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Appendix A: Properties and Stability of the Models

A.1. Property of the Exponential Map in C2
τmin

Here we show the following Lemma 1, reproduced as Lemma A.1.

Lemma A.1. If M ∈ C2
τmin, expp : BTpM (0, τmin/4)→M is one-to-one.

Moreover, it can be written as

expp : BTpM (0, τmin/4) −→M

v 7−→ p+ v + Np(v)

with Np such that for all v ∈ BTpM (0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥ ‖v‖ ,

where L⊥ = 5/(4τmin). Furthermore, for all p, y ∈M ,

y − p = πTpM (y − p) +R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖
2

2τmin
.

Proof of Lemma A.1. Proposition 6.1 in [13] states that for all x ∈M ,∥∥IIMx ∥∥op ≤ 1/τmin. In particular, Gauss equation ([8, Proposition 3.1 (a),

p.135]) yields that the sectional curvatures of M satisfy −2/τ2
min ≤ κ ≤

1/τ2
min. Using Corollary 1.4 of [3], we get that the injectivity radius of M is

at least πτmin ≥ τmin/4. Therefore, expp : BTpM (0, τmin/4) → M is one-to-
one.

Let us write Np(v) = expp(v) − p − v. We clearly have Np(0) = 0
and d0Np = 0. Let now v ∈ BTpM (0, τmin/4) be fixed. We have dvNp =
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dv expp−IdTpM . For 0 ≤ t ≤ ‖v‖, we write γ(t) = expp(tv/ ‖v‖) for the
arc-length parametrized geodesic from p to expp(v), and Pt for the parallel
translation along γ. From Lemma 18 of [9],∥∥∥dt v

‖v‖
expp−Pt

∥∥∥
op
≤ 2

τ2
min

t2

2
≤ t

4τmin
.

We now derive an upper bound for
∥∥Pt − IdTpM∥∥op. For this, fix two unit

vectors u ∈ RD and w ∈ TpM , and write g(t) = 〈Pt(w) − w, u〉. Letting ∇̄
denote the ambient derivative in RD, by definition of parallel translation,∣∣g′(t)∣∣ =

∣∣〈∇̄γ′(t)Pt(w)− w, u〉
∣∣

=
∣∣∣〈IIMγ(t)

(
γ′(t), Pt(w)

)
, u〉
∣∣∣

≤ 1/τmin.

Since g(0) = 0, we get
∥∥Pt − IdTpM∥∥op ≤ t/τmin. Finally, the triangle ine-

quality leads to

‖dvNp‖op =
∥∥dv exp−IdTpM

∥∥
op

≤
∥∥dv exp−P‖v‖

∥∥
op

+
∥∥P‖v‖ − IdTpM∥∥op

≤ 5 ‖v‖
4τmin

.

We conclude with the property of the projection π∗ = πTpM . Indeed, defining
R2(y − p) = (y − p)− π∗(y − p), Lemma 4.7 in [10] gives

‖R2(y − p)‖ = d(y − p, TpM)

≤ ‖y − p‖
2

2τmin
.

A.2. Geometric Properties of the Models Ck

Lemma A.2. For any M ∈ Ckτmin,L and x ∈M , the following holds.

(i) For all v1, v2 ∈ BTxM
(

0, 1
4L⊥

)
,

3

4
‖v2 − v1‖ ≤ ‖Ψx(v2)−Ψx(v1)‖ ≤ 5

4
‖v2 − v1‖ .
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(ii) For all h ≤ 1
4L⊥
∧ 2τmin

5 ,

M ∩ B
(
x,

3h

5

)
⊂ Ψx (BTxM (x, h)) ⊂M ∩ B

(
x,

5h

4

)
.

(iii) For all h ≤ τmin
2 ,

BTxM
(

0,
7h

8

)
⊂ πTxM (B(x, h) ∩M) .

(iv) Denoting by π∗ = πTxM the orthogonal projection onto TxM , for all
x ∈ M , there exist multilinear maps T ∗2 , . . . , T

∗
k−1 from TxM to RD,

and Rk such that for all y ∈ B
(
x,

τmin∧L−1
⊥

4

)
∩M ,

y − x = π∗(y − x) + T ∗2 (π∗(y − x)⊗2) + . . .+ T ∗k−1(π∗(y − x)⊗k−1)

+Rk(y − x),

with

‖Rk(y − x)‖ ≤ C ‖y − x‖k and ‖T ∗i ‖op ≤ L
′
i, for 2 ≤ i ≤ k − 1,

where L′i depends on d, k, τmin, L⊥, . . . , Li, and C on d, k, τmin, L⊥,
. . ., Lk. Moreover, for k ≥ 3, T ∗2 = IIMx .

(v) For all x ∈ M ,
∥∥IIMx ∥∥op ≤ 1/τmin. In particular, the sectional curva-

tures of M satisfy

−2

τ2
min

≤ κ ≤ 1

τ2
min

.

Proof of Lemma A.2. (i) Simply notice that from the reverse tri-
angle inequality,∣∣∣∣‖Ψx(v2)−Ψx(v1)‖

‖v2 − v1‖
− 1

∣∣∣∣ ≤ ‖Nx(v2)−Nx(v1)‖
‖v2 − v1‖

≤ L⊥(‖v1‖ ∨ ‖v2‖) ≤
1

4
.

(ii) The right-hand side inclusion follows straightforwardly from (i). Let us
focus on the left-hand side inclusion. For this, consider the map defined
by G = πTxM ◦Ψx on the domain BTxM (0, h). For all v ∈ BTxM (0, h),
we have

‖dvG− IdTxM‖op = ‖πTxM ◦ dvNx‖op ≤ ‖dvNx‖op ≤ L⊥ ‖v‖ ≤
1

4
< 1.
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Hence, G is a diffeomorphism onto its image and it satisfies ‖G(v)‖ ≥
3 ‖v‖/4. It follows that

BTxM
(

0,
3h

4

)
⊂ G (BTxM (0, h)) = πTxM (Ψx (BTxM (0, h))) .

Now, according to Lemma A.1, for all y ∈ B
(
x, 3h

5

)
∩M ,

‖πTxM (y − x)‖ ≤ ‖y − x‖+
‖y − x‖2

2τmin
≤
(

1 +
1

4

)
‖y − x‖ ≤ 3h

4
,

from what we deduce πTxM
(
B
(
x, 3h

5

)
∩M

)
⊂ BTxM

(
0, 3h

4

)
. As a con-

sequence,

πTxM

(
B
(
x,

3h

5

)
∩M

)
⊂ πTxM (Ψx (BTxM (0, h))) ,

which yields the announced inclusion since πTxM is one to one on
B
(
x, 5h

4

)
∩M from Lemma 3 in [4], and(
B
(
x,

3h

5

)
∩M

)
⊂ Ψx (BTxM (0, h)) ⊂ B

(
x,

5h

4

)
∩M.

(iii) Straightforward application of Lemma 3 in [4].
(iv) Notice that Lemma A.1 gives the existence of such an expansion for

k = 2. Hence, we can assume k ≥ 3. Taking h =
τmin∧L−1

⊥
4 , we showed

in the proof of (ii) that the map G is a diffeomorphism onto its image,
with ‖dvG− IdTxM‖op ≤

1
4 < 1. Additionally, the chain rule yields∥∥divG∥∥op ≤ ∥∥divΨx

∥∥
op
≤ Li for all 2 ≤ i ≤ k. Therefore, from Lemma

A.3, the differentials of G−1 up to order k are uniformly bounded. As
a consequence, we get the announced expansion writing

y − x = Ψx ◦G−1 (π∗(y − x)) ,

and using the Taylor expansions of order k of Ψx and G−1.
Let us now check that T ∗2 = IIMx . Since, by construction, T ∗2 is the
second order term of the Taylor expansion of Ψx ◦ G−1 at zero, a
straightforward computation yields

T ∗2 = (ID − πTxM ) ◦ d2
0Ψx

= πTxM⊥ ◦ d
2
0Ψx.
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Let v ∈ TxM be fixed. Letting γ(t) = Ψx(tv) for |t| small enough,
it is clear that γ′′(0) = d2

0Ψ(v⊗2). Moreover, by definition of the se-
cond fundamental form [8, Proposition 2.1, p.127], since γ(0) = x and
γ′(0) = v, we have

IIMx (v⊗2) = πTxM⊥(γ′′(0)).

