2) Subcritical case

Recall that is $c>0$ and $\sum_{i \geqslant 0} i^{i} p^{(i)}<\infty, \mu^{(c)}$ defined by

$$
\begin{aligned}
& \mu^{(c)}(i)=\frac{c^{i} \mu(i)}{\sum_{i \geqslant 0} c^{i} \mu(i)} \text { satisfies } P_{\mu}(\cdot| | T \mid=n) \\
&=D_{\mu(c)}(\cdot| | T \mid=n)
\end{aligned}
$$

- If we can find $c>0$ s.t. $\mu^{(c)}$ is critical, then Tn converges. T⿻ for $\mu^{(c)}$.
- If not, a condensation phenomenon occurs: Tm has now a fiume spine.
this is typically the case when

$$
\sum_{i \geqslant 0} i \mu^{(i)}<\infty \text { end } \mu(n) \sim \frac{C}{n \rightarrow \infty}
$$

$$
\text { with } \alpha>1 \text {. }
$$

II Scaling limits of GN trees
Here μ is a critical, aperiodic offspring distribution with variance $0<\sigma^{2}<\infty$
$W_{n}=X_{1}+\ldots+X_{n}$ is a random walk
with $\mathbb{B}\left(x_{1}=i\right)=\mu(i+1) ; i \geqslant-1$.
The goal is to show that a $E W_{\mu}(\cdot|L|=n)$ "grows like \sqrt{n} ", and rescaled converges to a random limiting tree with Hausdorff dimension 2.

1) Asymptotics of the height function.

From now on, we assume that $\left(W_{n}\right)_{n} \geqslant_{0}$ is the Lukasiewnic z path of a sequence of rid $G W_{\mu}$ trees. Denote by $\mu_{0}, \mu_{1}, \mu_{2}, \ldots$, its vertices ordered in Rexicographical order. Let $\left(H_{n}\right)_{n \geqslant 0}$ be theight function, define d by

$$
H_{n}=\left|u_{n}\right| .
$$

Example:

Key proposition: For every $n \geqslant 0$,

$$
H_{n}=\left|\left\{0 \leqslant k \leqslant n-1 ; W_{k}=\inf _{k \leqslant j \leqslant n} W_{j}\right\}\right|
$$

Idea of proof: this comes from the fact that vertex μ_{i} is an ancestor of μ_{j} (for $i<j$) if and only if $\quad W_{i} \leqslant \min _{i \leqslant k \leqslant j} W_{k}$

How to study $H_{(n)}$? Idea: use time -reversal.
$W_{r i t e}$, for $n \geqslant 0, \widehat{W}^{(n)}=\left(\overline{W_{n}-} W_{n-i} ; 0 \leq i \leq n\right)$.
Then $\widehat{w}^{(n)} \stackrel{(b)}{=}\left(w_{0}, w_{1}, \ldots, w_{n}\right)$, and.

$$
\begin{aligned}
& H_{n}=\mid\left\{0 \leq k \leq n-1 ; \quad W_{n}-w_{k}=\operatorname{mcx}\left(W_{n}-W_{j}\right) \mid\right. \\
& =\left|\left\{1 \leq k \leq n_{j} \widehat{W}_{k}^{(n)}=\max _{0 \leq j \leq k}^{k \leq j \leq n} \widehat{W}_{j}^{(n)}\right\}\right| \\
& \stackrel{(d)}{=}\left|\left\{1 \leq k \leq n ; \quad W_{k}=\max _{0 \leq j \leq k} W_{j}\right\}\right|
\end{aligned}
$$

ii
R_{n}.
R_{n} is the number of (weak) records between times) and.
Goal: study Rn.
T_{0} this end, set $T_{0}=0$, and $T_{i}=\inf \left\{n>T_{i-1} ; W_{n} \geqslant W_{T_{i-1}}\right\}$ which are stopping times. for $i \geqslant 1$.
In particular, $\quad\left\{R_{n}=i\right\}=\left\{T_{i} \leq n \cdot T_{i+1}\right\}$. Finally, set $\bar{\mu}(k)=\mu([[k+1,+\infty))$ for $k \geqslant 0$, which is a probability vecesure since u is critical.

