Exercise given at the end of Lecture 8.

Let μ be a critical and aperiodic offspring distribution on \mathbb{Z}_+ , with finite and positive variance σ^2 . Recall that:

- * $W_n = X_1 + \dots + X_n$ is the random walk such that $\mathbb{P}(X_1 = i) = \mu(i+1)$ for $i \ge -1$.
- * $T_0 = 0$ and $T_k = \inf\{i > T_{k-1}; W_i \ge W_{T_{k-1}}\}$ for $k \ge 1$ are the weak record times of W.
- * $H_n = |\{o \le k \le n-1; W_k = \min_{k \le j \le n} W_j\}|$ for $n \ge o$ is the associated height process.
- (i) Calculate $\mathbb{E}[W_{T_1}]$.
- (ii) Set $I_n = \min_{0 \le i \le n} W_i$. Show that

$$\frac{H_n}{W_n - I_n} \xrightarrow[n \to \infty]{(\mathbb{P})} \frac{2}{\sigma^2},$$

where (\mathbb{P}) means that the convergence holds in probability.