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Appendix A: Properties and Stability of the Models

A.1. Property of the Exponential Map in C2

Here we show the following Lemma 1, reproduced as Lemma A.1.

LEMMA A.1. IfM € szm, exp,, : Br,m (0, Trmin/4) — M 1is one-to-one.
Moreover, it can be written as
expy,: Br,n (0, Timin /4) — M
v—p+ v+ Np(v)

with Ny, such that for all v € Br,ar (0, Timin/4),

Np(0) =0, doN, =0, [|dNpl|,, < L v},

where Ly = 5/(4Tmin). Furthermore, for all p,y € M,
y—p=nr,m(y —p)+ Re(y —p),

where | Ro(y — p)| < L=l

2Tmin

PROOF OF LEMMA A.l. Proposition 6.1 in [13] states that for all z € M,
HII;VIHOP < 1/Tmin. In particular, Gauss equation ([8, Proposition 3.1 (a),
n S K S
1/72. . Using Corollary 1.4 of [3], we get that the injectivity radius of M is
at least mTimin > Timin/4. Therefore, exp,, : Br, M (0, Timin/4) — M is one-to-
one.
Let us write Np(v) = exp,(v) — p — v. We clearly have N,(0) = 0
and doN, = 0. Let now v € Br,1(0, Tinin/4) be fixed. We have d,N, =

p.135]) yields that the sectional curvatures of M satisfy —2/72
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dyexp, —Idr,y. For 0 < t < |lvf|, we write y(t) = exp,(tv/|v]|) for the
arc-length parametrized geodesic from p to expp(v), and P, for the parallel
translation along «y. From Lemma 18 of [9],

2 t? ¢
S5 5 S

b Trun 2 T ATmin

Hdtm exp, — P}

We now derive an upper bound for HPt — Idr, MHop‘ For this, fix two unit
vectors u € RY and w € T,M, and write g(t) = (P;(w) — w, u). Letting V
denote the ambient derivative in R”, by definition of parallel translation,

‘g ‘ | ~'(t) iDt( ) w7u>‘
:( (1M, (vt ),Pt(w)),w‘
< l/Tmm

Since ¢(0) = 0, we get HPt — IdTPMHop < t/Tmin. Finally, the triangle ine-
quality leads to

1doNy |, = ||dv exp ~Idr, ],
< ||dv exp =Py |, + 1 Pjo) — Tdz,na ],
_ 5l

= 4ATin

We conclude with the property of the projection 7* = 77, ps. Indeed, defining
Ro(y —p) = (y — p) — 7*(y — p), Lemma 4.7 in [10] gives

| R2(y — p)|| = d(y — p, T, M)

2
< ly = pII”
2Tmin

A.2. Geometric Properties of the Models C*
LEMMA A.2. For any M € Ck L and x € M, the following holds.

(i) For all vi,vo € Br,m (07 i))
3 5
Z HU2 — Ul” < H\I’:p(UQ) - \ij(vl)” < Z ||U2 o Ul” ’
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7 2Tmin
(ii) For all h < ﬁ N =Tpin

Mm3<x,3'5h> cq/w(BTxM(x,h))cMmzs(x,EZ‘).

(iii) For all h < T

Th
BTIM (0, 8> C T, M (B(a:, h) M M) .

(iv) Denoting by m* = mwp,r the orthogonal projection onto T, M, for all
x € M, there ewist multilinear maps Ty, ..., T | from T, M to RP,

. —1
and Ry such that for all y € B <a:, Tmmi%) A M,
Yy—x = ﬂ*(y - .Z') + T2*(7T*<y — x)®2) 4.+ le_l(ﬂ-*(y . $)®k71)
+ Rk(y — 1-)7
with
|Rk(y — z)|| < Clly —z||*  and 177 Nl < Li, for2<i<k-—1,

where L, depends on d,k, Tmin,L1,...,Li, and C on d, k, Tpin, L],
..., Ly,. Moreover, for k >3, Ty = ITM.

(v) For all x € M, IIiV[HOp < 1/Tmin- In particular, the sectional curva-
tures of M satisfy

2 < b
K .
2 - = _2
Tmin Tmin

PrROOF OF LEMMA A.2. (i) Simply notice that from the reverse tri-
angle inequality,

Ve (v2) = War(v1)]]
[[vg — oa ]

[Nz (v2) = N (1) |
[[vg — oa ]

1

—1] < < Ly(flor Vv2]) < 1

(ii) The right-hand side inclusion follows straightforwardly from (i). Let us
focus on the left-hand side inclusion. For this, consider the map defined

by G = wp, a0 ¥, on the domain By, s (0, h). For all v € B,y (0, h),
we have

1
|dvG — IdeMHop = ll7rn1 0 vaxHop < HvaxHOp <Lyl < 1 <1
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Hence, G is a diffeomorphism onto its image and it satisfies ||G(v)|| >
3||v]|/4. Tt follows that

3h

BTIM <0, 4> c @ (BTZM (0, h)) =TT, M (\I/x (BTIM (0, h))) .

Now, according to Lemma A.1, for all y € B (:1;, %) NnM,

ly — |” 1 3h
—) < |y — B2 < (14> —zl < 2=
ey = )l < 1y = ol + 25— < (14 ) Iy = o <
from what we deduce 77, ps (B (ac, %) N M) C Br,m (O, %) As a con-
sequence,

_ <B ( 3;) n M) < mrr (U (Broat (0,1))).

which yields the announced inclusion since 77, 3s is one to one on
B (z, %) N M from Lemma 3 in [4], and

(B (x 3;) n M) C W, (Br,a (0,h)) C B <:v 54h> nM.

Straightforward application of Lemma 3 in [4].

Notice that Lemma A.1 gives the existence of such an expansion for

. in ALT1
k = 2. Hence, we can assume k > 3. Taking h = T"“”#, we showed

in the proof of (ii) that the map G is a diffeomorphism onto its image,
with |[d,G — Idr,ml,, < 1 < 1. Additionally, the chain rule yields
de}GHop < Hdi\I/xHop < L; for all 2 <7 < k. Therefore, from Lemma
A.3, the differentials of G~! up to order k are uniformly bounded. As
a consequence, we get the announced expansion writing

y—:z::\I/xonl(ﬂ*(y—:r)),

and using the Taylor expansions of order k of ¥, and G~
Let us now check that 75 = ITM. Since, by construction, Ty is the
second order term of the Taylor expansion of ¥, o G~! at zero, a
straightforward computation yields

T2* = (ID — 7TT$M) o d%\I/x

=T, ML © dg\ljx
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Let v € T, M be fixed. Letting v(t) = W, (tv) for |t| small enough,
it is clear that v”(0) = d2¥(v®?%). Moreover, by definition of the se-
cond fundamental form [8, Proposition 2.1, p.127], since v(0) = = and
~'(0) = v, we have

Hy(U@) =T, ML (’Y”(O))~
Hence

T3 (0%%) = 7y, g0 0 BT, (07)

=TT, ML ('YH(O))
= 11" (v%%),

which concludes the proof.