Hence

T ∗2 (v⊗2) = πTxM⊥ ◦ d
2
0Ψx(v⊗2)

= πTxM⊥(γ′′(0))

= IIMx (v⊗2),

which concludes the proof.
(v) The first statement is a rephrasing of Proposition 6.1 in [13]. It yields

the bound on sectional curvature, using the Gauss equation [8, Propo-
sition 3.1 (a), p.135].

In the proof of Lemma A.2 (iv), we used a technical lemma of differential
calculus that we now prove. It states quantitatively that if G is Ck-close
to the identity map, then it is a diffeomorphism onto its image and the
differentials of its inverse G−1 are controlled.

Lemma A.3. Let k ≥ 2 and U be an open subset of Rd. Let G : U → Rd
be Ck. Assume that ‖Id − dG‖op ≤ ε < 1, and that for all 2 ≤ i ≤ k,∥∥diG∥∥

op
≤ Li for some Li > 0. Then G is a Ck-diffeomorphism onto its

image, and for all 2 ≤ i ≤ k,∥∥Id − dG−1
∥∥
op
≤ ε

1− ε
and

∥∥diG−1
∥∥
op
≤ L′i,ε,L2,...,Li <∞, for 2 ≤ i ≤ k.

Proof of Lemma A.3. For all x ∈ U , ‖dxG− Id‖op < 1, so G is one to
one, and for all y = G(x) ∈ G(U),∥∥Id − dyG−1

∥∥
op

=
∥∥Id − (dxG)−1

∥∥
op

≤
∥∥(dxG)−1

∥∥
op
‖Id − dxG‖op

≤
‖Id − dxG‖op

1− ‖Id − dxG‖op
≤ ε

1− ε
.
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For 2 ≤ i ≤ k and 1 ≤ j ≤ i, write Π
(j)
i for the set of partitions of {1, . . . , i}

with j blocks. Differentiating i times the identity G ◦G−1 = IdG(U), Faa di
Bruno’s formula yields that, for all y = G(x) ∈ G(U) and all unit vectors
h1, . . . , hi ∈ RD,

0 = dy
(
G ◦G−1

)
.(hα)1≤α≤i =

i∑
j=1

∑
π∈Π

(j)
i

djxG.
((
d|I|y G

−1. (hα)α∈I

)
I∈π

)
.

Isolating the term for j = 1 entails∥∥∥dxG.(diyG−1. (hα)1≤α≤i

)∥∥∥
op

=

∥∥∥∥∥∥∥−
i∑

j=2

∑
π∈Π

(j)
i

djxG.
((
d|I|y G

−1. (hα)α∈I

)
I∈π

)∥∥∥∥∥∥∥
op

≤
i∑

j=2

∑
π∈Π

(j)
i

∥∥djG∥∥
op

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

Using the first order Lipschitz bound on G−1, we get

∥∥diG−1
∥∥
op
≤ 1 + ε

1− ε

i∑
j=2

Lj
∑
π∈Π

(j)
i

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

The result follows by induction on i.

A.3. Proof of Proposition 1

This section is devoted to prove Proposition 1 (reproduced below as Propo-
sition A.4), that asserts the stability of the model with respect to ambient
diffeomorphisms.

Proposition A.4. Let Φ : RD → RD be a global Ck-diffeomorphism.
If ‖dΦ− ID‖op ,

∥∥d2Φ
∥∥
op

, . . . ,
∥∥dkΦ∥∥

op
are small enough, then for all

P in Pkτmin,L,fmin,fmax, the pushforward distribution P ′ = Φ∗P belongs to

Pkτmin/2,2L,fmin/2,2fmax
.

Moreover, if Φ = λID (λ > 0) is an homogeneous dilation, then P ′ ∈
Pk
λτmin,L(λ),fmin/λ

d,fmax/λd
, where L(λ) = (L⊥/λ, L3/λ

2, . . . , Lk/λ
k−1).
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Proof of Proposition A.4. The second part is straightforward since
the dilation λM has reach τλM = λτM , and can be parametrized locally by
Ψ̃λp(v) = λΨp(v/λ) = λp + v + λNp(v/λ), yielding the differential bounds
L(λ). Bounds on the density follow from homogeneity of the d-dimensional
Hausdorff measure.

The first part follows combining Proposition A.5 and Lemma A.6.

Proposition A.5 asserts the stability of the geometric model, that is, the
reach bound and the existence of a smooth parametrization when a subma-
nifold is perturbed.

Proposition A.5. Let Φ : RD → RD be a global Ck-diffeomorphism. If
‖dΦ− ID‖op ,

∥∥d2Φ
∥∥
op

, . . . ,
∥∥dkΦ∥∥

op
are small enough, then for all M in

Ckτmin,L, the image M ′ = Φ (M) belongs to Ckτmin/2,2L⊥,2L3,...,2Lk
.

Proof of Proposition A.5. To bound τM ′ from below, we use the sta-
bility of the reach with respect to C2 diffeomorphisms. Namely, from Theo-
rem 4.19 in [10],

τM ′ = τΦ(M) ≥
(1− ‖ID − dΦ‖op)2

1+‖ID−dΦ‖op
τM

+ ‖d2Φ‖op

≥ τmin
(1− ‖ID − dΦ‖op)2

1 + ‖ID − dΦ‖op + τmin ‖d2Φ‖op
≥ τmin

2

for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough. This shows the stability for
k = 2, as well as that of the reach assumption for k ≥ 3.

By now, take k ≥ 3. We focus on the existence of a good parametrization
of M ′ around a fixed point p′ = Φ(p) ∈ M ′. For v′ ∈ Tp′M ′ = dpΦ (TpM),
let us define

Ψ′p′(v
′) = Φ

(
Ψp

(
dp′Φ

−1.v′
))

= p′ + v′ + N′p′(v
′),

where N′p′(v
′) =

{
Φ
(
Ψp

(
dp′Φ

−1.v′
))
− p′ − v′

}
.

M M ′

TpM Tp′M
′

Φ

Ψp

dpΦ

Ψ′
p′
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The maps Ψ′p′(v
′) and N′p′(v

′) are well defined whenever
∥∥dp′Φ−1.v′

∥∥ ≤ 1
4L⊥

,

so in particular if ‖v′‖ ≤ 1
4(2L⊥) ≤

1−‖ID−dΦ‖op
4L⊥

and ‖ID − dΦ‖op ≤
1
2 . One

easily checks that N′p′(0) = 0, d0N
′
p′ = 0 and writing c(v′) = p+dp′Φ

−1.v′+

Np′
(
dp′Φ

−1.v′
)
, for all unit vector w′ ∈ Tp′M ′,

∥∥d2
v′N

′
p′(w

′⊗2)
∥∥ =

∥∥∥d2
c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+ dc(v′)Φ ◦ d2
dp′Φ

−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
=
∥∥∥d2

c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+
(
dc(v′)Φ− Id

)
◦ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)
+ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
≤
∥∥d2Φ

∥∥
op

(
1 + L⊥

∥∥dp′Φ−1.v′
∥∥)2 ∥∥dp′Φ−1.w′

∥∥2

+ ‖ID − dΦ‖op L⊥
∥∥dp′Φ−1.w′

∥∥2

+ L⊥
∥∥dp′Φ−1.w′

∥∥2

≤
∥∥d2Φ

∥∥
op

(1 + 1/4)2
∥∥dp′Φ−1

∥∥2

op

+ ‖ID − dΦ‖op L⊥
∥∥dΦ−1

∥∥2

op

+ L⊥
∥∥dp′Φ−1

∥∥2

op
.

Writing further
∥∥dΦ−1

∥∥
op
≤ (1 − ‖ID − dΦ‖op)−1 ≤ 1 + 2 ‖ID − Φ‖op for

‖ID − dΦ‖op small enough depending only on L⊥, it is clear that the right-
hand side of the latter inequality goes below 2L⊥ for ‖ID − dΦ‖op and∥∥d2Φ

∥∥
op

small enough. Hence, for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough

depending only on L⊥, ‖d2
v′N

′
p′‖op ≤ 2L⊥ for all ‖v′‖ ≤ 1

4(2L⊥) . From the
chain rule, the same argument applies for the order 3 ≤ i ≤ k differential of
N′p′ .

Lemma A.6 deals with the condition on the density in the models Pk.
It gives a change of variable formula for pushforward of measure on sub-
manifolds, ensuring a control on densities with respect to intrinsic volume
measure.

