The Brownian triangulation: a universal limit for random plane non-crossing configurations (joint work with Nicolas Curien)

Igor Kortchemski (Université Paris-Sud, Orsay, France)

MIT Probability Seminar, April 2nd 2012

< ∃ >

2

Motivations

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

3 >

Motivations

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

-∢ ≣ ▶

Motivations

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.

글 🖌 🖌 글 🕨

Motivations

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

프 🖌 🔺 프 🕨

Motivations

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What is the sense of the convergence when the objects are random? \rightarrow Convergence in distribution

프 > 프

Convergence in distribution

Let $(X_n)_{n \ge 1}$ and X be random variables with values in a metric space (\mathcal{E}, d) . X_n **converges in distribution** towards X if

프 > 프

Convergence in distribution

Let $(X_n)_{n \ge 1}$ and X be random variables with values in a metric space (\mathcal{E}, d) . X_n converges in distribution towards X if

 $\mathbb{E}\left[F(X_n)\right] \qquad \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(X)\right]$

for every bounded continuous function $F: \mathcal{E} \to \mathbb{R}$.

< ∃ >

3

Convergence in distribution

Let $(X_n)_{n \ge 1}$ and X be random variables with values in a metric space (\mathcal{E}, d) . X_n converges in distribution towards X if

$$\mathbb{E}\left[F(X_n)\right] \qquad \xrightarrow[n \to \infty]{} \qquad \mathbb{E}\left[F(X)\right]$$

for every bounded continuous function $F: \mathcal{E} \to \mathbb{R}$.

We write:

$$X_n \qquad \xrightarrow{(d)} \qquad X$$

E nac

Outline

- I. THE DISCRETE OBJECT
- II. THE LIMITING CONTINUOUS OBJECT
- **III. PROVING THE CONVERGENCE**
- IV. Application to the study of uniform dissections

I. THE DISCRETE OBJECTS

Igor Kortchemski Universality of the Brownian triangulation

ヘロト 人間ト 人造ト 人造トー

Ξ 9 Q (P

글 🖒 🛛 글

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.

Framework: choose a random non-crossing configuration obtained from the vertices of P_n , that is a collection of non-intersecting diagonals.

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.

Framework: choose a random non-crossing configuration obtained from the vertices of P_n , that is a collection of non-intersecting diagonals.

What happens for n large?

æ

돌▶ ★ 돌≯

Case of dissections of P_n .

글 🖒 🛛 글

Dissections

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n-1).

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n-1).

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n-1).

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n-1).

< ∃→

э

Dissections

Let \mathcal{D}_n be a random dissection, chosen uniformly at random among all dissections of P_n . What does \mathcal{D}_n look like when n is large?

Let \mathcal{D}_n be a random dissection, chosen uniformly at random among all dissections of P_n . What does \mathcal{D}_n look like when n is large?

⊒ ⊳

Samples of \mathcal{D}_{18} and \mathcal{D}_{15000} .

∢ 臣 ▶

æ

Case of non-crossing trees of P_n .

< 口 > < 同

⊒ ⊳

Non-crossing trees

Example of a non-crossing tree of P_{10} :

프 🖌 👘 프

Non-crossing trees

Let \mathcal{T}_n be a random non-crossing tree, chosen uniformly at random among all those of P_n . What does \mathcal{T}_n look like for large n?

Non-crossing trees

Let \mathcal{T}_n be a random non-crossing tree, chosen uniformly at random among all those of P_n . What does \mathcal{T}_n look like for large n?

Samples of ${\mathfrak T}_{500}$ and ${\mathfrak T}_{1000}.$

< 글 >

Ξ.

Case of non-crossing pair-partitions of P_{2n} .

Igor Kortchemski Universality of the Brownian triangulation

Non-crossing pair partitions

Example of a non-crossing pair-partition of P_{20} :

글 > 글

Non-crossing pair partitions

Let Ω_n be a random non-crossing pair-partitition of P_{2n} , chosen uniformly among all those of P_{2n} . What does Ω_n look like for n large ?