(v) The first statement is a rephrasing of Proposition 6.1 in [13]. It yields
the bound on sectional curvature, using the Gauss equation [8, Propo-
sition 3.1 (a), p.135].

O

In the proof of Lemma A.2 (iv), we used a technical lemma of differential
calculus that we now prove. It states quantitatively that if G is C*-close
to the identity map, then it is a diffeomorphism onto its image and the
differentials of its inverse G—! are controlled.

LEMMA A.3. Let k> 2 and U be an open subset of R®. Let G : U — R?
be C*. Assume that [Ha — dG|l,, < e < 1, and that for all 2 < i < k,

HdiGHOp < L; for some L; > 0. Then G is a C*-diffeomorphism onto its
mmage, and for all 2 < i <k,

|la=dGY,, < 7= and | dG7,, < Lip, 1, <00 for2<i<h.

Proor or LEmMMA A.3. Forallz € U, [|d,G — I4l|,, <1, so G is one to
one, and for all y = G(x) € G(U),

HId B dyGiluop = HId o (de)iluop
H(de)il}lop H‘[d - dﬂ’»’GHop
”Id - dCUGHop
1= ||Id - dﬂ?G”op
3
1—¢
5
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For 2 <i<kand1<j<i, write Hl(-]) for the set of partitions of {1,...,i}
with j blocks. Differentiating i times the identity Go G~ =1 da (), Faa di
Bruno’s formula yields that, for all y = G(z) € G(U) and all unit vectors
hi,...,h; ERD,

=dy (GoG™) .(ha)i<a<i = Z Z &G. ((dL/HGA' (ho‘)ael)jew) )

j=1 WGHEJ)

Isolating the term for j = 1 entails

‘ ) (d;G_l. (ha)lgagi)

‘op

- > A (A6 (haaer ), )
=2 ren® e
op
<Y 5 @6, IT |6,
j= 27r€H(]) Iem
Using the first order Lipschitz bound on G, we get
i 1 + €
actyl,, < 2 ZL > I [dve
wGH(]) Iem
The result follows by induction on <. O

A.3. Proof of Proposition 1

This section is devoted to prove Proposition 1 (reproduced below as Propo-
sition A.4), that asserts the stability of the model with respect to ambient
diffeomorphisms.

PROPOSITION A.4. Let ® : RP — RP be a global C*-diffeomorphism.
If ||d® — Ip]| Hd2<I>Hop s, Hdk‘bHop are small enough, then for all

P in PT , the pushforward distribution P’ = ®,P belongs to

min, ,fmin 7fma.7:

op ’

k
PTmin/2a2L7fmin/2:2fmaz .
Moreover, if ® = XMp (A > 0) is an homogeneous dilation, then P’ €

P’;TWLW o 3 fonn s Where Loy = (L /X, Ly/ A2 Ly /N,



PRrOOF OF PROPOSITION A.4. The second part is straightforward since
the dilation AM has reach 7yp; = A7ys, and can be parametrized locally by
Uy, (v) = AU, (v/A) = Ap + v + AN, (v/\), yielding the differential bounds
L(\). Bounds on the density follow from homogeneity of the d-dimensional
Hausdorff measure.

The first part follows combining Proposition A.5 and Lemma A.6. O

Proposition A.5 asserts the stability of the geometric model, that is, the
reach bound and the existence of a smooth parametrization when a subma-
nifold is perturbed.

PROPOSITION A.5. Let ® : RP — RP be a global C*-diffeomorphism. If

||d® — ID”op , HdQCIDHOp e, HdkfbHop are small enough, then for all M in
Cfmm’L, the image M' = ® (M) belongs to Cfmin/272LL,2L37~--,2Lk'

PROOF OF PROPOSITION A.5. To bound 7,/ from below, we use the sta-
bility of the reach with respect to C? diffeomorphisms. Namely, from Theo-
rem 4.19 in [10],

o (-|ip-de],,)
M = To(M) = 1+|Ip—da|,, + [|d2||
op

™™
> 7 (1—|lIp — a®||,,)* Tmin
= "+ Ip — d®]|,, + Tonin 2@, T 2

for |Ip —d®||,, and HdQ(ﬁHop small enough. This shows the stability for
k =2, as well as that of the reach assumption for k£ > 3.

By now, take k > 3. We focus on the existence of a good parametrization
of M’ around a fixed point p’ = ®(p) € M'. For v' € TyM' = d,® (T,M),
let us define

U () =@ (¥, (dy®"0))
=p +v + Ny (),

where N7, (v') = {® (U, (dy@ 1)) —p/ =2}

M—2 M

\IIPT T\P;/
TpM T} Tp/ M/
D
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The maps ¥}, (v') and N}, (v ) are well defined whenever ||d,y ®~1.v/|| < ;77—

1—-|lIp—d®]|,,

so in particular if |[o|| < (2L 5 < - and |[Ip —d®|,, < 3. One

casily checks that N7,(0) = 0, doN7, = 0 and writing c(v') = p+dy ®~.v' +
N, (dp/<1>_1.v’), for all unit vector w’ € Ty M’,

dc(v’)(b <{ddp/¢>—1.v’\ljp o dp’q)_l,/w/}®2)

+ dc(v’)q) © d?lpxé—l.v’ \I’p ({dp/q)_l.w/}®2) H
dc(’l/)@ <{ddp/q>_1.’v/\llp o dp’q)_l,w,}®2)

+ (d (v )(I) Id) o dd o1 Up ({dp/q)_l.w,}®2)

+d3 g, p({d,,@—l.w )|

< ([ @]l (1 + Ly [dy@ o/ [)* ||y~
I

1’

|2 N, (w'=?)|| = )

-

IF
+ | Ip — d®||,, Ly ||dy®~"
Lo dye |

< [ld*]],, (1 +1/4)* [l @[,
+ Ip — ]|, Ly [ld2 7|7,
Ly [[dy @3,

Writing further ||d®~ 1” (1—|Ip—d®|, ) <1+2|Ip—2,, for
[Ip — d®|,, small enough dependlng only on L 1,1t is clear that the right-
hand side of the latter inequality goes below 2L, for |Ip —d®|,, and
HdQ(I'Hop small enough. Hence, for ||Ip — d®||,, and Hdz@Hop small enough

depending only on L, ||d12)/N;,||Op < 2L, for all ||vf| < m. From the
chain rule, the same argument applies for the order 3 < i < k differential of

!
Np,. O

Lemma A.6 deals with the condition on the density in the models P*.
It gives a change of variable formula for pushforward of measure on sub-
manifolds, ensuring a control on densities with respect to intrinsic volume
measure.

