) presented a deterministic analysis of the steady state of a system corresponding to a late mutation with the effects on $q$ delayed by one generation. They showed that in the limit of a very deleterious mutant, phenotypic mixing doubles the proportion of mutant genomes, because mutant genomes can replicate before the lethal phenotype is expressed. They focused on the proportion of mutant genomes at the mutation-selection balance for a very large viral population size. Our study complements these two earlier studies, by examining the stochastic dynamics of a population of varying size, where the outcome of interest is whether the viral population survives or not.

In our model, one mutation is enough to bring a substantial increase in fitness, whereas sometimes several mutations are needed (Shih et al. 2007). If the intermediate mutants have intermediate fitness, the reasoning for each step stems directly from our results for a single step. At first glance, it seems that phenotypic delay might assist with crossing fitness valleys (i.e., when the intermediate mutant has low fitness) (Bonhoeffer et al. 2004; Weinreich and Chao 2005; Weissman et al. 2009), since the deleterious effect of the intermediate genome can be masked by phenotypic mixing with the initial strain. However, this same principle means that the beneficial effects of the final mutant (the “far side of the valley”) will be masked by the deleterious intermediate, so the only difference will be a slight shift in the timing of when the deleterious phenotype is expressed. Thus, in general, intergenerational phenotypic mixing does not help in crossing fitness valleys.

Our results also have implications for basic virology research. Phenotypes are often used to measure mutation rates. A common approach is to let a virus replicate for a known number of generations under conditions where mutations at a specific target are neutral, then viruses are transferred to new culture conditions where only specific mutants can survive, and plaques are counted to infer the mutation rate (la Torre et al. 1990; Chao et al. 2002; Malpica et al. 2002; Raney et al. 2004). This implicitly assumes the standard genotype-phenotype mapping, and thus intergenerational phenotypic mixing may bias the resulting mutation rate estimate. Holland et al. (1989) noticed that such estimates of mutation rates vary widely with multiplicity of infection and proposed a solution. In their system, antibodies inactivate viral particles displaying a wild-type surface protein. They apply antibodies to the plate only after a time sufficient for cell infection in the new medium, so as to delay selection enough that it acts on beyond the first mutant generation, which no longer exhibit phenotypic mixing. Our results show that similar precautions may be needed to measure the mutation rate accurately even at very low multiplicity of infection. Conversely, this framework could be used to study intergenerational phenotypic mixing directly. If the experimental conditions are chosen to ensure negligible levels of coinfection, then the ratio of the number of plaques under immediate versus delayed selection will quantify the effect of intergenerational phenotypic mixing for the system in question. This antibody-binding approach would characterize the effect on $q^+$, but related methods could be devised to assess the impact on $N^+$. Applying this approach to a range of host-virus systems would show the extent of deviations from the standard genotype-phenotype mapping, which in conjunction with our results will indicate the potential importance of this phenomenon for viral evolution.

ACKNOWLEDGMENTS

The authors thank S. J. Schreiber and M. Park for providing useful comments on earlier drafts of this manuscript, and A. Siddiqui for providing valuable context over a breakfast table. Both authors are supported by the National Science Foundation (NSF) grant EF-0928690. JLS is grateful for the support of the De Logi Chair in Biological Sciences, and the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health.

LITERATURE CITED


Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:
Appendix S1. Detailed calculations.