The Brownian triangulation:
 a universal limit for random plane non-crossing configurations
 (joint work with Nicolas Curien)

Igor Kortchemski (Université Paris-Sud, Orsay, France)

MIT Probability Seminar, April 2nd 2012

Motivations

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Motivations

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.

Motivations

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_{n} satisfies "approximately" \mathcal{P} for n large.

Motivations

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_{n} satisfies "approximately" \mathcal{P} for n large.
- Universality: if $\left(Y_{n}\right)_{n \geqslant 1}$ is another sequence of objects converging towards X, then X_{n} and Y_{n} share approximately the same properties for n large.

Motivations

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_{n} satisfies "approximately" \mathcal{P} for n large.
- Universality: if $\left(Y_{n}\right)_{n \geqslant 1}$ is another sequence of objects converging towards X, then X_{n} and Y_{n} share approximately the same properties for n large.

What is the sense of the convergence when the objects are random?
\rightarrow Convergence in distribution

Convergence in distribution

Let $\left(X_{n}\right)_{n \geqslant 1}$ and X be random variables with values in a metric space (\mathcal{E}, d). X_{n} converges in distribution towards X if

Convergence in distribution

Let $\left(X_{n}\right)_{n \geqslant 1}$ and X be random variables with values in a metric space $(\varepsilon, d) . X_{n}$ converges in distribution towards X if

$$
\mathbb{E}\left[F\left(X_{n}\right)\right] \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad \mathbb{E}[F(X)]
$$

for every bounded continuous function $F: \mathcal{E} \rightarrow \mathbb{R}$.

Convergence in distribution

Let $\left(X_{n}\right)_{n \geqslant 1}$ and X be random variables with values in a metric space $(\varepsilon, d) . X_{n}$ converges in distribution towards X if

$$
\mathbb{E}\left[F\left(X_{n}\right)\right] \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad \mathbb{E}[F(X)]
$$

for every bounded continuous function $F: \mathcal{E} \rightarrow \mathbb{R}$.
We write:

$$
X_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}} \quad X
$$

Outline

I. The discrete object

II. The limiting continuous object

III. Proving the convergence
IV. Application to the study of uniform dissections

I. The discrete objects

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Framework: choose a random non-crossing configuration obtained from the vertices of P_{n}, that is a collection of non-intersecting diagonals.

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Framework: choose a random non-crossing configuration obtained from the vertices of P_{n}, that is a collection of non-intersecting diagonals.

What happens for n large?

Case of dissections of P_{n}.

Dissections

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Dissections

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

A dissection of P_{n} is the union of the sides of P_{n} and of a collection of diagonals that may intersect only at their endpoints.

Dissections

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

A dissection of P_{n} is the union of the sides of P_{n} and of a collection of diagonals that may intersect only at their endpoints.

Dissections

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

A dissection of P_{n} is the union of the sides of P_{n} and of a collection of diagonals that may intersect only at their endpoints.

Dissections

Let P_{n} be the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

A dissection of P_{n} is the union of the sides of P_{n} and of a collection of diagonals that may intersect only at their endpoints.

Dissections

Let \mathcal{D}_{n} be a random dissection, chosen uniformly at random among all dissections of P_{n}. What does \mathcal{D}_{n} look like when n is large?

Dissections

Let \mathcal{D}_{n} be a random dissection, chosen uniformly at random among all dissections of P_{n}. What does \mathcal{D}_{n} look like when n is large?

Samples of \mathcal{D}_{18} and \mathcal{D}_{15000}.

Case of non-crossing trees of P_{n}.

Non-crossing trees

Example of a non-crossing tree of P_{10} :

Non-crossing trees

Let \mathcal{T}_{n} be a random non-crossing tree, chosen uniformly at random among all those of P_{n}. What does \mathcal{I}_{n} look like for large n ?