LEMMA A.6 (Change of variable for the Hausdorff measure). Let P be
a probability distribution on M C RP with density f with respect to the
8



d-dimensional Hausdorff measure H®. Let ® : RP — RP be a global diffeo-
morphism such that |[Ip — d®||,, < 1/3. Let P' = ®,P be the pushforward

of P by ®. Then P' has a density g with respect to H. This density can be
chosen to be, for all z € ®(M),

f(@(2)
9(z) = ( )
\/det <7TT¢1(Z)M o dq>—1(z)<I>T o dq>—1(z)<1)‘Tq),1< )M)

In particular, if fmin < f < fmaz on M, then for all z € ®(M),

(1 —3d/2||Ip — dcpuop) Fonin < 9(2) < Frnas (1 3292 — 1) ||Ip — d(I)HOp) .

PROOF OF LEMMA A.6. Let p € M be fixed and A C B(p,r) N M for r
small enough. For a differentiable map h : R — RP and for all z € R%, we
let Jp,(x) denote the d-dimensional Jacobian Jy,(x) = \/det (d hT d,h). The
area formula ([11, Theorem 3.2.5]) states that if h is one-to-one,

/ u (b)) Tn(x) N (dz) = / u(yyH(dy),
A

h(A)

whenever u : RP — R is Borel, where \? is the Lebesgue measure on R?. By
definition of the pushforward, and since dP = fdH¢,

| ape)= [ i)

(4)

Writing V), = exp,, : T,M — RP for the exponential map of M at p, we
have

[ tamian = [ @), @)X o).
A v, (4)

Rewriting the right hand term, we apply the area formula again with h =
DoV,

| ), @)
U, ~H(A)




Since this is true for all A C B(p,r) N M, P’ has a density g with respect to
H?, with

J\Ifq>71<z) (\Ilgll(z) °© (D_l (Z)) .

(Upti 0@ 1(2))

z) = 1z
9) = f (@7 () 7 ;

2= 1(z)
Writing p = @~ (2), it is clear that W31, o @7! (2) = ¥, (p) =0 € T, M.
Since dg exp, : TyM — RP is the inclusion map, we get the first statement.

We now let B and mr denote d,® and 7p,ps respectively. For any unit
vector v € T, M,

e B Bo]| ~ ol < vz (B7B ~ In)
<178 - 1o],,

< (2+I11p = Blloy ) 11> = Bl
< 3HID _BHop'

Therefore, 1 -3 [|Ip — Bl|,, < H?TTBTB‘TPMHOP <1+43|Ip — Bl|,,. Hence,

1
1- 37d||ID_B||op’

/2
\/det (ﬂ'TBTB\TpM) < (1+3||ID _BHop) =

and

d/2 1
\/det (WTBTB‘TPM) > (]— -3 ||ID - BHop) 2 14+ 3(2d/2 _ ]_) ”ID — B” ’
op

which yields the result. O

Appendix B: Some Probabilistic Tools

B.1. Volume and Covering Rate

The first lemma of this section gives some details about the covering rate of
a manifold with bounded reach.

LEMMA B.7. Let Py € P* have support M C RP. Then for all r <
Tmin/4 and x in M,

Cdfminrd < px(r) < Cdfma:rrdy

for some cq,Cq > 0, with py(r) = Py(B(z,r)).
10



C&k logn 1/d . / .

- T) with C} large enough, the following
holds. For n large enough so that h < Tpin/4, with probability at least 1 —
(1)

n

Moreover, letting h = (

du (M, Y,,) < h/2.

PROOF OF LEMMA B.7. Denoting by By (x,r) the geodesic ball of radius
r centered at z, Proposition 25 of [1] yields

By (z,r) C B(x,r) N M C By(z,6r/5).

Hence, the bounds on the Jacobian of the exponential map given by Propo-
sition 27 of [1] yield

car® < Vol(B(x,7) N M) < Cqr?,

for some cq,Cyq > 0. Now, since P has a density fmin < f < frmaz with
respect to the volume measure of M, we get the first result.

Now we notice that since p(r) > cgfmin7® Theorem 3.3 in [7] entails, for
5 < Tmin/&

P(du(M,X,) > s) < 47d exp (—Cdfmmnsd) )
o o cdfminsd

. Clk logn 1/d : 1 !
Hence, taking s = h/2, and h = ( ) with C} so that C, >

fmin n
d
gt |, 29 (1+k/d)

e e yields the result. Since k > 1, taking C!; = g is sufficient. O

B.2. Concentration Bounds for Local Polynomials

This section is devoted to the proof of the following proposition.

1

PROPOSITION B.8. Set h = (Kfﬁ?) * . There exist constants Kk.d, Ch.d

and Cyq such that, if K > (kkaftes/fom) and n is large enough so that
k
3h/2 < ho < Tmin/4, then with probability at least 1 — (%) d+1, we have

P07n_1[52(W*($))13(h/2)($)] > Ck,dhdfmz‘nHShH%a
N(Sh/Q) S Cdfmaa:(n_l)hda

for every S € R¥[z1.4], where N(h) = > = Lo (Y7)-

11



A first step is to ensure that empirical expectations of order k& polynomials
are close to their deterministic counterparts.

PROPOSITION B.9.  Let b < Tynin/8. For any yo € M, we have

P €5
Uiy Y J
P sup (Po — Pon—1) H ( ’ ) 15(y0,0)(¥)

u17~~'7uk75€{071}k

> 4k~/27 2t n 2 < ot
2 Pl \/ n—1) pyo pyo (b)  3(n— l)pyo (0) N 7

where Py ,—1 denotes the empirical distribution of n — 1 i.i.d. random vari-
ables Y; drawn from Py.

PROOF OF PROPOSITION B.9. Without loss of generality we choose gy =
0 and shorten notation to B(b) and p(b). Let Z denote the empirical pro-
cess on the left-hand side of Proposition B.9. Denote also by f, . the map

A\ €
H?:l (@) ! ]lB(b)(y), and let F denote the set of such maps, for u; in

B(1) and ¢ in {0, 1}*.
Since || fuellos < 1 and Pf2_ < p(b), the Talagrand-Bousquet inequality
([6, Theorem 2.3]) yields

2p(b)t 2t
Z <4EZ
- * n—1+3(n—1)’

with probability larger than 1 — e~t. It remains to bound EZ from above.