Lemma A.6 (Change of variable for the Hausdorff measure). Let P be
a probability distribution on M ⊂ RD with density f with respect to the
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d-dimensional Hausdorff measure Hd. Let Φ : RD → RD be a global diffeo-
morphism such that ‖ID − dΦ‖op < 1/3. Let P ′ = Φ∗P be the pushforward

of P by Φ. Then P ′ has a density g with respect to Hd. This density can be
chosen to be, for all z ∈ Φ(M),

g(z) =
f
(
Φ−1 (z)

)√
det

(
πTΦ−1(z)M

◦ dΦ−1(z)Φ
T ◦ dΦ−1(z)Φ TΦ−1(z)M

) .
In particular, if fmin ≤ f ≤ fmax on M , then for all z ∈ Φ(M),(

1− 3d/2 ‖ID − dΦ‖op

)
fmin ≤ g(z) ≤ fmax

(
1 + 3(2d/2 − 1) ‖ID − dΦ‖op

)
.

Proof of Lemma A.6. Let p ∈ M be fixed and A ⊂ B(p, r) ∩M for r
small enough. For a differentiable map h : Rd → RD and for all x ∈ Rd, we
let Jh(x) denote the d-dimensional Jacobian Jh(x) =

√
det (dxhT dxh). The

area formula ([11, Theorem 3.2.5]) states that if h is one-to-one,∫
A
u (h(x)) Jh(x)λd(dx) =

∫
h(A)

u(y)Hd(dy),

whenever u : RD → R is Borel, where λd is the Lebesgue measure on Rd. By
definition of the pushforward, and since dP = fdHd,∫

Φ(A)
dP ′(z) =

∫
A
f(y)Hd(dy).

Writing Ψp = expp : TpM → RD for the exponential map of M at p, we
have ∫

A
f(y)Hd(dy) =

∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dx).

Rewriting the right hand term, we apply the area formula again with h =
Φ ◦Ψp,∫

Ψp−1(A)
f(Ψp(x))JΨp(x)λd(dy)

=

∫
Ψp−1(A)

f
(
Φ−1 (h(x))

) JΨp(h
−1 (h(x)))

JΦ◦Ψp(h
−1 (h(x)))

JΦ◦Ψp(x)λd(dx)

=

∫
Φ(A)

f
(
Φ−1 (z)

) JΨp(h
−1 (z))

JΦ◦Ψp(h
−1 (z))

Hd(dz).
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Since this is true for all A ⊂ B(p, r)∩M , P ′ has a density g with respect to
Hd, with

g(z) = f
(
Φ−1 (z)

) JΨΦ−1(z)
(Ψ−1

Φ−1(z)
◦ Φ−1 (z))

JΦ◦ΨΦ−1(z)
(Ψ−1

Φ−1(z)
◦ Φ−1 (z))

.

Writing p = Φ−1(z), it is clear that Ψ−1
Φ−1(z)

◦Φ−1 (z) = Ψ−1
p (p) = 0 ∈ TpM .

Since d0 expp : TpM → RD is the inclusion map, we get the first statement.
We now let B and πT denote dpΦ and πTpM respectively. For any unit

vector v ∈ TpM ,∣∣∥∥πTBTBv
∥∥− ‖v‖∣∣ ≤ ∥∥πT (BTB − ID

)
v
∥∥

≤
∥∥BTB − ID

∥∥
op

≤
(

2 + ‖ID −B‖op

)
‖ID −B‖op

≤ 3 ‖ID −B‖op .

Therefore, 1−3 ‖ID −B‖op ≤
∥∥πTBTB TpM

∥∥
op
≤ 1 + 3 ‖ID −B‖op. Hence,√

det
(
πTBTB TpM

)
≤
(

1 + 3 ‖ID −B‖op

)d/2
≤ 1

1− 3d
2 ‖ID −B‖op

,

and√
det
(
πTBTB TpM

)
≥
(

1− 3 ‖ID −B‖op

)d/2
≥ 1

1 + 3(2d/2 − 1) ‖ID −B‖op

,

which yields the result.

Appendix B: Some Probabilistic Tools

B.1. Volume and Covering Rate

The first lemma of this section gives some details about the covering rate of
a manifold with bounded reach.

Lemma B.7. Let P0 ∈ Pk have support M ⊂ RD. Then for all r ≤
τmin/4 and x in M ,

cdfminr
d ≤ px(r) ≤ Cdfmaxrd,

for some cd, Cd > 0, with px(r) = P0

(
B(x, r)

)
.
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Moreover, letting h =
(
C′dk
fmin

logn
n

)1/d
with C ′d large enough, the following

holds. For n large enough so that h ≤ τmin/4, with probability at least 1 −(
1
n

)k/d
,

dH (M,Yn) ≤ h/2.

Proof of Lemma B.7. Denoting by BM (x, r) the geodesic ball of radius
r centered at x, Proposition 25 of [1] yields

BM (x, r) ⊂ B(x, r) ∩M ⊂ BM (x, 6r/5).

Hence, the bounds on the Jacobian of the exponential map given by Propo-
sition 27 of [1] yield

cdr
d ≤ V ol

(
B(x, r) ∩M

)
≤ Cdrd,

for some cd, Cd > 0. Now, since P has a density fmin ≤ f ≤ fmax with
respect to the volume measure of M , we get the first result.

Now we notice that since px(r) ≥ cdfminrd, Theorem 3.3 in [7] entails, for
s ≤ τmin/8,

P
(
dH
(
M,Xn

)
≥ s
)
≤ 4d

cdfminsd
exp

(
−cdfmin

2d
nsd
)
.

Hence, taking s = h/2, and h =
(
C′dk
fmin

logn
n

)1/d
with C ′d so that C ′d ≥

8d

cdk
∨ 2d(1+k/d)

cdk
yields the result. Since k ≥ 1, taking C ′d = 8d

cd
is sufficient.

B.2. Concentration Bounds for Local Polynomials

This section is devoted to the proof of the following proposition.

Proposition B.8. Set h =
(
K logn

n−1

) 1
d
. There exist constants κk,d, ck,d

and Cd such that, if K ≥ (κk,df
2
max/f

3
min) and n is large enough so that

3h/2 ≤ h0 ≤ τmin/4, then with probability at least 1−
(

1
n

) k
d

+1
, we have

P0,n−1[S2(π∗(x))1B(h/2)(x)] ≥ ck,dh
dfmin‖Sh‖22,

N(3h/2) ≤ Cdfmax(n− 1)hd,

for every S ∈ Rk[x1:d], where N(h) =
∑n

j=2 1B(0,h)(Yj).

11



A first step is to ensure that empirical expectations of order k polynomials
are close to their deterministic counterparts.

Proposition B.9. Let b ≤ τmin/8. For any y0 ∈ M , we have

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P0 − P0,n−1)

p∏
j=1

(
〈uj , y〉
b

)εj
1B(y0,b)(y)

∣∣∣∣∣∣
≥ py0(b)

(
4k
√

2π√
(n− 1)py0(b)

+

√
2t

(n− 1)py0(b)
+

2

3(n− 1)py0(b)

) ≤ e−t,
where P0,n−1 denotes the empirical distribution of n− 1 i.i.d. random vari-
ables Yi drawn from P0.

Proof of Proposition B.9. Without loss of generality we choose y0 =
0 and shorten notation to B(b) and p(b). Let Z denote the empirical pro-
cess on the left-hand side of Proposition B.9. Denote also by fu,ε the map∏k
j=1

(
〈uj ,y〉
b

)εj
1B(b)(y), and let F denote the set of such maps, for uj in

B(1) and ε in {0, 1}k.
Since ‖fu,ε‖∞ ≤ 1 and Pf2

u,ε ≤ p(b), the Talagrand-Bousquet inequality
([6, Theorem 2.3]) yields

Z ≤ 4EZ +

√
2p(b)t

n− 1
+

2t

3(n− 1)
,

with probability larger than 1− e−t. It remains to bound EZ from above.

Lemma B.10. We may write

EZ ≤
√

2πp(b)√
n− 1

k.