Proposition The randan variables $\left(W_{K_{i}}-W_{i-1} ; i \geqslant 1\right)$ are lid, and

$$
\mathbb{D}\left(W_{\pi_{1}}=k\right)=\bar{\mu}(k) \quad \text { for } k \geqslant 0 .
$$

Proof: We' take for granted that " $\left(\left.W_{n}\right|_{n \geqslant 0}\right.$ is recurrent (We will prove it later). In partical $T_{i}<\infty$ as $k i \geqslant 1$ Also, the counting measure on \mathbb{Z} is. an invariant, meosive:

$$
\forall x \in \mathbb{Z}, \quad x=\sum_{y \in \mathbb{Z}} x \cdot \mathbb{P}(\text { jump from } x \text { to } y) \text {. }
$$

If $J_{0}=\operatorname{lng}\left\{n \geqslant 1 ; N_{n}=0\right\}$, it is well known that $\left.i \mapsto \mathbb{E}\left[\sum_{n=0}^{3=1} \mathbb{I}_{\left\{W_{n}\right.}=i\right\}\right]$ defines on
invariant mecescere invariant measure.
Since $\left(U_{n}\right)$ is recurrent, these meoseves ore enrique

$$
\begin{aligned}
& \text { up } h_{0} \text { a content. } \\
& \left.\Rightarrow \exists c \geqslant 0 \text { st } \mathbb{F} \sum_{n=0}^{\xi_{0}-1} \mathbb{1}_{\left\{N_{n}=i\right\}}\right\}=c . \mid \forall i \in \mathbb{Z}
\end{aligned}
$$

By taking $r=0$, we get $c=0$.
Key obsenvcetion: $T_{1} \leqslant S_{0}$ and W is positive on Hence $\mathbb{E}\left[\sum_{n=0}^{T_{1}-1} \mathbb{I}_{\left\{S_{n}=i\right\}}\right]=1$ if $i \leq 0$ $] T_{1}, \zeta_{0}[$

In particular, since W is ≤ 0 on $[0, T, L$, we have for every function $y=\mathbb{Z ~}_{T-1} \rightarrow \mathbb{Z}+$,

$$
\sqrt[F]{ }\left[\sum_{n=0}^{T,-1} g\left(w_{n}\right)\right]=\sum_{i=0}^{\infty} g(i) \text {. }
$$

Now, for cony frenchion $f: \mathbb{Z} \rightarrow \mathbb{Z}_{ \pm}$, wring

$$
\begin{aligned}
& \mathbb{E}\left[f\left(W_{T_{1}}\right)\right]=\mathbb{E}\left[\sum_{k \geqslant 10} 1_{\left\{k<T_{1}\right\}} \delta\left(W_{R+1}\right) 1_{W_{k+1}} \geqslant 0\right] \\
& \left\{\mathbb{1}_{\left\{k<T_{i}\right.}, W_{k+1}>10\right\}=\frac{1}{\left.\left\{T_{1}=k+1\right\}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \mathbb{E}\left[\mathbb{1}_{\left\{k<T_{1}\right\}} f\left(W_{k+1}^{\infty}\right) \mathbb{Z}_{\left\{W_{k+1} \geqslant 0\right\}}\right] \\
& =\sum_{k=0}^{\infty} \mathbb{E}\left[\mathbb{I}_{\left\{k \subset T_{1}\right\}} \sum_{j=0}^{\infty} v(j) \delta\left(W_{k}+j\right) \mathbb{1}_{\left\{W_{k}+j \geqslant 0\right\}}\right. \\
& \text { (T T T T } \quad \text { (Markov prop at time } \\
& =\sum_{j=0}^{\infty} v(j) \mathbb{E}\left[\sum_{k=0}^{T-1} f\left(w_{k}+j\right) \mathbb{I}\left\{w_{k+j} \geqslant 0\right\}\right] \\
& =\sum_{j=0}^{\infty} v(j) \sum_{r=0}^{-\infty} f(i+j) \mathbb{1}_{\left.\xi_{i} i+j \geqslant 0\right\}} \\
& =\sum_{m=0}^{\infty} f(m) \bar{\mu}(m) \text {. }
\end{aligned}
$$