LEMMA B.10.  We may write

27p(b

n —

EZ < )k

j

Proor oF LEMMA B.10. Let o; and g¢; denote some independent Ra-
demacher and Gaussian variables. For convenience, we denote by E4 the
expectation with respect to the random variable A. Using symmetrization



inequalities we may write

EZ =Ey sup |(Po — Pon—1) H <<uj’ y>>€j Lw)(y)

u,e jil b
n—1 k €
uj, i)\’
< ——EyE; sup UZH << ]b >) 1w (Yi)
WE =1 j=1
2 n—1 k <u]7Y;> i
< S EyEgsupd g [[ (5 (v (Yi)-
€ =1 j=1

Now let ), . denote the Gaussian process Z?;ll gi H§:1 (me) ! 1w (Yi)-

Since, for any y in B(b), u,v in B(1)¥, and €, €’ in {0,1}*, we have

() (5

j=1 j=1
k k+1—r £ k el
<y,uy->> 7 (y,v) \
<X (11 ( I1

r=1 Jj=1 b j=k+2—r b
= <y>uj> K ﬁ <y7vj> E;

B b b

j=1 j=k+1—r

<y lﬁn<<y,;¢j>>fj' ﬁ <<y7bvj>>ej KW)%H_T

_ ((vk+1b—m y>>82+1"“] '

we deduce that

n—1 k 2
T raY;L ;"IH}/Z'
By Qe = e <Y (et - BT g v

< Eg(@u,s - @v,s’)Qa

where O, . = \/EZ?:_f Zle gimwlg(b) (Y;). According to Slepian’s
13



Lemma [5, Theorem 13.3], it follows that

Egsup Yy < Egsup Oy

u,E u,E

<srur, St gir L) (1@-)1@-}
b

k
< \/EEQ sup Z

r=1

2
<€rur7 S gir L) (Yi)Yi>

b2

k
< VEE,sup , | k

We deduce that

EgsupY, < E,sup©,
u,e u,e

2
<6u, S gilg) (Y;-)YZ->
<k Eqg sup

2
ul]=1,c€{0,1} b

2
< ky|E,

n—1

9:Y;
> e (V)
=1

< k\/N(b).

Then we can deduce that ExE, sup,, . Y, < kv/p(b). O

Combining Lemma B.10 with Talagrand-Bousquet’s inequality gives the
result of Proposition B.9. O

We are now in position to prove Proposition B.8.

PROOF OF PROPOSITION B.8. If h/2 < Ty, /4, then, according to Lemma
1

B-77 p(h/z) > Cdfminhdu hence, ifth = (Klog_(?))av (n_l)p(h/2) > chfmin lOg(n)

n
Choosing b = h/2 and t = (k/d + 1) log(n) + log(2) in Proposition B.9 and
K = K'/ fimin, with K’ > 1 leads to

k
P sup (PQ — PO,n—l) H
ul,...,uk,€€{0,1}k Jj=1

<u]7y> K
2= 15(yo,h/2)(Y)

kg
> Cd,kfmax hd < 1 l d
- VK ~—2\n '



On the complement of the probability event mentioned just above, for a
polynomial S = Zae[o,k]dua|§k aays 4, we have

Cd,kfmam ey
(Pon—1— PO)S2(y1:d)ILB(h/2)(y) > — E 7@ yaa%,hdﬂ [+18l
a?ﬁ

S _ Cd,kfmax
Z i

On the other hand, we may write, for all » > 0,

h?)| Sull3.

/ S (yra)dys . . . dya > Casr|Sv12,
B(0,r)

for some constant Cy . It follows that

PoS?(yr.a) L2 (y) = PoS®(yr.a) L i6) (W1:d) = cah” il Sull3,

according to Lemma A.2. Then we may choose K’ = mkjd(fmm/fmm)Q, with
Kkd large enough so that

Pon—-15%(1:0) La(h/2) () > ciafminh?||Shll3-

The second inequality of Proposition B.8 is derived the same way from
Proposition B.9, choosing € = (0,...,0), b = 3h/2 and h < 7,3, /8 so that
b § Tmin / 4. O

Appendix C: Minimax Lower Bounds

C.1. Conditional Assouad’s Lemma

This section is dedicated to the proof of Lemma 7, reproduced below as
Lemma C.11.

LeEMMA C.11 (Conditional Assouad). Let m > 1 be an integer and let
{Qr}oeqo1ym be a family of 2™ submodels Q C Q. Let {Uy x Uy} e, be
a family of pairwise disjoint subsets of X x X', and Dy, be subsets of D.
Assume that for all T € {0,1}™ and 1 < k <m,

o for all Q; € Qr, Ox(Q~) € Dy, on the event {X € Uy};
e for all® € Dy and §' € Dok y, d(6,0") > A.

For all 7 € {0,1}™, let Q, € Conv(Q,), and write ji, and U, for the mar-
ginal distributions of Q, on X and X' respectively. Assume that if (X, X")
15



has distribution Q., X and X' are independent conditionally on the event
{(X,X") € Uy, x U}, and that

min </ dir A du7k> / dv; N\ dv k >1—-a.
7€{0,1}™ Us U}

1<k<m

Then,

inf sup Eg [d(GX(Q),é(X, X'))] > m%(l — a),
0 QeQ

where the infimum is taken over all the estimators 6: X x X —D.

PrROOF OF LEMMA C.11. The proof follows that of Lemma 2 in [14]. Let
0 = 6(X, X’) be fixed. For any family of 2™ distributions {Q-}. € {Q-}_,
since the U, x U}’s are pairwise disjoint,

sup Eq [d(HX(Q)a 0(X, X,))}
QeQ
> mﬁXEQTd(é, 0x(Qr))

> mTaXEQT Z d(é, 9x(QT))]1kaU,; (X, X')
k=1

> 27" S B, d(0,0x(Qr)) Ly oy (X, X)

T k=1

m
= 27" Z ZEQ‘rd(é’ ’ZD‘I':]C)HUICXU,’C (Xv X/)
T k=1

=Y 2 miny” (EQTd(é, Dyse) Ly (X, X')

=1 T

+ ]EQTk d(év Drk,k) ILkaU,’c (X, X/)) :

Since the previous inequality holds for all @, € Q., it extends to Q, €
Conv(Q;) by linearity. Let us now lower bound each of the terms of the
sum for fixed 7 € {0,1}" and 1 < k < m. By assumption, if (X, X’) has
distribution @, then conditionally on {(X, X’) € Uy x U.}, X and X' are

16



independent. Therefore,

E@d(é, Dy o) Ly, vy (X, X') + EZ . d(0,D,x ) Ly vy (X, X7)
> Bg_d(0, Dr) 1, (X) Ly (X') + Eg , (6, Dy 1) Ly (X) Ly (X7)
= By, [B, (6, Drp) 10, (X)) 1y (X')]

+ B, [Bn, (400, D0 ) 1, (X)) 1y (X')]

// (0, Dy ) dfir () diry (2 // QDTkkd/,LT()de()
Uk Uk :

> / / (40, Drs) + d(0. Dys ) dii A diyi (2)dr A ()
U 4

> A (/ dfiy /\dﬁTk> (/ di; N dm)
Us 4

Z A<1 - a)a

where we used that d(6, D) + d(6, D, ;) = A. The result follows by sum-
ming the above bound [{1,...,m} x {0,1}""] = m2™ times. O