Proof of Lemma B.10. Let σi and gi denote some independent Ra-
demacher and Gaussian variables. For convenience, we denote by EA the
expectation with respect to the random variable A. Using symmetrization

12



inequalities we may write

EZ = EY sup
u,ε

∣∣∣∣∣∣(P0 − P0,n−1)

k∏
j=1

(
〈uj , y〉
b

)εj
1B(b)(y)

∣∣∣∣∣∣
≤ 2

n− 1
EY Eσ sup

u,ε

n−1∑
i=1

σi

k∏
j=1

(
〈uj , Yi〉

b

)εj
1B(b)(Yi)

≤
√

2π

n− 1
EY Eg sup

u,ε

n−1∑
i=1

gi

k∏
j=1

(
〈uj , Yi〉

b

)εj
1B(b)(Yi).

Now let Yu,ε denote the Gaussian process
∑n−1

i=1 gi
∏k
j=1

(
〈uj ,Yi〉

b

)εj
1B(b)(Yi).

Since, for any y in B(b), u,v in B(1)k, and ε, ε′ in {0, 1}k, we have∣∣∣∣∣∣
k∏
j=1

(
〈y, uj〉
b

)εj
−

k∏
j=1

(
〈y, vj〉
b

)ε′j ∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑
r=1

k+1−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+2−r

(
〈y, vj〉
b

)ε′j
−
k−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+1−r

(
〈y, vj〉
b

)ε′j∣∣∣∣∣∣
≤

k∑
r=1

∣∣∣∣∣∣
k−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+2−r

(
〈y, vj〉
b

)ε′j [(〈uk+1−r, y〉
b

)εk+1−r

−
(
〈vk+1−r, y〉

b

)ε′k+1−r
]∣∣∣∣∣

≤
k∑
r=1

∣∣∣∣〈εrur − ε′rvr, y〉b

∣∣∣∣ ,
we deduce that

Eg(Yu,ε − Yv,ε′)2 ≤ k
n−1∑
i=1

k∑
r=1

(
〈εrur, Yi〉

b
− 〈ε

′
rvr, Yi〉
b

)2

1B(b)(Yi)

≤ Eg(Θu,ε −Θv,ε′)
2,

where Θu,ε =
√
k
∑n−1

i=1

∑k
r=1 gi,r

〈εrur,Yi〉
b 1B(b)(Yi). According to Slepian’s

13



Lemma [5, Theorem 13.3], it follows that

Eg sup
u,ε
Yg ≤ Eg sup

u,ε
Θu,ε

≤
√
kEg sup

u,ε

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(b)(Yi)Yi

〉
b

≤
√
kEg sup

u,ε

√√√√√k
k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(b)(Yi)Yi

〉2

b2
.

We deduce that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤ k

√√√√√Eg sup
‖u‖=1,ε∈{0,1}

〈
εu,
∑n−1

i=1 gi1B(b)(Yi)Yi

〉2

b2

≤ k

√√√√Eg

∥∥∥∥∥
n−1∑
i=1

giYi
b
1B(b)(Yi)

∥∥∥∥∥
2

≤ k
√
N(b).

Then we can deduce that EXEg supu,ε Yg ≤ k
√
p(b).

Combining Lemma B.10 with Talagrand-Bousquet’s inequality gives the
result of Proposition B.9.

We are now in position to prove Proposition B.8.

Proof of Proposition B.8. If h/2 ≤ τmin/4, then, according to Lemma

B.7, p(h/2) ≥ cdfminhd, hence, if h =
(
K log(n)

n−1

) 1
d
, (n−1)p(h/2) ≥ Kcdfmin log(n).

Choosing b = h/2 and t = (k/d+ 1) log(n) + log(2) in Proposition B.9 and
K = K ′/fmin, with K ′ > 1 leads to

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P0 − P0,n−1)

k∏
j=1

(
2
〈uj , y〉
h

)εj
1B(y0,h/2)(y)

∣∣∣∣∣∣
≥
cd,kfmax√

K ′
hd

 ≤ 1

2

(
1

n

) k
d

+1

.

14



On the complement of the probability event mentioned just above, for a
polynomial S =

∑
α∈[0,k]d||α|≤k aαy

α
1:d, we have

(P0,n−1 − P0)S2(y1:d)1B(h/2)(y) ≥ −
∑
α,β

cd,kfmax√
K ′

|aαaβ|hd+|α|+|β|

≥ −
cd,kfmax√

K ′
hd‖Sh‖22.

On the other hand, we may write, for all r > 0 ,∫
B(0,r)

S2(y1:d)dy1 . . . dyd ≥ Cd,krd‖Sr‖22,

for some constant Cd,k. It follows that

P0S
2(y1:d)1B(h/2)(y) ≥ P0S

2(y1:d)1B(7h/16)(y1:d) ≥ ck,dhdfmin‖Sh‖22,

according to Lemma A.2. Then we may choose K ′ = κk,d(fmax/fmin)2, with
κk,d large enough so that

P0,n−1S
2(x1:d)1B(h/2)(y) ≥ ck,dfminhd‖Sh‖22.

The second inequality of Proposition B.8 is derived the same way from
Proposition B.9, choosing ε = (0, . . . , 0), b = 3h/2 and h ≤ τmin/8 so that
b ≤ τmin/4.

Appendix C: Minimax Lower Bounds

C.1. Conditional Assouad’s Lemma

This section is dedicated to the proof of Lemma 7, reproduced below as
Lemma C.11.

Lemma C.11 (Conditional Assouad). Let m ≥ 1 be an integer and let
{Qτ}τ∈{0,1}m be a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′k}1≤k≤m be

a family of pairwise disjoint subsets of X × X ′, and Dτ,k be subsets of D.
Assume that for all τ ∈ {0, 1}m and 1 ≤ k ≤ m,

• for all Qτ ∈ Qτ , θX(Qτ ) ∈ Dτ,k on the event {X ∈ Uk};
• for all θ ∈ Dτ,k and θ′ ∈ Dτk,k, d(θ, θ′) ≥ ∆.

For all τ ∈ {0, 1}m, let Qτ ∈ Conv(Qτ ), and write µ̄τ and ν̄τ for the mar-
ginal distributions of Qτ on X and X ′ respectively. Assume that if (X,X ′)
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has distribution Qτ , X and X ′ are independent conditionally on the event
{(X,X ′) ∈ Uk × U ′k}, and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)}
≥ 1− α.

Then,

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ m∆

2
(1− α),

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.

Proof of Lemma C.11. The proof follows that of Lemma 2 in [14]. Let
θ̂ = θ̂(X,X ′) be fixed. For any family of 2m distributions {Qτ}τ ∈ {Qτ}τ ,
since the Uk × U ′k’s are pairwise disjoint,

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ max

τ
EQτd(θ̂, θX(Qτ ))

≥ max
τ

EQτ
m∑
k=1

d
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

=
m∑
k=1

2−(m+1)
∑
τ

(
EQτd

(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

+ EQ
τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

)
.

Since the previous inequality holds for all Qτ ∈ Qτ , it extends to Qτ ∈
Conv(Qτ ) by linearity. Let us now lower bound each of the terms of the
sum for fixed τ ∈ {0, 1}m and 1 ≤ k ≤ m. By assumption, if (X,X ′) has
distribution Qτ , then conditionally on {(X,X ′) ∈ Uk × U ′k}, X and X ′ are
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independent. Therefore,

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

≥ EQτd
(
θ̂,Dτ,k

)
1Uk(X)1U ′k(X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk(X)1U ′k(X ′)

= Eν̄τ
[
Eµ̄τ

(
d
(
θ̂,Dτ,k

)
1Uk(X)

)
1U ′k

(X ′)
]

+ Eν̄
τk

[
Eµ̄

τk

(
d
(
θ̂,Dτk,k

)
1Uk(X)

)
1U ′k

(X ′)
]

=

∫
Uk

∫
U ′k

d(θ̂,Dτ,k)dµ̄τ (x)dν̄τ (x′) +

∫
Uk

∫
U ′k

d(θ̂,Dτk,k)dµ̄τk(x)dν̄τk(x′)

≥
∫
Uk

∫
U ′k

(
d(θ̂,Dτ,k) + d(θ̂,Dτk,k)

)
dµ̄τ ∧ dµ̄τk(x)dν̄τ ∧ dν̄τk(x′)

≥ ∆

(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)
≥ ∆(1− α),

where we used that d(θ̂,Dτ,k) + d(θ̂,Dτk,k) ≥ ∆. The result follows by sum-
ming the above bound |{1, . . . ,m} × {0, 1}m| = m2m times.