Non-crossing pair partitions

Let Ω_n be a random non-crossing pair-partitition of P_{2n} , chosen uniformly among all those of P_{2n} . What does Ω_n look like for n large ?

Samples of \mathbb{Q}_{250} and $\mathbb{Q}_{1000}.$

3 >

History of non-crossing configurations of P_n

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq & Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet & Noy (1999)

·프▶ · ★ 프 ▶ · ·

History of non-crossing configurations of P_n

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq & Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet & Noy (1999)

Probabilistical combinatorics point of view:

- Uniform triangulations (maximal degree): Devroye, Flajolet, Hurtado, Noy & Steiger (1999) et Gao & Wormald (2000)
- Non-crossing trees (total length, maximal degree): Deutsch & Noy (2002), Marckert & Panholzer (2002)
- Uniform dissections (degrees, maximal degree): Bernasconi, Panagiotou & Steger (2010)

History of non-crossing configurations of P_n

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq & Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet & Noy (1999)

Probabilistical combinatorics point of view:

- Uniform triangulations (maximal degree): Devroye, Flajolet, Hurtado, Noy & Steiger (1999) et Gao & Wormald (2000)
- Non-crossing trees (total length, maximal degree): Deutsch & Noy (2002), Marckert & Panholzer (2002)
- Uniform dissections (degrees, maximal degree): Bernasconi, Panagiotou & Steger (2010)

Geometrical point of view:

- Aldous (1994): large uniform triangulations
- ▶ K' (2011): dissections with large faces (non uniform)

3

프 🖌 🔺 프 🕨

э.

II. CONSTRUCTION OF THE CONTINUOUS LIMITING OBJECT: the Brownian triangulation (Aldous, '94)

き▶ ★ 差▶ → 差 → のへ(?)

Interlude: Brownian motion and the Brownian excursion

Igor Kortchemski Universality of the Brownian triangulation

A B A B A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

э

< ∃→

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$.
< ∃ >

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$.

< ∃ >

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(rac{S_{nt}}{\sigma\sqrt{n}},t\geqslant 0
ight) \quad \stackrel{(d)}{\underset{n
ightarrow\infty}{\longrightarrow}}$$

< ∃ >

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}},t\geq 0\right)\quad \stackrel{(d)}{\xrightarrow[n\to\infty]{}}\quad (\mathbf{W}_t,t\geq 0),$$

くヨン

3

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\xrightarrow{}} \quad (\mathbf{W}_t, t \ge 0),$$

where $(W_t, t \ge 0)$ is a continuous random function called Brownian motion (which does not depend on σ).

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}},t\geq 0\right)\quad \stackrel{(d)}{\xrightarrow[n\to\infty]{}}\quad (\mathsf{W}_t,t\geq 0),$$

where $(W_t, t \ge 0)$ is a continuous random function called Brownian motion (which does not depend on σ).

Brownian motion

Theorem (Donsker)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}},t\geq 0\right)\quad \stackrel{(d)}{\xrightarrow[n\to\infty]{}}\quad (\mathsf{W}_t,t\geq 0),$$

where $(W_t, t \ge 0)$ is a continuous random function called Brownian motion (which does not depend on σ).

< ∃ >

э.

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$.

< ∃ >

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$.

э.

▶ ★ 臣 ▶ …

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\left. \frac{S_{nt}}{\sigma \sqrt{n}}, t \ge 0 \right| S_n = 0, S_i \ge 0 \text{ for } i < n \right) \quad \stackrel{(d)}{\xrightarrow[n \to \infty]{}}$$

э.

< ∃ >

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\left. \frac{S_{nt}}{\sigma \sqrt{n}}, t \ge 0 \right| S_n = 0, S_i \ge 0 \text{ for } i < n \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathbf{e}_t, t \ge 0),$$

< 3 b

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\left. \frac{S_{nt}}{\sigma \sqrt{n}}, t \ge 0 \right| S_n = 0, S_i \ge 0 \text{ for } i < n \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathbf{e}_t, t \ge 0),$$

where $(\mathbf{e}_t, t \ge 0)$ is a continuous random function called the Brownian excursion.