C.2. Construction of Generic Hypotheses

Let Méo) be a d-dimensional C*°-submanifold of R” with reach greater than
1 and such that it contains Bga, oyp-a(0,1/2). Méo) can be built for ex-
ample by flattening smoothly a unit d-sphere in R! x {0}P~4~1. Since
Méo) is C*°, the uniform probability distribution PO(O) on Méo) belongs to

0 0
'PfL © 1V 1/ for some L© and Vb( ) _ VOl(Mé ))_

Let now My = (27‘mm)Mé ) be the submanifold obtained from Méo) by
homothecy. By construction, and from Proposition A.4, we have

TMy = 2Tmin, BRdx{O}D—d(O’Tmin) C My, VOZ(MU) Cd Trins

and the uniform probability distribution Py on Mj satisfies

k
PO € P27'minaL/272fmin7fmaa;/2’

whenever L, /2 > LT)/(ZTmm), con Li/2 > Lg))/(QTmm)kfl, and provi-
ded that 2fmin < ((27min)Vi”) ™" < frnas/2. Note that L, ... L

Vol(MéO)) depend only on d and k. For this reason, all the lower bounds will
17



be valid for Toin L1, ..., 75 g, (74 fin) " and 7

s Tyoin .y - infmaz large enough to
exceed the thresholds L(LO)/Q, e ,L,(co)/2k_1, 2‘1‘/[)(0) and (2dV0(0))_1 respecti-
vely.

For 0 < 0 < Tpin/4, let z1,...,2m € My N B(0, Timin/4) be a family of

points such that
for 1<k#K <m, |xp—ap| >4

For instance, considering the family {(llé, ey 1g0,0, ..., 0) }Z-EZ 5< L7/ (46

Tmin | ¢
m > ¢ ( ) ,
= Cd 5
for some ¢4 > 0.
We let e € RP denote the (d + 1)th vector of the canonical basis. In
particular, we have the orthogonal decomposition of the ambient space

RP = (R? x {0}77%) + span(e) + ({0} x RP=4-1).

Let ¢ : RP — [0,1] be a smooth scalar map such that ¢|B(0,§) =
Land ¢|g 1y = 0.

Let Ay >0and 1 > Ay > A_ > 0 be real numbers to be chosen later.
Let A = (Aq,...,A,) with entries —Ay < Ay <Ay, and A = (Ay,..., An)
with entries A_ < A, < Ay. For z € RP, we write z = (21,...,2p) for its
coordinates in the canonical basis. For all 7 = (1,...,7,) € {0,1}"™, define
the bump map as

(1) oM@ =2+ ¢ (95 _53“"’“) {mhAk(z — 2p) + (1 — ) Ax } e
k=1

An analogous deformation map was considered in [1]. We let PTA A0 denote
the pushforward distribution of Py by <I>§x ’A’(i), and write Mﬁx A for its
support. Roughly speaking, MTA A consists of m bumps at the x;’s having
different shapes (Figure 1). If 7, = 0, the bump at zj, is a symmetric plateau
function and has height Ag. If 7, = 1, it fits the graph of the polynomial
Ay (z — ) locally. The following Lemma C.12 gives differential bounds and

geometric properties of ™A,

LemMmA C.12.  There exists cy; < 1 such that if Ay < c¢7,~5"_1 and
Ay < cy40, then <I)71}’A’Z is a global C*®-diffeomorphism of RP such that for
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Uk

Ag

(a) Flat bump: 7% = 0.

Uk, p

(b) Linear bump: 7, =1, ¢ = 1. (¢) Quadratic bump: 7, =1, ¢ = 2.

Figure 1: The three shapes of the bump map CIJﬁ\’A’i around xj.

all1 <k <m, &M (B(xg,0)) = B(xg,0). Moreover,

AAi Ay Ay
1o - aoa, < cf 55 by {5}

and for j > 2,

A A Ay
Jwarri),, <o {55 b {5

Proor oF LEMMA C.12. Follows straightforwardly from chain rule, si-
milarly to Lemma 11 in [1]. O
LEMMA C.13. If TinLy, ... ,T,’fl;;Lk, (78 Fmin) "t and T, frae are
large enough (depending only on d and k), then provided that Ay Vv A8 <
Chodir, OF, for all T € {0,1}m, PP ¢ Pk

Tmin L fminsfmaz

Proor orF LEMMA C.13. Follows using the stability of the model Lemma

A.4 applied to the distribution Py € Pngm L/2.2 Fomimsfoman /2 and the map
(I)ﬁx’A’i, of which differential bounds are asserted by Lemma C.12. O
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C.3. Hypotheses for Tangent Space and Curvature
C.3.1. Proof of Lemma 8

This section is devoted to the proof of Lemma 8, for which we first derive

two slightly more general results, with parameters to be tuned later. The

proof is split into two intermediate results Lemma C.14 and Lemma C.15.
Let us write Q@L for the mixture distribution on (R”)" defined by

. A\ ®n dA dA
IR Y A __dA
@) ’ A A J[A_ Ay < ) (Ap —A-)™ (2A4)

Although the probability distribution Q(Tl)n depends on A_, A, and Ay, we
omlt this dependency for the sake of compactness. Another way to define
Q is the following: draw uniformly A in [-A4, A;]™ and A in [A_, A;]™,
and given (A, A), take Z; = @™ (Y;), where Y1, . .., Yy, is an i.i.d. n-sample
Wi(t)h common distribution Py on My. Then (Zi,...,Z,) has distribution
~(2

T,M -

LEmMmMmA C.14.  Assume that the conditions of Lemma C.12 hold, and let
Uy = BRdX{O}D*d (zk,6/2) + Bspan(e) (0, Tmin/2),
and

U = (B2 { Brasgop-a (25.8) + Bt (0. Tmin /2)})"_1 .

Then the sets Uy, x U}, are pairwise dzsyomt an € C'onv((PTZ))(gn), and if

(Z1y...,Zyn) = (Z1, Zam) has distribution QTn, Z1 and Zs.q are independent
conditionally on the event {(Z1, Za.n) € U, x UL}

Moreover, if (X1,...,X,) has distribution (PA A Z))®n (with fixred A and
A), then on the event {X1 € Uy}, we have:
® if 1, =0,
D—d MAAD
TXlMAA() >< {O} 5 HII OWTXIM;\,A,(Z') o =0

and dH(Mo,M‘,{X’A’(i)) > |Ak’
b Zf Tk = 17

— fori=1:/ (TXlM;\’A’(l),]R{d x {O}D_d) > A_/2.
20



AL (2)

. M
— fori=2: IIXlT oT AAL(2)

- > A /2.

op

PrOOF OoF LEMMA C.14. It is clear from the definition (2) that QQ% €
Conv((Pg))@L). By construction of the <I>£’A’7”S, these maps leave the sets

BRdX{O}D*d (xkv d) + Bspan(e) <07 Tmm/Q)

unchanged for all A, L. Therefore, on the event {(Z1, Za.,) € Uy, x U}.}, one
can write Z; only as a function of X1, Ay, Ay, and Zs., as a function of the
rest of the X;’s,A;’s and Ay’s. Therefore, Z; and Z»., are independent.

