Exercice given at the end of Lecture 5 .

Recall μ is offspring distribution on \mathbb{Z}_{+}, that $W_{n}=X_{1}+\cdots+X_{n}$ is a random walk on \mathbb{Z} with $\mathbb{P}\left(X_{1}=i\right)=\mu(i+1)$ for $i \geq-1$, and if F is a forest $u_{1}(F), \ldots, u_{|F|}(F)$ are its vertices ordered in lexicographical order.
Fix an integer $j \geq 1$ and let $F: \mathbb{Z}^{n} \rightarrow \mathbb{R}_{+}$be a function invariant under cyclic shifts (meaning that $F(\mathbf{x})=F\left(\mathbf{x}^{(i)}\right)$ for every $\mathbf{x} \in \mathbb{Z}^{n}$ and $\left.i \in \mathbb{Z} / n \mathbb{Z}\right)$, and let \mathcal{F} be a forest of j independent $G W_{\mu}$ random trees. Show that:

$$
\mathbb{E}\left[F\left(k_{u_{0}}(\mathcal{F})-1, k_{u_{2}}(\mathcal{F})-1, \ldots, k_{u_{n-1}}(\mathcal{F})-1\right) \mathbb{1}_{\{|\mathcal{F}|=n\}}\right]=\frac{j}{n} \mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right) \mathbb{1}_{\left\{W_{n}=-j\right\}}\right]
$$