C.2. Construction of Generic Hypotheses

Let M
(0)
0 be a d-dimensional C∞-submanifold of RD with reach greater than

1 and such that it contains BRd×{0}D−d(0, 1/2). M
(0)
0 can be built for ex-

ample by flattening smoothly a unit d-sphere in Rd+1 × {0}D−d−1. Since

M
(0)
0 is C∞, the uniform probability distribution P

(0)
0 on M

(0)
0 belongs to

Pk
1,L(0),1/V

(0)
0 ,1/V

(0)
0

, for some L(0) and V
(0)

0 = V ol(M
(0)
0 ).

Let now M0 = (2τmin)M
(0)
0 be the submanifold obtained from M

(0)
0 by

homothecy. By construction, and from Proposition A.4, we have

τM0 ≥ 2τmin, BRd×{0}D−d(0, τmin) ⊂M0, V ol(M0) = Cdτ
d
min,

and the uniform probability distribution P0 on M0 satisfies

P0 ∈ Pk2τmin,L/2,2fmin,fmax/2,

whenever L⊥/2 ≥ L
(0)
⊥ /(2τmin), . . ., Lk/2 ≥ L

(0)
k /(2τmin)k−1, and provi-

ded that 2fmin ≤
(
(2τmin)dV

(0)
0

)−1 ≤ fmax/2. Note that L
(0)
⊥ , . . . , L

(0)
k ,

V ol(M
(0)
0 ) depend only on d and k. For this reason, all the lower bounds will
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be valid for τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax large enough to

exceed the thresholds L
(0)
⊥ /2, . . . , L

(0)
k /2k−1, 2dV

(0)
0 and (2dV

(0)
0 )−1 respecti-

vely.
For 0 < δ ≤ τmin/4, let x1, . . . , xm ∈ M0 ∩ B(0, τmin/4) be a family of

points such that

for 1 ≤ k 6= k′ ≤ m, ‖xk − xk′‖ ≥ δ.

For instance, considering the family
{(
l1δ, . . . , ldδ, 0, . . . , 0

)}
li∈Z,|li|≤bτmin/(4δ)c

,

m ≥ cd
(τmin

δ

)d
,

for some cd > 0.
We let e ∈ RD denote the (d + 1)th vector of the canonical basis. In

particular, we have the orthogonal decomposition of the ambient space

RD =
(
Rd × {0}D−d

)
+ span(e) +

(
{0}d+1 × RD−d−1

)
.

Let φ : RD → [0, 1] be a smooth scalar map such that φ|B(0, 1
2) =

1 and φ|B(0,1)c = 0.
Let Λ+ > 0 and 1 ≥ A+ > A− > 0 be real numbers to be chosen later.

Let Λ = (Λ1, . . . ,Λm) with entries −Λ+ ≤ Λk ≤ Λ+, and A = (A1, . . . , Am)
with entries A− ≤ Ak ≤ A+. For z ∈ RD, we write z = (z1, . . . , zD) for its
coordinates in the canonical basis. For all τ = (τ1, . . . , τm) ∈ {0, 1}m, define
the bump map as

(1) ΦΛ,A,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkAk(x− xk)i1 + (1− τk)Λk

}
e.

An analogous deformation map was considered in [1]. We let P
Λ,A,(i)
τ denote

the pushforward distribution of P0 by Φ
Λ,A,(i)
τ , and write M

Λ,A,(i)
τ for its

support. Roughly speaking, MΛ,A,i
τ consists of m bumps at the xk’s having

different shapes (Figure 1). If τk = 0, the bump at xk is a symmetric plateau
function and has height Λk. If τk = 1, it fits the graph of the polynomial
Ak(x−xk)i1 locally. The following Lemma C.12 gives differential bounds and

geometric properties of ΦΛ,A,i
τ .

Lemma C.12. There exists cφ,i < 1 such that if A+ ≤ cφ,iδ
i−1 and

Λ+ ≤ cφ,iδ, then ΦΛ,A,i
τ is a global C∞-diffeomorphism of RD such that for
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Uk

Λk

Λ+

δ

xk

(a) Flat bump: τk = 0.

Uk

δ

xkA−x1
A+x1

Akx1

(b) Linear bump: τk = 1, i = 1.

Uk

δ

xk

Akx
2
1A−x

2
1

A+x
2
1

(c) Quadratic bump: τk = 1, i = 2.

Figure 1: The three shapes of the bump map ΦΛ,A,i
τ around xk.

all 1 ≤ k ≤ m, ΦΛ,A,i
τ (B(xk, δ)) = B(xk, δ). Moreover,

∥∥ID − dΦΛ,A,i
τ

∥∥
op
≤ Ci

{
A+

δ1−i

}
∨
{

Λ+

δ

}
,

and for j ≥ 2, ∥∥djΦΛ,A,i
τ

∥∥
op
≤ Ci,j

{
A+

δj−i

}
∨
{

Λ+

δj

}
.

Proof of Lemma C.12. Follows straightforwardly from chain rule, si-
milarly to Lemma 11 in [1].

Lemma C.13. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), then provided that Λ+ ∨A+δ
i ≤

ck,d,τminδ
k, for all τ ∈ {0, 1}m, PΛ,A,i

τ ∈ Pkτmin,L,fmin,fmax

Proof of Lemma C.13. Follows using the stability of the model Lemma
A.4 applied to the distribution P0 ∈ Pk2τmin,L/2,2fmin,fmax/2 and the map

ΦΛ,A,i
τ , of which differential bounds are asserted by Lemma C.12.
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C.3. Hypotheses for Tangent Space and Curvature

C.3.1. Proof of Lemma 8

This section is devoted to the proof of Lemma 8, for which we first derive
two slightly more general results, with parameters to be tuned later. The
proof is split into two intermediate results Lemma C.14 and Lemma C.15.

Let us write Q̄
(i)
τ,n for the mixture distribution on (RD)n defined by

Q̄(i)
τ,n =

∫
[−Λ+,Λ+]m

∫
[A−,A+]m

(
PΛ,A,(i)
τ

)⊗n dA

(A+ −A−)m
dΛ

(2Λ+)m
.(2)

Although the probability distribution Q̄
(i)
τ,n depends on A−, A+ and Λ+, we

omit this dependency for the sake of compactness. Another way to define

Q̄
(i)
τ,n is the following: draw uniformly Λ in [−Λ+,Λ+]m and A in [A−, A+]m,

and given (Λ,A), take Zi = ΦΛ,A,i
τ (Yi), where Y1, . . . , Yn is an i.i.d. n-sample

with common distribution P0 on M0. Then (Z1, . . . , Zn) has distribution

Q̄
(i)
τ,n.

Lemma C.14. Assume that the conditions of Lemma C.12 hold, and let

Uk = BRd×{0}D−d (xk, δ/2) + Bspan(e)(0, τmin/2),

and

U ′k =
(
RD \

{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

})n−1
.

Then the sets Uk ×U ′k are pairwise disjoint, Q̄
(i)
τ,n ∈ Conv

((
P(i)
τ

)⊗n)
, and if

(Z1, . . . , Zn) = (Z1, Z2:n) has distribution Q̄
(i)
τ,n, Z1 and Z2:d are independent

conditionally on the event {(Z1, Z2:n) ∈ Uk × U ′k}.
Moreover, if (X1, . . . , Xn) has distribution

(
P

Λ,A,(i)
τ

)⊗n
(with fixed A and

Λ), then on the event {X1 ∈ Uk}, we have:

• if τk = 0,

TX1M
Λ,A,(i)
τ = Rd × {0}D−d ,

∥∥∥∥IIMΛ,A,(i)
τ

X1
◦ π

TX1
M

Λ,A,(i)
τ

∥∥∥∥
op

= 0

and dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.

• if τk = 1,

– for i = 1: ∠
(
TX1M

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥ A−/2.
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– for i = 2:

∥∥∥∥IIMΛ,A,(2)
τ

X1
◦ π

TX1
M

Λ,A,(2)
τ

∥∥∥∥
op

≥ A−/2.

Proof of Lemma C.14. It is clear from the definition (2) that Q̄
(i)
τ,n ∈

Conv
((
P(i)
τ

)⊗n)
. By construction of the ΦΛ,A,i

τ ’s, these maps leave the sets

BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

unchanged for all Λ,L. Therefore, on the event {(Z1, Z2:n) ∈ Uk × U ′k}, one
can write Z1 only as a function of X1,Λk, Ak, and Z2:n as a function of the
rest of the Xj ’s,Λk’s and Ak’s. Therefore, Z1 and Z2:n are independent.