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\left. \frac{S_{nt}}{\sigma \sqrt{n}}, t \ge 0 \right| S_n = 0, S_i \ge 0 \text{ for } i < n \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathbf{e}_t, t \ge 0),$$

where $(\mathbf{e}_t, t \ge 0)$ is a continuous random function called the Brownian excursion.

Theorem (Donsker, conditioned version)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$. Then:

$$\left(\left. \frac{S_{nt}}{\sigma \sqrt{n}}, t \ge 0 \right| S_n = 0, S_i \ge 0 \text{ for } i < n \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathbf{e}_t, t \ge 0),$$

where $(\mathbf{e}_t, t \ge 0)$ is a continuous random function called the Brownian excursion.

The Brownian excursion can be seen as Brownian motion $(W_t, 0 \le t \le 1)$ conditioned on $W_1 = 0$ and $W_t > 0$ for $t \in (0, 1)$.

< ∃→

э

Construction of the limiting object

We start from the Brownian excursion @:

We start from the Brownian excursion @:

We start from the Brownian excursion e:

Let t be a local minimum time.

We start from the Brownian excursion e:

Let t be a local minimum time.

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$.

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$.

We start from the Brownian excursion @:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Then draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$.

We start from the Brownian excursion @:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Then draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$.

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Then draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Repeat this operation for all local minimum times.

We start from the Brownian excursion @:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Then draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Repeat this operation for all local minimum times.

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Then draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Repeat this operation for all local minimum times.

The closure of the set thus obtained, denoted by L(e), is called the Brownian triangulation.

< ∃→

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} .

< ∃ >

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(e),$$

< ∃→

3

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

문에 비용에 다

3

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Remarks:

Aldous '94: this holds when χ_n is a uniformly distributed triangulation of P_n .

ヨト ・ヨト …

3

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Remarks:

- ► Aldous '94: this holds when χ_n is a uniformly distributed triangulation of P_n .
- There exists a "stable" analog of L(e) with big holes (K. '11).

< ∃→

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

The length of the longest diagonal of χ_n converges in distribution towards the probability measure with density:

< ∃→

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \xrightarrow{(d)} L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

The length of the longest diagonal of χ_n converges in distribution towards the probability measure with density:

$$\frac{1}{\pi} \frac{3x-1}{x^2(1-x)^2\sqrt{1-2x}} \mathbf{1}_{\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\}} dx.$$

→ < Ξ →</p>

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

The length of the longest diagonal of χ_n converges in distribution towards the probability measure with density:

$$\frac{1}{\pi} \frac{3x-1}{x^2(1-x)^2\sqrt{1-2x}} \mathbf{1}_{\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\}} dx.$$

This stems from a small calculation when χ_n is a triangulation (Aldous '94)!

Theorem (Curien & K. '12)

For $n \ge 3$, let χ_n be a uniformly distributed dissection of P_n , or a uniformly distributed non-crossing tree of P_n or a uniformly distributed non-crossing pair-partition of P_{2n} . Then:

$$\chi_n \quad \xrightarrow{(d)} \quad L(\mathbb{P}),$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

The length of the longest diagonal of χ_n converges in distribution towards the probability measure with density:

$$\frac{1}{\pi} \frac{3x-1}{x^2(1-x)^2\sqrt{1-2x}} \mathbf{1}_{\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\}} dx.$$

This stems from a small calculation when χ_n is a triangulation (Aldous '94)!

The area of the largest face of χ_n converges in distribution towards the area of the largest triangle of L(e).

・ 何 ト ・ ヨ ト ・ ヨ ト …

E DQC

III. HOW DOES ONE ESTABLISH THE CONVERGENCE OF ALL THESE NON-CROSSING UNIFORMLY DISTRIBUTED MODELS TOWARDS THE BROWNIAN TRIANGULATION?

< ∃ >

э.