We now focus on the geometric statements. For this, we fix a deterministic
point z = @?’A’(i) (xo) € Uy ﬁMTA’A’(i). By construction, one necessarily has
xg € Mo N B(xg,d/2).

o If 7, = 0, locally around =z, <I>£’A’(1) is the translation of vector Age.
Therefore, since M satisfies Ty, Mo = R? x {O}Did and II%O =0, we

have
. _ ALA(2)
TzM‘I{"A’(’L) — Rd X {O}D d and HII;WT O 7TT MA’A’(i) = 0
z T op
o if 7, =1,
— for ¢ = 1: locally around xy, @?’A’(l) can be written as x — x +
Apg(x —zp)1e. Hence, T, MA@ contains the direction (1, Ag) in

the plane span(e;, e) spanned by the first vector of the canonical
basis and e. As a consequence, since e is orthogonal to R? x

{0374,

—-1/2

/ (TZMAA,(l),Rd X {o}D—d) > (14+1/42) 7% > A2 > A_)2.

(2) can be written as x —

— for ¢ = 2: locally around xg, CI)Q’A
x+ Ap(x— mk)%e. Hence, MTA’A’(Q) contains an arc of parabola of
equation y = Ay(x — )7 in the plane span(ei,e). As a conse-
quence,

ALAL(2)

M
HHZ O T pAA

> Ap/2> A_/2.
op
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LEMMA C.15.  Assume that the conditions of Lemma C.12 and Lemma
C.1/4 hold. If in addition, cA,(6/4)" < Ay < CAL(5/4)" for some absolute
constants C > ¢ > 3/4, and A_ = A, /2, then,

and

o o 6 d n—1
/ de(rZ,)n—l A deﬁ n—t = (1 —cg < ) > ) :
U’ ) Tmin

k

Proor orF LEMMA C.15. First note that all the involved distributions
have support in R? x span(e) x {0}7~ (d+1) Therefore, we use the canoni-
cal coordinate system of R? x span(e), centered at x;, and we denote the
components by (z1,z2,...,24,y) = (21, Z2.4,y). Without loss of generality,
assume that 7, = 0 (if not, flip 7 and 7%). Recall that ¢ has been chosen to
be constant and equal to 1 on the ball B(0,1/2).

By deﬁnition (2), on the event {Z € Uy}, a random variable Z having

distribution QT 1 can be represented by Z = X + ¢ (X ‘”’“) Are =X+ Age

where X and Ay are independent and have respective distributions Py (the
uniform distribution on M) and the uniform distribution on [—Ay, A].

Therefore, on Uy, Qg)l has a density with respect to the Lebesgue measure
Aa+1 on R? x span(e) that can be written as

; 1 ()
(i) _ A Al
q’?’,l(x17x2:d7y) - 2VOZ(MO)A+

Analogously, nearby zj, a random variable Z having distribution Q(le) , can be

represented by Z = X + Ap(X — mk)zie where Aj, has uniform distribution on
[A_, A;]. Therefore, a straightforward change of variable yields the density

Lia_ i a,0i)(®)
Vol(Mp) (Ay — A_) i

(1511371(961, T2:d,Y) =

We recall that Vol(My) = (2Tmm)dV0l(MéO)) = ;.. Let us now tackle
the right-hand side inequality, writing

22



1 (y) Lig gioa,a (W)
(AL ALY ) [A—=],A a]]
= A dydxidx
/B(xk,6/2) <2V ol (Mo)A+ (V ol(Mp) (Ay — A_)z} S

/ /5/4 / ( I )> \ ]l[AJzi’A%](y) dydx1d$2;d'
— Bpaa( 5/4 204 Ay /2 Vol(Mo)
It follows that

[ 0t naaty,

Uy ’
> G4 gi- 1/6/4/A+A T2
T Apzi/2 2A+ Ay

/5/4/ (en1)( A+x1 26/\ 1/2)d 4
T
mzn A+5’31/2 AJF

Ay (3/4)™
1+ 1

| \/

— 4 51 (2e N 1/2) (e AT — 1/2) 3

man JF

>Cd’i< d )d.
- C Tmin

For the integral on U}, notice that by definition, Qilzm_l and Qil,z _q COI-

ncide on U}, since they are respectively the image distributions of Py by
functions that are equal on that set. Moreover, these two functions leave

RP \ {BRdX{O}D—d (7k, 6) + Bypan(e) (0, Tmm/Z)} unchanged. Therefore,
/ ern 1/\dQTk et
R )
= (1= Py (Baooyo-a (26:6) 4 Bupano (0. 7min/2) ) )
- (1 - wdéd/Vol(Mo))n_ ,
hence the result. O

PRrOOF OF LEMMA 8. The properties of {Q(Tz)n}T and {Uy x Uy}, given
by Lemma C.14 and Lemma C.15 yield the result, setting Ay = A,5/4,
A d
Ar =2A_ =¢ed* " for e =€y 4., , and § such that (%) =-L. 0O
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C.3.2. Proof of Lemma 9

This section details the construction leading to Lemma 9 that we restate in
Lemma C.16.

LEMmmA C.16.  Assume that Tminl | ,. . Tk_lLk,(Tf,lnnfmm)_l, Tgnnfmm

2 iman
are large enough (depending only ond and k), ando > Cj 4.5, (1/(n — 1))k/d
for Crary.m > 0 large enough. Given i € {1,2}, there exists a collection

of 2™ distributions {P(Ti)’J}Te{O 1y C Pk (o) with associated submanifolds

{Mg)’a}ﬂ_e{o 1y together with pairwise disjoint subsets {U }1<p<m of RP
such that the following holds for all T € {0,1}™ and 1 < k < m.
Ifz €U andy =7, ). (), we have

4 Zf Tk = 07
. d D—d ‘,(_i),o
T, M%7 = R? x {0} , HH;” o |, =0
o Zf T = 1,

k-1

k+d

— fori=1:2 <TyMT(1)’U,Rd X {O}D_d) > Chod,Tomin ( i > ;
k=2

> , o k+d

Cc ) .
op - k:dsz'Ln (n _ 1)

/ Ps_i)’g)®n_l A (P i ,a)@n—l > co, and  m - Ps_i),a A P(ig,a > ¢y
(RD)nfl

k

T T
o
Ulc

(2),0
— fori=2: HIIéV[T

e}
7TTyM$2),U

Furthermore,

PrROOF OF LEMMA C.16. Following the notation of Section C.2, for i €
{1,2}, 7 € {0,1}™, § < Tpnin/4 and A > 0, consider

(3) A (z) =2 + Z o) <az 5xk> {mA(x —z1) e
k=1

Note that (3) is a particular case of (1). Clearly from the definition, vl

and (IDf,f coincide outside B(zy,6), (®(x) — x) € span(e) for all z € RP,

and ||[Ip — @[, < A" Let us define M2 = &2(My). From Lemma C.13,
i k—1

we have Mf‘” € C’fmn , provided that 7,;n Ly, ..., 7, . Lj are large enough,

and that § < Ty /2, with A/6F1 < ¢ for ¢ = Eh,drmin,i Sall enough.
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Furthermore, let us write
Uy = B (oyp-d (xg,0/2) + Byoyaxrp-d (rx,0/2).