Non-crossing trees

Let \mathcal{T}_{n} be a random non-crossing tree, chosen uniformly at random among all those of P_{n}. What does \mathcal{T}_{n} look like for large n ?

Samples of \mathcal{T}_{500} and \mathcal{T}_{1000}.

Case of non-crossing pair-partitions of $P_{2 n}$.

Non-crossing pair partitions

Example of a non-crossing pair-partition of P_{20} :

Non-crossing pair partitions

Let Q_{n} be a random non-crossing pair-partitition of $P_{2 n}$, chosen uniformly among all those of $P_{2 n}$. What does Q_{n} look like for n large?

Non-crossing pair partitions

Let Q_{n} be a random non-crossing pair-partitition of $P_{2 n}$, chosen uniformly among all those of $P_{2 n}$. What does Q_{n} look like for n large ?

Samples of Q_{250} and Q_{1000}.

History of non-crossing configurations of P_{n}

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq \& Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet \& Noy (1999)

History of non-crossing configurations of P_{n}

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq \& Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet \& Noy (1999)

Probabilistical combinatorics point of view:

- Uniform triangulations (maximal degree): Devroye, Flajolet, Hurtado, Noy \& Steiger (1999) et Gao \& Wormald (2000)
- Non-crossing trees (total length, maximal degree): Deutsch \& Noy (2002), Marckert \& Panholzer (2002)
- Uniform dissections (degrees, maximal degree): Bernasconi, Panagiotou \& Steger (2010)

History of non-crossing configurations of P_{n}

Combinatorical point of view:

- Counting and bijections for non-crossing trees: Dulucq \& Penaud (1993), Noy (1998), ...
- Counting of various non-crossing configurations: Flajolet \& Noy (1999)

Probabilistical combinatorics point of view:

- Uniform triangulations (maximal degree): Devroye, Flajolet, Hurtado, Noy \& Steiger (1999) et Gao \& Wormald (2000)
- Non-crossing trees (total length, maximal degree): Deutsch \& Noy (2002), Marckert \& Panholzer (2002)
- Uniform dissections (degrees, maximal degree): Bernasconi, Panagiotou \& Steger (2010)

Geometrical point of view:

- Aldous (1994): large uniform triangulations
- K' (2011): dissections with large faces (non uniform)

II. Construction of the continuous limiting object: the Brownian triangulation (Aldous, '94)

Interlude: Brownian motion and the Brownian excursion

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$.

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}
$$

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\underset{\rightarrow}{(d)}} \quad\left(W_{t}, t \geqslant 0\right),
$$

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \quad\left(W_{t}, t \geqslant 0\right),
$$

where $\left(W_{t}, t \geqslant 0\right)$ is a continuous random function called Brownian motion (which does not depend on σ).

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \quad\left(W_{t}, t \geqslant 0\right),
$$

where $\left(W_{t}, t \geqslant 0\right)$ is a continuous random function called Brownian motion (which does not depend on σ).

$$
\begin{aligned}
& \left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \\
& \text { for } n=100 \text { : }
\end{aligned}
$$

Brownian motion

Theorem (Donsker)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \quad\left(W_{t}, t \geqslant 0\right),
$$

where $\left(W_{t}, t \geqslant 0\right)$ is a continuous random function called Brownian motion (which does not depend on σ).

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

for $n=100.000$:

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$.

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}
$$

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \quad\left(e_{t}, t \geqslant 0\right),
$$

Theorem (Donsker, conditioned version)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \quad\left(e_{t}, t \geqslant 0\right),
$$

where $\left(\mathrm{e}_{\mathrm{t}}, t \geqslant 0\right)$ is a continuous random function called the Brownian excursion.

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \quad\left(\mathbb{e}_{t}, t \geqslant 0\right),
$$

where $\left(e_{t}, t \geqslant 0\right)$ is a continuous random function called the Brownian excursion.