III. HOW DOES ONE ESTABLISH THE CONVERGENCE OF ALL THESE NON-CROSSING UNIFORMLY DISTRIBUTED MODELS TOWARDS THE BROWNIAN TRIANGULATION?

Key point: Each one of the previous models can be coded by a conditioned Galton-Watson tree.

æ

≺ 臣 ≯

Coding trees

< A

Definition (of the contour function)

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

Strategy to prove the convergence towards the Brownian triangulation:

Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.
- The Brownian excursion codes the Brownian triangulation L(e).

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.
- The Brownian excursion codes the Brownian triangulation L(e).

It follows that the non-crossing uniformly distributed models converge towards L(e).

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.

We consider rooted plane (oriented) trees.

```
Let \rho be a probability measure on \mathbb N with mean \leqslant 1 s.t. \rho(1) < 1.
```


We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ , where k_{\varnothing} is the number of children of the root.

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

- 1. k_{\emptyset} is distributed according to ρ , where k_{\emptyset} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, conditionally on $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the *j* subtrees of the *j* children of the root are independent with law \mathbb{P}_{ρ} .

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

- 1. k_{\emptyset} is distributed according to ρ , where k_{\emptyset} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, conditionally on $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the *j* subtrees of the *j* children of the root are independent with law \mathbb{P}_{ρ} .

Here, $k_{\emptyset} = 2$.

< 3 >

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

- 1. k_{\emptyset} is distributed according to ρ , where k_{\emptyset} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, conditionally on $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the *j* subtrees of the *j* children of the root are independent with law \mathbb{P}_{ρ} .

Here, $k_{\emptyset} = 2$.

The probability of getting this tree is $\rho(2)^2\rho(0)^3.$

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

- 1. k_{\emptyset} is distributed according to ρ , where k_{\emptyset} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, conditionally on $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the *j* subtrees of the *j* children of the root are independent with law \mathbb{P}_{ρ} .

Here, $k_{\emptyset} = 2$.

The probability of getting this tree is $\rho(2)^2\rho(0)^3.$

 $\zeta(\tau)$ is the total number of vertices and $\lambda(\tau)$ is the total number of leaves.

3

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on \mathbb{N} with mean ≤ 1 s.t. $\rho(1) < 1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

- 1. k_{\emptyset} is distributed according to ρ , where k_{\emptyset} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, conditionally on $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the *j* subtrees of the *j* children of the root are independent with law \mathbb{P}_{ρ} .

Here, $k_{\emptyset} = 2$. The probability of getting this tree is $\rho(2)^2 \rho(0)^3$. Here, $\zeta(\tau) = 5$ and $\lambda(\tau) = 3$. $\zeta(\tau)$ is the total number of vertices and $\lambda(\tau)$ is the total number of leaves.

∢ ≣ ≯

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with *n* vertices is the law of a GW_v tree conditioned on having *n* vertices.

프 🖌 👘 프

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\nu}[\tau]$ depends only on n.

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

$$\mathbb{P}_{\boldsymbol{\nu}}[\tau] = \prod_{u \in \tau} \nu_{k_u}$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

$$\mathbb{P}_{\mathbf{v}}[\tau] = \prod_{u \in \tau} \mathsf{v}_{k_u} = \prod_{u \in \tau} \frac{1}{2^{k_u + 1}}$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

$$\mathbb{P}_{\nu}[\tau] = \prod_{u \in \tau} \nu_{k_u} = \prod_{u \in \tau} \frac{1}{2^{k_u + 1}} = 2^{-\sum_{u \in \tau} (k_u + 1)}$$

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

Let τ be a tree with *n* vertices. It suffices to prove that $\mathbb{P}_{\nu}[\tau]$ depends only on *n*. We have $(k_u$ being the number of children of *u*):

$$\mathbb{P}_{\nu}[\tau] = \prod_{u \in \tau} \nu_{k_u} = \prod_{u \in \tau} \frac{1}{2^{k_u + 1}} = 2^{-\sum_{u \in \tau} (k_u + 1)}$$

Universality of the Brownian triangulation

lgor Kortchemski

3

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

$$\mathbb{P}_{\nu}[\tau] = \prod_{u \in \tau} \nu_{k_u} = \prod_{u \in \tau} \frac{1}{2^{k_u + 1}} = 2^{-\sum_{u \in \tau} (k_u + 1)}$$
$$\sum_{u \in \tau} (k_u + 1) = 3 + 3 + 1 + 1 + 1 = 9$$
$$= 2 \times 5 - 1$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k) = 1/2^{k+1}$ for $k \ge 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW_v tree conditioned on having n vertices.