We now focus on the geometric statements. For this, we fix a deterministic

point z = Φ
Λ,A,(i)
τ (x0) ∈ Uk ∩M

Λ,A,(i)
τ . By construction, one necessarily has

x0 ∈M0 ∩ B(xk, δ/2).

• If τk = 0, locally around x0, Φ
Λ,A,(1)
τ is the translation of vector Λke.

Therefore, since M0 satisfies Tx0M0 = Rd × {0}D−d and IIM0
x0

= 0, we
have

TzM
Λ,A,(i)
τ = Rd × {0}D−d and

∥∥∥IIMΛ,A,(i)
τ

z ◦ π
TzM

Λ,A,(i)
τ

∥∥∥
op

= 0.

• if τk = 1,

– for i = 1: locally around x0, Φ
Λ,A,(1)
τ can be written as x 7→ x+

Ak(x−xk)1e. Hence, TzM
Λ,A,(i)
τ contains the direction (1, Ak) in

the plane span(e1, e) spanned by the first vector of the canonical
basis and e. As a consequence, since e is orthogonal to Rd ×
{0}D−d,

∠
(
TzM

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥
(
1 + 1/A2

k

)−1/2 ≥ Ak/2 ≥ A−/2.

– for i = 2: locally around x0, Φ
Λ,A,(2)
τ can be written as x 7→

x+Ak(x−xk)2
1e. Hence, M

Λ,A,(2)
τ contains an arc of parabola of

equation y = Ak(x − xk)2
1 in the plane span(e1, e). As a conse-

quence, ∥∥∥IIMΛ,A,(2)
τ

z ◦ π
TzM

Λ,A,(2)
τ

∥∥∥
op
≥ Ak/2 ≥ A−/2.
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Lemma C.15. Assume that the conditions of Lemma C.12 and Lemma
C.14 hold. If in addition, cA+(δ/4)i ≤ Λ+ ≤ CA+(δ/4)i for some absolute
constants C ≥ c > 3/4, and A− = A+/2, then,

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1
≥
cd,i
C

(
δ

τmin

)d
,

and ∫
U ′k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)

τk,n−1
=

(
1− c′d

(
δ

τmin

)d)n−1

.

Proof of Lemma C.15. First note that all the involved distributions
have support in Rd × span(e) × {0}D−(d+1). Therefore, we use the canoni-
cal coordinate system of Rd × span(e), centered at xk, and we denote the
components by (x1, x2, . . . , xd, y) = (x1, x2:d, y). Without loss of generality,
assume that τk = 0 (if not, flip τ and τk). Recall that φ has been chosen to
be constant and equal to 1 on the ball B(0, 1/2).

By definition (2), on the event {Z ∈ Uk}, a random variable Z having

distribution Q̄
(i)
τ,1 can be represented by Z = X + φ

(
X−xk
δ

)
Λke = X + Λke

where X and Λk are independent and have respective distributions P0 (the
uniform distribution on M0) and the uniform distribution on [−Λ+,Λ+].

Therefore, on Uk, Q̄
(i)
τ,1 has a density with respect to the Lebesgue measure

λd+1 on Rd × span(e) that can be written as

q̄
(i)
τ,1(x1, x2:d, y) =

1[−Λ+,Λ+](y)

2V ol(M0)Λ+
.

Analogously, nearby xk a random variable Z having distribution Q̄
(i)

τk,1
can be

represented by Z = X+Ak(X−xk)i1e where Ak has uniform distribution on
[A−, A+]. Therefore, a straightforward change of variable yields the density

q̄
(i)

τk,1
(x1, x2:d, y) =

1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1
.

We recall that V ol(M0) = (2τmin)dV ol
(
M

(0)
0

)
= c′dτ

d
min. Let us now tackle

the right-hand side inequality, writing
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∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

=

∫
B(xk,δ/2)

(
1[−Λ+,Λ+](y)

2V ol(M0)Λ+

)
∧

(
1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1

)
dydx1dx2:d

≥
∫
BRd−1 (0, δ

4
)

∫ δ/4

−δ/4

∫
R

(
1[−Λ+,Λ+](y)

2Λ+

)
∧

(
1[A−xi1,A+xi1](y)

A+xi1/2

)
dydx1dx2:d

V ol(M0)
.

It follows that∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

≥ cd

τdmin
δd−1

∫ δ/4

0

∫ Λ+∧(A+xi1)

A+xi1/2

1

2Λ+
∧ 2

A+xi1
dydx1

≥ cd

τdmin
δd−1

∫ δ/4

0

∫ (c∧1)(A+xi1)

A+xi1/2

(2c ∧ 1/2)

2Λ+
dydx1

=
cd

τdmin
δd−1(2c ∧ 1/2) (c ∧ 1− 1/2)

A+

Λ+

(δ/4)i+1

i+ 1

≥
cd,i
C

(
δ

τmin

)d
.

For the integral on U ′k, notice that by definition, Q̄
(i)
τ,n−1 and Q̄

(i)

τk,n−1
coi-

ncide on U ′k since they are respectively the image distributions of P0 by
functions that are equal on that set. Moreover, these two functions leave

RD \
{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

}
unchanged. Therefore,∫

U ′k

dQ̄
(i)
τ,n−1∧dQ̄

(i)

τk,n−1

= P⊗n−1
0

(
U ′k
)

=
(

1− P0

(
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

))n−1

=
(

1− ωdδd/V ol(M0)
)n−1

,

hence the result.

Proof of Lemma 8. The properties of
{
Q̄

(i)
τ,n

}
τ

and {Uk × U ′k}k given
by Lemma C.14 and Lemma C.15 yield the result, setting Λ+ = A+δ

i/4,

A+ = 2A− = εδk−i for ε = εk,d,τmin , and δ such that c′d

(
δ

τmin

)d
= 1

n−1 .
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C.3.2. Proof of Lemma 9

This section details the construction leading to Lemma 9 that we restate in
Lemma C.16.

Lemma C.16. Assume that τminL⊥,. . .,τk−1
minLk,(τdminfmin)−1, τdminfmax

are large enough (depending only on d and k), and σ ≥ Ck,d,τmin (1/(n− 1))k/d

for Ck,d,τmin > 0 large enough. Given i ∈ {1, 2}, there exists a collection

of 2m distributions
{
P

(i),σ
τ

}
τ∈{0,1}m ⊂ P

k(σ) with associated submanifolds{
M

(i),σ
τ

}
τ∈{0,1}m, together with pairwise disjoint subsets {Uσk }1≤k≤m of RD

such that the following holds for all τ ∈ {0, 1}m and 1 ≤ k ≤ m.
If x ∈ Uσk and y = π

M
(i),σ
τ

(x), we have

• if τk = 0,

TyM
(i),σ
τ = Rd × {0}D−d ,

∥∥∥IIM(i),σ
τ

y ◦ π
TyM

(i),σ
τ

∥∥∥
op

= 0,

• if τk = 1,

– for i = 1: ∠
(
TyM

(1),σ
τ ,Rd × {0}D−d

)
≥ ck,d,τmin

(
σ

n− 1

) k−1
k+d

,

– for i = 2:
∥∥∥IIM(2),σ

τ
y ◦ π

TyM
(2),σ
τ

∥∥∥
op
≥ c′k,d,τmin

(
σ

n− 1

) k−2
k+d

.

Furthermore,∫
(RD)n−1

(
P(i),σ
τ

)⊗n−1 ∧
(
P

(i),σ

τk

)⊗n−1 ≥ c0, and m ·
∫
Uσk

P(i),σ
τ ∧P

(i),σ

τk
≥ cd.

Proof of Lemma C.16. Following the notation of Section C.2, for i ∈
{1, 2}, τ ∈ {0, 1}m, δ ≤ τmin/4 and A > 0, consider

(3) ΦA,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkA(x− xk)i1

}
e.