Then the family {U7}1<k<m is pairwise disjoint. Also, since 73, = 0 implies
that M2 coincides with My on B(xy, ), we get that if 2 € U] and y =
T A (2?),

T,MA" = R? x {0}P~ | HH%"" o — 0.

op

T, MY
Furthermore, by construction of the bump function (IJf’i, it z € U] and

T = 1, then
. A
/ (TyM;“’Z,Rd x {o}D—d) >Z,
and

A
M2
HIIy o7rTy

Ai
M op

Now, let us write
Op = {y+ely e MM, ¢ e (T,MM) " gl < o/2}

for the offset of Mf-\’A’i of radius 0/2. The sets {Of’i}T are closed subsets
of RP with non-empty interiors. Let PTA " denote the uniform distribution
on O, Finally, let us denote by pAi — (WMA,i)*Pf " the pushforward

distributions of P2 by the projection maps 7 From Lemma 19 in [12],

M71_41
PTA " has a density ffl " with respect to the volume measure on Mf‘ " and
this density satisfies

- NI
Vol MAG A < Tmin <(?
ol (M) f7" < <7‘mm—0/2 —\3) 7

and

Vol (MAY) fA4 > Tmin = 0/2)" (81
0 : ’ - .

T T T \Tminto/2) T \5
Since, by construction, Vol(My) = cqr;,, and ¢ < Vol(Mﬁ\’A’i)/Vol(Mo) <
C/, whenever A/§"1 < &/, o we get that P2 belongs to the model PF
provided that (7¢ in fimin) " and 7¢

o - infmaz are large enough. This proves that

under these conditions, the family {Pf ’i}T {0,1}m is included in the model
Pk (o).
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Let us now focus on the bounds on the L' test affinities. Let 7 € {0,1}™
and 1 < k < m be fixed, and assume, without loss of generality, that 7, = 0
(if not, flip the role of 7 and 7%). First, note that

n—1
/(RD)n_l (Pz;x,z‘)@nﬂ A (Pféi)®nfl > (/RD PA A Pfk,i> ‘

. Aji A : o A
Furthermore, since P7"* and P7}" are the uniform distributions on O7"* and
A
or",

Aji y A 1 Ai _ pAg
/RDPT7Z/\P71€ _1_2/RD ’PTZ_PTICZ

_ 1 ]1(9;“”'(@) B ]]-Of,i(a)
- Q/RD Vol (O;‘“) Vol (Ofgi) o)
Furthermore,
1 Loai(a) Loai(a)
2o (0] " var(o)| "
1 i i 1 B 1
= Vol (047 n 0% Vol (027) Vel (02)

| (Vo (0N 0% vl (04T 0
+3 R .

2 Vol (O:‘ﬂ) Vol (Of,f)
vol (0 047) v vl (047 o)

Vol (oﬁ”) AVol (Of,;i)

<

N W

To get a lower bound on the denominator, note that for § < 7,,in/2, Mf )t
A .
and M ;" both contain

BRdX{O}D—d(O, Tmin) \ BRdX{O}D—d(O, Tmin/4),
so that 02" and (’)f,gi both contain
(Bt oy 040, Tmin) \ B0y 040, Tmin /4) ) + Byoyaxcz-a(0, 0/2).
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As a consequence, Vol ((’)ﬁ”)/\Vol (Of,;i> > cqwar? . wp_q(a/2)P~? where

min
w¢ denote the volume of a ¢-dimensional unit Euclidean ball.
We now derive an upper bound on Vol((’)A’Z \ (’)A Z) To this aim, let us

consider ay = y—l—{ e oM \ ot 73 with y € MAZ and ¢ € (T, MAZ)

Since &2+ and % 7% coincide outside B(zy, d), so do M and M:}vl. Hence,
one necessarily has y € B(xg,d). Thus, (TyM.f"i)L = T,Mg = span(e) +
{037 x RP=4-1 50 we can write £ = se 4 z with s € R and z € {0}*™ x
RP~4-1 By definition of 02, ||¢]| = /5% + ||z||* < 0/2, which yields ||z|| <
o/2 and |s| < 1/(c/2)% — ||z||*. Furthermore, 3 does not belong to (’)f,;i,

which translates to

a/2 <d(a0,M Hyo—i—se—i-z—@féi(yo)u

: 2
= \/‘8 + <€,?/0 - ‘Pfél(yo)>‘ + 2117,

from what we get s| > +/(0/2)2 — ||z||* — HID - @f,;i
that 02\ 0% 7% is a subset of

. We just proved
oo

Ba(xy,0) + {se + 2| (s,2) € R x RP747L 12| < /2 and

(0/27 = 121> = || 1 — @2

<< lo/22 - quz}.
Hence,

4) Vol (Ofﬂ' \ o;“,;") < wgod x 2 HID — o4

X wD_d_l(O'/Q)Dfdil.
00

Similar arguments lead to

(5) Vol (04 0) < wad x 2 |[Ip — || _ x wp_a1(0/2)°

Since HID _ A H \/HID _ i
yields

< A$%, summing up bounds (4) and (5)

WaWp—d— 1A5Z 5d(0'/2)D_d_1

wgtd . wp_q(o/2)P—d

i d
g < 5 ) |
g Tmin
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To derive the last bound, we notice that since U] C Of’i = Supp(Pf’i),
we have

Vol (U,g N Of,f)
Vol (oﬁ‘vi) AVol (ij)
Vol (U7) — Vol (U,g \ Of,;i>
Vol (0?72') AVol (Ofk’i)

| paiapls
Ug

Vol (U7) — Vol (o;“ \ o;“,j)
Vol (oﬁ‘ﬂ') AVol (Ofk’i)

o wi(8/2)%wp_a(0/2)P ! — wis?AS'wp_g-1(0/2)P~
watd \wp—_q(o/2)P~1 .

Hence, whenever A§° < cqo for c¢g small enough, we get

4 A 5 \¢
/ Pfﬂ/\PA,;’>c{i< > .
- T - Tor i
Uy min

Since m can be chosen such that m > cg(Tmin/0)?, we get the last bound.