Proof.

$$\mathbb{P}_{\nu}[\tau] = \prod_{u \in \tau} \nu_{k_u} = \prod_{u \in \tau} \frac{1}{2^{k_u + 1}} = 2^{-\sum_{u \in \tau} (k_u + 1)} = 2^{-2n+1}.$$

$$\sum_{u \in \tau} (k_u + 1) = 3 + 3 + 1 + 1 + 1 = 9$$

$$= 2 \times 5 - 1$$

< ∃→

э

How can one code non-crossing uniformly distributed models by a conditioned Galton-Watson tree?

< ∃→

æ

Coding uniform pair-partitions by Galton-Watson trees.

돈 돈 돈

Consider the dual of a uniform non-crossing pair-partition of P_{2n} :

크 / 프

Consider the dual of a uniform non-crossing pair-partition of P_{2n} :

It is a uniform tree with n edges.

It is a uniform tree with n edges.

Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom(1/2), conditioned on having n edges.

It is a uniform tree with n edges.

Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom(1/2), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_n be a random tree distributed according to $\mathbb{P}_{Geom(1/2)}[\cdot | \zeta(\tau) = n+1]$. Let σ^2 be the variance of Geom(1/2). Then:

$$\left(\frac{\sigma}{2\sqrt{n}}C_{2nt}(\mathfrak{t}_n), 0\leqslant t\leqslant 1\right) \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad (\mathfrak{e}_t, 0\leqslant t\leqslant 1)$$

It is a uniform tree with n edges.

Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom(1/2), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_n be a random tree distributed according to $\mathbb{P}_{Geom(1/2)}[\cdot | \zeta(\tau) = n+1]$. Let σ^2 be the variance of Geom(1/2). Then:

$$\left(\frac{\sigma}{2\sqrt{n}}C_{2nt}(\mathfrak{t}_n), 0\leqslant t\leqslant 1\right)\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathfrak{e}_t, 0\leqslant t\leqslant 1).$$

Idea: the contour function of a Galton-Watson tree behaves as a random walk.

It is a uniform tree with n edges.

Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom(1/2), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_n be a random tree distributed according to $\mathbb{P}_{Geom(1/2)}[\cdot | \zeta(\tau) = n+1]$. Let σ^2 be the variance of Geom(1/2). Then:

$$\left(\frac{\sigma}{2\sqrt{n}}C_{2nt}(\mathfrak{t}_n), 0\leqslant t\leqslant 1\right) \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad (\mathbf{e}_t, 0\leqslant t\leqslant 1).$$

Idea: the contour function of a Galton-Watson tree behaves as a random walk.

It follows that uniform non-crossing pair-partitions of P_{2n} converge towards the Brownian triangulation.

< 문→

Ξ.

Coding uniform dissections by Galton-Watson trees.
프 > 프

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_n

⊒ ⊳

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_n , suitably rooted:

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_n , suitably rooted:

This is a uniform tree on the set of all trees with n-1 leaves s.t. no vertex has exactly one child.

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_n , suitably rooted:

This is a uniform tree on the set of all trees with n-1 leaves s.t. no vertex has exactly one child.

Proposition (Curien & K. '12, Pitman & Rizzolo '11)

The law of a uniform tree on the set of all trees with n-1 leaves s.t. no vertex has exactly one child is the law of a GW_{μ_0} tree with offspring distribution μ_0 conditioned on having n-1 leaves, where:

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_n , suitably rooted:

This is a uniform tree on the set of all trees with n-1 leaves s.t. no vertex has exactly one child.