Note that (3) is a particular case of (1). Clearly from the definition, ΦA,i
τ

and ΦA,i
τk

coincide outside B(xk, δ), (Φ(x) − x) ∈ span(e) for all x ∈ RD,

and ‖ID − Φ‖∞ ≤ Aδi. Let us define MA,i
τ = ΦA,i

τ (M0). From Lemma C.13,

we have MA,i
τ ∈ Ckτmin,L provided that τminL⊥, . . . , τ

k−1
minLk are large enough,

and that δ ≤ τmin/2, with A/δk−i ≤ ε for ε = εk,d,τmin,i small enough.
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Furthermore, let us write

Uσk = BRd×{0}D−d (xk, δ/2) + B{0}d×RD−d (xk, σ/2) .

Then the family {Uσk }1≤k≤m is pairwise disjoint. Also, since τk = 0 implies

that MA,i
τ coincides with M0 on B(xk, δ), we get that if x ∈ Uσk and y =

π
MA,i
τ

(x),

TyM
A,i
τ = Rd × {0}D−d ,

∥∥∥IIMA,i
τ

y ◦ π
TyM

A,i
τ

∥∥∥
op

= 0.

Furthermore, by construction of the bump function ΦA,i
τ , if x ∈ Uσk and

τk = 1, then

∠
(
TyM

A,i
τ ,Rd × {0}D−d

)
≥ A

2
,

and ∥∥∥IIMA,i
τ

y ◦ π
TyM

A,i
τ

∥∥∥
op
≥ A

2
.

Now, let us write

OA,iτ =
{
y + ξ

∣∣∣y ∈MA,i
τ , ξ ∈

(
TyM

A,i
τ

)⊥
, ‖ξ‖ ≤ σ/2

}
for the offset of MΛ,A,i

τ of radius σ/2. The sets
{
OA,iτ

}
τ

are closed subsets

of RD with non-empty interiors. Let PA,i
τ denote the uniform distribution

on OA,iτ . Finally, let us denote by PA,iτ =
(
π
MA,i
τ

)
∗P

A,i
τ the pushforward

distributions of PA,i
τ by the projection maps π

MA,i
τ

. From Lemma 19 in [12],

PA,iτ has a density fA,iτ with respect to the volume measure on MA,i
τ , and

this density satisfies

V ol
(
MA,i
τ

)
fA,iτ ≤

(
τmin + σ/2

τmin − σ/2

)d
≤
(

5

3

)d
,

and

V ol
(
MA,i
τ

)
fA,iτ ≥

(
τmin − σ/2
τmin + σ/2

)d
≥
(

3

5

)d
.

Since, by construction, V ol(M0) = cdτ
d
min, and c′d ≤ V ol

(
MΛ,A,i
τ

)
/V ol(M0) ≤

C ′d whenever A/δi−1 ≤ ε′d,τmin,i, we get that PA,iτ belongs to the model Pk

provided that (τdminfmin)−1 and τdminfmax are large enough. This proves that

under these conditions, the family
{
PA,i
τ

}
τ∈{0,1}m is included in the model

Pk(σ).
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Let us now focus on the bounds on the L1 test affinities. Let τ ∈ {0, 1}m
and 1 ≤ k ≤ m be fixed, and assume, without loss of generality, that τk = 0
(if not, flip the role of τ and τk). First, note that∫

(RD)n−1

(
PA,i
τ

)⊗n−1 ∧
(
PA,i
τk

)⊗n−1 ≥
(∫

RD
PA,i
τ ∧PA,i

τk

)n−1

.

Furthermore, since PA,i
τ and PA,i

τk
are the uniform distributions on OA,iτ and

OA,iτ ,∫
RD

PA,i
τ ∧PA,i

τk
= 1− 1

2

∫
RD

∣∣∣PA,i
τ −PA,i

τk

∣∣∣
= 1− 1

2

∫
RD

∣∣∣∣∣∣ 1OA,iτ
(a)

V ol
(
OA,iτ

) − 1OA,iτ
(a)

V ol
(
OA,i
τk

)
∣∣∣∣∣∣ dHD(a).

Furthermore,

1

2

∫
RD

∣∣∣∣∣∣ 1OA,iτ
(a)

V ol
(
OA,iτ

) − 1OA,i
τk

(a)

V ol
(
OA,i
τk

)
∣∣∣∣∣∣ dHD(a)

=
1

2
V ol

(
OA,iτ ∩ O

A,i
τk

) ∣∣∣∣∣∣ 1

V ol
(
OA,iτ

) − 1

V ol
(
OA,i
τk

)
∣∣∣∣∣∣

+
1

2

V ol
(
OA,iτ \ OA,iτk

)
V ol

(
OA,iτ

) +
V ol

(
OA,i
τk
\ OA,iτ

)
V ol

(
OA,i
τk

)


≤ 3

2

V ol
(
OA,iτ \ OA,iτk

)
∨ V ol

(
OA,i
τk
\ OA,iτ

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

) .

To get a lower bound on the denominator, note that for δ ≤ τmin/2, MA,i
τ

and MA,i
τk

both contain

BRd×{0}D−d(0, τmin) \ BRd×{0}D−d(0, τmin/4),

so that OA,iτ and OA,i
τk

both contain(
BRd×{0}D−d(0, τmin) \ BRd×{0}D−d(0, τmin/4)

)
+ B{0}d×RD−d(0, σ/2).
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As a consequence, V ol
(
OA,iτ

)
∧V ol

(
OA,i
τk

)
≥ cdωdτdminωD−d(σ/2)D−d, where

ω` denote the volume of a `-dimensional unit Euclidean ball.
We now derive an upper bound on V ol

(
OA,iτ \ OA,iτk

)
. To this aim, let us

consider a0 = y + ξ ∈ OA,iτ \ OA,i
τk

, with y ∈ MA,i
τ and ξ ∈

(
TyM

A,i
τ

)⊥
.

Since ΦA,i
τ and ΦA,i

τk
coincide outside B(xk, δ), so do MA,i

τ and MA,i
τk

. Hence,

one necessarily has y ∈ B(xk, δ). Thus,
(
TyM

A,i
τ

)⊥
= TyM

⊥
0 = span(e) +

{0}d+1 × RD−d−1, so we can write ξ = se+ z with s ∈ R and z ∈ {0}d+1 ×
RD−d−1. By definition of OA,iτ , ‖ξ‖ =

√
s2 + ‖z‖2 ≤ σ/2, which yields ‖z‖ ≤

σ/2 and |s| ≤
√

(σ/2)2 − ‖z‖2. Furthermore, y0 does not belong to OA,i
τk

,
which translates to

σ/2 < d
(
a0,M

A,i
τk

)
≤
∥∥∥y0 + se+ z − ΦA,i

τk
(y0)

∥∥∥
=

√∣∣∣s+
〈
e, y0 − ΦA,i

τk
(y0)

〉∣∣∣2 + ‖z‖2,

from what we get |s| ≥
√

(σ/2)2 − ‖z‖2 −
∥∥∥ID − ΦA,i

τk

∥∥∥
∞

. We just proved

that OA,iτ \ OA,iτk
is a subset of

Bd(xk, δ) +

{
se+ z

∣∣∣∣ (s, z) ∈ R× RD−d−1, ‖z‖ ≤ σ/2 and√
(σ/2)2 − ‖z‖2 −

∥∥∥ID − ΦA,i
τk

∥∥∥
∞
≤ |s| ≤

√
(σ/2)2 − ‖z‖2

}
.

Hence,

V ol
(
OA,iτ \ O

A,i
τk

)
≤ ωdδd × 2

∥∥∥ID − ΦA,i
τk

∥∥∥
∞
× ωD−d−1(σ/2)D−d−1.(4)

Similar arguments lead to

V ol
(
OA,i
τk
\ OA,iτ

)
≤ ωdδd × 2

∥∥ID − ΦA,i
τ

∥∥
∞ × ωD−d−1(σ/2)D−d−1.(5)

Since
∥∥∥ID − ΦA,i

τ

∥∥∥
∞
∨
∥∥∥ID − ΦA,i

τk

∥∥∥
∞
≤ Aδi, summing up bounds (4) and (5)

yields ∫
RD

PA,i
τ ∧PA,i

τk
≥ 1− 3

ωdωD−d−1Aδ
i · δd(σ/2)D−d−1

ωdτ
d
minωD−d(σ/2)D−d

≥ 1− 3
Aδi

σ

(
δ

τmin

)d
.
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To derive the last bound, we notice that since Uσk ⊂ O
A,i
τ = Supp

(
PA,i
τ

)
,

we have

∫
Uσk

PA,i
τ ∧PA,i

τk
≥

V ol
(
Uσk ∩ O

A,i
τk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥
V ol (Uσk )− V ol

(
Uσk \ O

A,i
τk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥
V ol (Uσk )− V ol

(
OA,iτ \ OA,iτk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥ ωd(δ/2)dωD−d(σ/2)D−d − ωdδdAδiωD−d−1(σ/2)D−d−1

ωdτ
d
minωD−d(σ/2)D−d

.

