Exercise given at the end of Lecture 7.

Let μ be a critical offspring distribution on \mathbb{Z}_+ , with finite and positive variance σ^2 . Recall that for every tree τ and $k \ge 1$, $[\tau]_k = \{u \in \tau; |u| \le k\}$ is the tree τ cut above generation k, and that \mathcal{T}_{∞} denotes the μ -Galton–Watson tree conditioned to survived.

1. Let T_n be a Galton–Watson tree with offspring distribution μ , conditioned on having *n leaves*. Show that T_n converges locally in distribution to T_{∞} as $n \to \infty$, that is for every finite tree τ and $k \ge 0$,

$$\mathbb{P}([\mathcal{T}_n]_k = \tau) \quad \xrightarrow[n \to \infty]{} \quad \mathbb{P}([\mathcal{T}_\infty]_k = \tau)$$

- 2. Let \mathcal{D}_n be a random dissection of $\{1, e^{2i\pi/n}, \dots, e^{2i(n-1)\pi/n}\}$, chosen uniformly at random among all dissections of $\{1, e^{2i\pi/n}, \dots, e^{2i(n-1)\pi/n}\}$.
 - (i) Let \mathcal{F}_n denote the degree of the face adjacent to the side $[1, e^{2i\pi/n}]$ of \mathcal{D}_n . Show that

$$\mathbb{P}(\mathcal{F}_n=k) \quad \underset{n\to\infty}{\longrightarrow} \quad (k-1)\left(\frac{2-\sqrt{2}}{2}\right)^{k-2}, \qquad k\geq 3.$$

(ii) Let \mathcal{V}_n denote the number of diagonals adjacent to the vertex corresponding to the complex number 1 in \mathcal{D}_n . Show that

$$\mathbb{P}(\mathcal{V}_n=k) \quad \underset{n \to \infty}{\longrightarrow} \quad (k+1) \cdot (2-\sqrt{2})^2 (\sqrt{2}-1)^k, \qquad k \ge 0.$$