Proposition (Curien & K. '12, Pitman & Rizzolo '11)

The law of a uniform tree on the set of all trees with n-1 leaves s.t. no vertex has exactly one child is the law of a GW_{μ_0} tree with offspring distribution μ_0 conditioned on having n-1 leaves, where:

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \qquad \mu_0(1) = 0, \qquad \mu_0(i) = (2-\sqrt{2})^{i-1} ext{ for } i \geqslant 2.$$

글 > 글

Coding uniform dissections by Galton-Watson trees

Theorem (K. '11)

Let \mathfrak{t}_n be a random tree with law $\mathbb{P}_{\mu_0}[\cdot | \lambda(\tau) = n]$. Let σ^2 be the variance of μ_0 . Then:

$$\left(\frac{\sigma}{2\sqrt{\zeta(\mathfrak{t}_n)}}C_{2\zeta(\mathfrak{t}_n)t}(\mathfrak{t}_n), 0 \leqslant t \leqslant 1\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathfrak{e}_t, 0 \leqslant t \leqslant 1).$$

< 3 >

3

Coding uniform dissections by Galton-Watson trees

Theorem (K. '11)

Let \mathfrak{t}_n be a random tree with law $\mathbb{P}_{\mu_0}[\cdot | \lambda(\tau) = n]$. Let σ^2 be the variance of μ_0 . Then:

$$\left(\frac{\sigma}{2\sqrt{\zeta(\mathfrak{t}_n)}}C_{2\zeta(\mathfrak{t}_n)t}(\mathfrak{t}_n), 0 \leqslant t \leqslant 1\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (\mathfrak{e}_t, 0 \leqslant t \leqslant 1).$$

It follows that uniform dissections of P_n converge towards the Brownian triangulation.

< ∃ >

Ξ.

Conclusion: In these uniform models, some independence is hiding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

IV. APPLICATION TO THE STUDY OF UNIFORM DISSECTIONS

Igor Kortchemski Universality of the Brownian triangulation

$$\begin{split} \mathcal{D}_n : \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geq 2): \end{split}$$

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

 \mathcal{D}_n : uniform dissection of P_n . Recall that: the dual of \mathcal{D}_n is a tree with law $\mathbb{P}_{\mu_0} [\cdot | \lambda(\tau) = n - 1]$, where $(i \ge 2)$:

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 1 (Counting dissections). Probabilistic proof of the following result:

Theorem (Flajolet & Noy '99)

Let a_n be the number of dissections of P_n . Then:

$$a_n \xrightarrow{\sim} n \rightarrow \infty$$

$$\begin{split} \mathcal{D}_n: \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geqslant 2): \end{split}$$

$$\mu_0(0) = \frac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 1 (Counting dissections). Probabilistic proof of the following result:

Theorem (Flajolet & Noy '99)

Let a_n be the number of dissections of P_n . Then:

$$a_n \quad \sum_{n \to \infty} \quad \frac{1}{4} \sqrt{\frac{99\sqrt{2} - 140}{\pi}} n^{-3/2} (3 + 2\sqrt{2})^n.$$

 \mathcal{D}_n : uniform dissection of P_n . Recall that: the dual of \mathcal{D}_n is a tree with law $\mathbb{P}_{\mu_0}[\cdot | \lambda(\tau) = n - 1]$, where $(i \ge 2)$:

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 2 (Study of the maximal face degree). Denote by $D^{(n)}$ the maximal face degree of \mathcal{D}_n .

 \mathcal{D}_n : uniform dissection of P_n . Recall that: the dual of \mathcal{D}_n is a tree with law $\mathbb{P}_{\mu_0}[\cdot | \lambda(\tau) = n - 1]$, where $(i \ge 2)$:

$$\mu_0(0) = \frac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 2 (Study of the maximal face degree). Denote by $D^{(n)}$ the maximal face degree of \mathcal{D}_n .

