Recall μ is offspring distribution on \mathbb{Z}_+ , that $W_n = X_1 + \cdots + X_n$ is a random walk on \mathbb{Z} with $\mathbb{P}(X_1 = i) = \mu(i+1)$ for $i \ge -1$, and if F is a forest $u_1(F), \ldots, u_{|F|}(F)$ are its vertices ordered in lexicographical order.

Fix an integer $j \ge 1$ and let $F : \mathbb{Z}^n \to \mathbb{R}_+$ be a function invariant under cyclic shifts (meaning that $F(\mathbf{x}) = F(\mathbf{x}^{(i)})$ for every $\mathbf{x} \in \mathbb{Z}^n$ and $i \in \mathbb{Z}/n\mathbb{Z}$), and let \mathcal{F} be a forest of j independent GW_{μ} random trees. Show that:

$$\mathbb{E}\Big[F\Big(k_{u_0}(\mathcal{F})-\mathbf{1},k_{u_2}(\mathcal{F})-\mathbf{1},\ldots,k_{u_{n-1}}(\mathcal{F})-\mathbf{1}\Big)\mathbb{1}_{\{|\mathcal{F}|=n\}}\Big]=\frac{j}{n}\mathbb{E}\Big[F(X_1,\ldots,X_n)\mathbb{1}_{\{W_n=-j\}}\Big].$$

.