Hence, whenever Aδi ≤ cdσ for cd small enough, we get∫
Uσk

PA,i
τ ∧PA,i

τk
≥ c′d

(
δ

τmin

)d
.

Since m can be chosen such that m ≥ cd(τmin/δ)d, we get the last bound.

Eventually, writting P
(i),σ
τ = PA,i

τ for the particular parameters A =

εδk−i, for ε = εk,d,τmin small enough, and δ such that 3Aδi

σ

(
δ

τmin

)d
= 1

n−1

yields the result. Such a choice of parameter δ does meet the condition

Aδi = εδk ≤ cdσ, provided that σ ≥ cd
ε

(
1

n−1

)k/d
.

C.4. Hypotheses for Manifold Estimation

C.4.1. Proof of Lemma 5

Let us prove Lemma 5, stated here as Lemma C.17.

Lemma C.17. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), there exist P0, P1 ∈ Pk with
associated submanifolds M0,M1 such that

dH(M0,M1) ≥ ck,d,τmin
(

1

n

) k
d

, and ‖P0 ∧ P1‖n1 ≥ c0.
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Proof of Lemma C.17. Following the notation of Section C.2, for δ ≤
τmin/4 and Λ > 0, consider

ΦΛ
τ (x) = x+ φ

(x
δ

)
Λ · e,

which is a particular case of (1). Define MΛ = ΦΛ(M0), and PΛ = ΦΛ
∗ P0.

Under the conditions of Lemma C.13, P0 and PΛ belong to Pk, and by con-
struction, dH(M0,M

Λ) = Λ. In addition, since P0 and PΛ coincide outside
B(0, δ), ∫

RD
dP0 ∧ dPΛ = P0

(
B(0, δ)

)
= ωd

(
δ

τmin

)d
.

Setting P1 = PΛ with ωd

(
δ

τmin

)d
= 1

n and Λ = ck,d,τminδ
k for ck,d,τmin > 0

small enough yields the result.

C.4.2. Proof of Lemma 6

Here comes the proof of Lemma 6, stated here as Lemma C.17.

Lemma C.18. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), there exist P σ0 , P
σ
1 ∈ Pk(σ) with

associated submanifolds Mσ
0 ,M

σ
1 such that

dH(Mσ
0 ,M

σ
1 ) ≥ ck,d,τmin

(σ
n

) k
d+k

, and ‖P σ0 ∧ P σ1 ‖
n
1 ≥ c0.

Proof of Lemma C.18. The proof follows the lines of that of Lemma
C.16. Indeed, with the notation of Section C.2, for δ ≤ τmin/4 and 0 < Λ ≤
ck,d,τminδ

k for ck,d,τmin > 0 small enough, consider

ΦΛ
τ (x) = x+ φ

(x
δ

)
Λ · e.

Define MΛ = ΦΛ(M0). Write O0, OΛ for the offsets of radii σ/2 of M0, MΛ,
and and P0,P

Λ for the uniform distributions on these sets.
By construction, we have dH(M0,M

Λ) = Λ, and as in the proof of Lemma
C.16, we get ∫

RD
P0 ∧PΛ ≥ 1− 3

Λ

σ

(
δ

τmin

)d
.

Denoting P σ0 = P0 and P σ1 = PΛ with Λ = εk,d,τminδ
k and δ such that

3Λ
σ

(
δ

τmin

)d
yields the result.
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C.5. Minimax Inconsistency Results

This section is devoted to the proof of Theorem 1, reproduced here as The-
orem C.19.

Theorem C.19. Assume that τmin = 0. If D ≥ d+3, then, for all k ≥ 2
and L⊥ > 0, provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are

large enough (depending only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
> 0,

where the infimum is taken over all the estimators T̂ = T̂
(
X1, . . . , Xn

)
.

Moreover, for any D ≥ d+1, provided that L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin

and fmax/L
d
⊥ are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op
≥ L⊥

4
> 0,

where the infimum is taken over all the estimators ÎI = ÎI
(
X1, . . . , Xn

)
.

We will make use of Le Cam’s Lemma, which we recall here.

Theorem C.20 (Le Cam’s Lemma [14]). For all pairs P, P ′ in P,

inf
θ̂

sup
P∈P

EP⊗nd(θ(P ), θ̂) ≥ 1

2
d
(
θ(P ), θ(P ′)

) ∥∥P ∧ P ′∥∥n
1
,

where the infimum is taken over all the estimators θ̂ = θ̂(X1, . . . , Xn).

Proof of Theorem C.19. For δ ≥ Λ > 0, let C, C′ ⊂ R3 be closed
curves of the Euclidean space as in Figure 2, and such that outside the
figure, C and C′ coincide and are C∞. The bumped parts are obtained with
a smooth diffeomorphism similar to (1) and centered at x. Here, δ and Λ
can be chosen arbitrarily small.

Let Sd−1 ⊂ Rd be a d− 1-sphere of radius 1/L⊥. Consider the Cartesian
products M1 = C × Sd−1 and M ′1 = C′ × Sd−1. M1 and M ′1 are subsets
of Rd+3 ⊂ RD. Finally, let P1 and P ′1 denote the uniform distributions on
M and M ′. Note that M , M ′ can be built by homothecy of ratio λ =

1/L⊥ from some unitary scaled M
(0)
1 ,M ′

(0)
1 , similarly to Section 5.3.2 in

[2], yielding, from Proposition A.4, that P1, P
′
1 belong to Pk(x) provided that

L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are large enough (depending
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Figure 2: Hypotheses for minimax lower bound on tangent space estimation
with τmin = 0.

only on d and k), and that Λ, δ and Λk/δ are small enough. From Le Cam’s
Lemma C.20, we have for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
∠
(
TxM1, TxM

′
1

) ∥∥P1 ∧ P ′1
∥∥n

1
.

By construction, ∠
(
TxM1, TxM

′
1

)
= 1, and since C and C′ coincide outside

BR3(0, δ),∥∥P1 ∧ P ′1
∥∥

1
= 1− V ol

(
(BR3(0, δ) ∩ C)× Sd−1

)
/V ol

(
C × Sd−1

)
= 1− Length (BR3(0, δ) ∩ C) /Length(C)
≥ 1− cL⊥δ.

Hence, at fixed n ≥ 1, letting Λ, δ go to 0 with Λk/δ small enough, we get
the announced bound.

We now tackle the lower bound on curvature estimation with the same
strategy. Let M2,M

′
2 ⊂ RD be d-dimensional submanifolds as in Figure

3: they both contain x, the part on the top of M2 is a half d-sphere of
radius 2/L⊥, the bottom part of M ′2 is a piece of a d-plane, and the bumped
parts are obtained with a smooth diffeomorphism similar to (1), centered
at x. Outside B(x, δ), M2 and M ′2 coincide and connect smoothly the upper
and lower parts. Let P2, P

′
2 be the probability distributions obtained by the

pushforward given by the bump maps. Under the same conditions on the
parameters as previously, P2 and P ′2 belong to Pk(x) according to Proposition

31



x
δ 2Λδ 2Λ

x

M2 M ′
2

Figure 3: Hypotheses for minimax lower bound on curvature estimation with
τmin = 0.

A.4. Hence from Le Cam’s Lemma C.20 we deduce

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op

≥ 1

2

∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op

∥∥P2 ∧ P ′2
∥∥n

1
.

But by construction,
∥∥IIM2

x ◦ πTxM2

∥∥
op

= 0, and since M ′2 is a part of a

sphere of radius 2/L⊥ nearby x,
∥∥∥IIM ′2x ◦ πTxM ′2

∥∥∥
op

= L⊥/2. Hence,∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op
≥ L⊥/2.

Moreover, since P2 and P ′2 coincide on RD \ B(x, δ),∥∥P2 ∧ P ′2
∥∥

1
= 1− P2(B(x, δ)) ≥ 1− cd,L⊥δ

d.

At n ≥ 1 fixed, letting Λ, δ go to 0 with Λk/δ small enough, we get the
desired result.
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