Theorem (Curien & K. '12) Set $\beta = 2 + \sqrt{2}$. For every c > 0, we have: $\mathbb{P}(\log_{\beta}(n) - c \log_{\beta} \log_{\beta}(n) \leq D^{(n)} \leq \log_{\beta}(n) + c \log_{\beta} \log_{\beta}(n)) \xrightarrow[n \to \infty]{} 1.$

$$\begin{split} \mathcal{D}_n: \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geqslant 2): \end{split}$$

$$\mu_0(0) = \frac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 3 (Study of the vertex degree).

Theorem (Curien & K. '12)

Let $\partial^{(n)}$ be the number of diagonals ending at the vertex with affix 1 in \mathcal{D}_n .

$$\begin{split} \mathcal{D}_n: \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geqslant 2): \end{split}$$

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 3 (Study of the vertex degree).

Theorem (Curien & K. '12)

Let $\partial^{(n)}$ be the number of diagonals ending at the vertex with affix 1 in \mathcal{D}_n . Then $\partial^{(n)}$ converges in distribution towards the sum of two independent $Geom(\sqrt{2}-1)$ random variables, i.e. for $k \ge 0$:

$$\mathbb{P}(\partial^{(n)} = k) \xrightarrow[n \to \infty]{} (k+1)\mu_0^2(1-\mu_0)^k.$$

$$\begin{split} \mathcal{D}_n: \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geqslant 2): \end{split}$$

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 4 (Study of the maximal vertex degree). Proof of a conjecture by Bernasconi, Panagiotou & Steger:

Theorem (Curien & K. '12)

Let $\Delta^{(n)}$ be the maximal number of diagonals ending at any vertex in \mathcal{D}_n .

$$\begin{split} \mathcal{D}_n: \text{ uniform dissection of } P_n. \text{ Recall that:} \\ \text{the dual of } \mathcal{D}_n \text{ is a tree with law } \mathbb{P}_{\mu_0} \left[\, \cdot \, | \, \lambda(\tau) = n-1 \right], \\ \text{where } (i \geqslant 2): \end{split}$$

$$\mu_0(0) = rac{2-\sqrt{2}}{2}, \quad \mu_0(1) = 0, \quad \mu_0(i) = (2-\sqrt{2})^{i-1}.$$

Application 4 (Study of the maximal vertex degree). Proof of a conjecture by Bernasconi, Panagiotou & Steger:

Theorem (Curien & K. '12)

Let $\Delta^{(n)}$ be the maximal number of diagonals ending at any vertex in \mathcal{D}_n . Set $b = \sqrt{2} + 1$. Then for every c > 0, we have

 $\mathbb{P}(\Delta^{(n)} \geqslant \log_b(n) + (1+c)\log_b\log_b(n)) \quad \xrightarrow[n \to \infty]{} \quad 0$

글 > 글

Conjecture

Let $\Delta^{(n)}$ be the maximum number of diagonals ending at some vertex of \mathcal{D}_n . Set $b = \sqrt{2} + 1$. For every c > 0:

$$\mathbb{P}\left(\left|\Delta^{(n)} - (\log_b(n) + \log_b \log_b(n))\right| > c \log_b \log_b(n)\right) \xrightarrow[n \to \infty]{} 0.$$

This is satisfied for another value of b in the case of uniform triangulations (Devroye, Flajolet, Hurtado, Noy & Steiger '99 et Gao & Wormald '00)

Conjecture

Let $\Delta^{(n)}$ be the maximum number of diagonals ending at some vertex of \mathcal{D}_n . Set $b = \sqrt{2} + 1$. For every c > 0:

$$\mathbb{P}\left(\left|\Delta^{(n)} - (\log_b(n) + \log_b \log_b(n))\right| > c \log_b \log_b(n)\right) \xrightarrow[n \to \infty]{} 0.$$

This is satisfied for another value of b in the case of uniform triangulations (Devroye, Flajolet, Hurtado, Noy & Steiger '99 et Gao & Wormald '00)

Thank you for your attention!