Eventually, writting P(Ti)’g = P2 for the particular parameters A =

. ; d

ed*~t, for € = ek 4., small enough, and & such that % %) =

yields the result. Such a choice of parameter § does meet the condition
A k/d

A" = e6F < ¢qo, provided that o > o <L) . O

n—1

C.4. Hypotheses for Manifold Estimation
C.4.1. Proof of Lemma 5

Let us prove Lemma 5, stated here as Lemma C.17.

k—1 d -1 d
Lemma CA7. If ToinLy, ... 7 L, (T5 i fmin) — and 75, fmaz are

large enough (depending only on d and k), there exist Py, P, € P* with
associated submanifolds My, My such that

1 d
du (Mo, M1) > Crdrpin (n) . and ||Py A\ PL|T > co.
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ProoF oF LEMMA C.17. Following the notation of Section C.2, for § <
Tmin/4 and A > 0, consider

q»é(x)zﬂgb(%)A.e,

which is a particular case of (1). Define M* = ®*(Mjy), and P* = ®L R,
Under the conditions of Lemma C.13, Py and P* belong to P¥, and by con-
struction, dg(My, M*) = A. In addition, since Py and P* coincide outside
B(0,4),

/RD dPy AdP"* = Py(B(0,9)) :wd< i )d.

Tmin

d
Setting P, = P» with wy <L> =Land A = ck,d,Tmm(Sk for i q.7,,m >0

Tmin n
small enough yields the result. O

C.4.2. Proof of Lemma 6

Here comes the proof of Lemma 6, stated here as Lemma C.17.

Lemma C.18. If 1yinly, ... TkilLk,(Tdmfmm)_l and 7. frae are

» 'min m min
large enough (depending only on d and k), there exist P§, P{ € P*(o) with
associated submanifolds M§, MYy such that

_k_
A (M, M7) > ra, (2) ™ and B AP} > co.

ProOF OF LEMMA C.18. The proof follows the lines of that of Lemma
C.16. Indeed, with the notation of Section C.2, for § < Tpnin/4 and 0 < A <
Chodri O fOT Ch x> 0 small enough, consider

@£(x):x+¢(§)A-e.

Define M* = &M (My). Write O, O for the offsets of radii o/2 of My, M,
and and Py, P? for the uniform distributions on these sets.
By construction, we have dg (M, MA) = A, and as in the proof of Lemma

C.16, we get
Al o\
/ PO/\PAZI—3< ) .
RD 0 \ Tmin

Denoting Py = Pg and Py = PA with A = 5k,d,rmm5k and & such that
d
3% (ﬁ) yields the result.

O
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C.5. Minimax Inconsistency Results

This section is devoted to the proof of Theorem 1, reproduced here as The-
orem C.19.

THEOREM C.19. Assume that Tmin = 0. If D > d+3, then, for all k > 2
and L > 0, provided that L3/L? ... ,Lk/Llj_fl, le_/fmm and fmax/L‘j_ are
large enough (depending only on d and k), for alln > 1,

inf sup Ep@%é(TxM,T) >

T Pep,

> 0,

N |

where the infimum is taken over all the estimators T = T(Xl, . ,Xn).
Moreover, for any D > d+1, provided that Lz/L? , ... ,L;C/L’j_fl, L‘Jj_/fmm
and frmaz/LS are large enough (depending only on d and k), for all n > 1,

— L
inf sup Epen II%OWTIM—II Z—J‘>O7
11 pepl, op — 4
where the infimum is taken over all the estimators 17 = ﬁ(Xl, ... ,Xn).

We will make use of Le Cam’s Lemma, which we recall here.

THEOREM C.20 (Le Cam’s Lemma [14]). For all pairs P, P’ in P,

—_

inf sup Epend(0(P), ) >

if sup 5@ (0(P), 6(P")) P AP,

where the infimum is taken over all the estimators 6 = 9(X1, e Xn).

PROOF OF THEOREM C.19. For 6 > A > 0, let C,C' C R? be closed
curves of the Euclidean space as in Figure 2, and such that outside the
figure, C and C’ coincide and are C*°. The bumped parts are obtained with
a smooth diffeomorphism similar to (1) and centered at z. Here, 6 and A
can be chosen arbitrarily small.

Let ST1 ¢ R? be a d — 1-sphere of radius 1/L . Consider the Cartesian
products M; = C x 84! and M| = C' x S*1. M; and M] are subsets
of R4*3 C RP. Finally, let P, and P] denote the uniform distributions on
M and M’. Note that M, M’ can be built by homothecy of ratio A =
1/L, from some unitary scaled Ml(o),M ! 50), similarly to Section 5.3.2 in
[2], yielding, from Proposition A.4, that P;, P{ belong to P(kx) provided that

L3/L?,... ,Lk/L’fl,L‘i/fmm and fm(m/L‘i are large enough (depending
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Figure 2: Hypotheses for minimax lower bound on tangent space estimation
with 7 = 0.

only on d and k), and that A,§ and A¥/§ are small enough. From Le Cam’s
Lemma C.20, we have for all n > 1,

o1
inf sup EpenZ(T,M,T) > =
T PEP(’;) 2

L(T My, T M) || P|Y

By construction, Z(T, M, T, M) = 1, and since C and C’ coincide outside
Brs(0,0),

[Py APl = 1= Vol ((Bgs (0,8) nC) x §771) /vl (€ x §%7)

=1— Length (Bgs(0,6) NC) /Length(C)
>1—cp 0.

Hence, at fixed n > 1, letting A, go to 0 with A¥/6 small enough, we get
the announced bound.

We now tackle the lower bound on curvature estimation with the same
strategy. Let My, M} C RP be d-dimensional submanifolds as in Figure
3: they both contain x, the part on the top of My is a half d-sphere of
radius 2/L , the bottom part of M} is a piece of a d-plane, and the bumped
parts are obtained with a smooth diffeomorphism similar to (1), centered
at z. Outside B(z,d), M2 and M/ coincide and connect smoothly the upper
and lower parts. Let P», Pj be the probability distributions obtained by the
pushforward given by the bump maps. Under the same conditions on the
parameters as previously, P» and P} belong to 77(]3:) according to Proposition

31



Figure 3: Hypotheses for minimax lower bound on curvature estimation with
Tmin — 0.

A 4. Hence from Le Cam’s Lemma C.20 we deduce

IIéVIOT['TzM —ﬁ

inf sup Epen

IT pep}, op

> % |11 0 sy = TR o mpyagy | [|P2 Pl
op

But by construction, ‘IIQJC\/[2 OWTZM?Hop = 0, and since M} is a part of a

= L, /2. Hence,
op

sphere of radius 2/L | nearby =z,

M/
I_[x 2 O7TT,JM§

M/
HH% omnan — 1L orray| > Li/2

Moreover, since P, and Pj coincide on RP \ B(z, d),
| P A P3|, =1— Po(B(x,6) > 1—cqr, 6%

At n > 1 fixed, letting A,6 go to 0 with A¥/§ small enough, we get the
desired result.
O
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