Theorem (Donsker, conditioned version)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, t \geqslant 0 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(\mathbb{e}_{t}, t \geqslant 0\right)
$$

where $\left(\mathbb{e}_{t}, t \geqslant 0\right)$ is a continuous random function called the Brownian excursion.

The Brownian excursion can be seen as Brownian motion ($W_{t}, 0 \leqslant t \leqslant 1$) conditioned on $W_{1}=0$ and $W_{t}>0$ for $t \in(0,1)$.

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Let t be a local minimum time.

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Let t be a local minimum time.

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$.

Construction of the limiting object

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$.

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Then draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right]$, $\left[e^{-2 \mathrm{i} \pi t}, e^{-2 \mathrm{i} \pi d_{t}}\right]$ and $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi d_{t}}\right]$.

Construction of the limiting object

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Then draw the chords $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi t}\right]$, $\left[e^{-2 \mathrm{i} \pi t}, e^{-2 \mathrm{i} \pi d_{t}}\right]$ and $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi d_{t}}\right]$.

Construction of the limiting object

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{E}_{s}=\mathbb{C}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Then draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right]$, $\left[e^{-2 \mathrm{i} \pi t}, e^{-2 \mathrm{i} \pi d_{t}}\right]$ and $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi d_{t}}\right]$.
Repeat this operation for all local minimum times.

Construction of the limiting object

We start from the Brownian excursion \mathbb{e} :

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{E}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\operatorname{inff}\left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Then draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right]$, $\left[e^{-2 \mathbf{i} \pi t}, e^{-2 \mathbf{i} \pi d_{t}}\right]$ and $\left[e^{-2 \mathbf{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi d_{t}}\right]$.
Repeat this operation for all local minimum times.

Construction of the limiting object

We start from the Brownian excursion e:

Let t be a local minimum time. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Then draw the chords $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi t}\right]$, $\left[e^{-2 \mathrm{i} \pi t}, e^{-2 \mathrm{i} \pi d_{t}}\right]$ and $\left[e^{-2 \mathrm{i} \pi g_{t}}, e^{-2 \mathrm{i} \pi d_{t}}\right]$.
Repeat this operation for all local minimum times.
The closure of the set thus obtained, denoted by $L(\mathbb{e})$, is called the Brownian triangulation.

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$.

Theorem (Curien \& K. '12)

For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} \quad L(\mathbb{e}),
$$

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} L(\mathbb{E}),
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
\chi_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad L(\mathbb{E})
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Remarks:

- Aldous '94: this holds when χ_{n} is a uniformly distributed triangulation of P_{n}.

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
\chi_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} L(\mathbb{E})
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Remarks:

- Aldous '94: this holds when χ_{n} is a uniformly distributed triangulation of P_{n}.
- There exists a "stable" analog of $L(\mathbb{E})$ with big holes (K. '11).

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad L(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

- The length of the longest diagonal of χ_{n} converges in distribution towards the probability measure with density:

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad L(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

- The length of the longest diagonal of χ_{n} converges in distribution towards the probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} \mathbf{1}_{\left\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\right\}} \mathrm{d} x .
$$

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad L(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

- The length of the longest diagonal of χ_{n} converges in distribution towards the probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} \mathbf{1}_{\left\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\right\}} \mathrm{d} x .
$$

This stems from a small calculation when χ_{n} is a triangulation (Aldous '94)!

Theorem (Curien \& K. '12)
For $n \geqslant 3$, let χ_{n} be a uniformly distributed dissection of P_{n}, or a uniformly distributed non-crossing tree of P_{n} or a uniformly distributed non-crossing pair-partition of $P_{2 n}$. Then:

$$
x_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad L(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

Applications:

- The length of the longest diagonal of χ_{n} converges in distribution towards the probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} \mathbf{1}_{\left\{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}\right\}} \mathrm{d} x .
$$

This stems from a small calculation when χ_{n} is a triangulation (Aldous '94)!

- The area of the largest face of χ_{n} converges in distribution towards the area of the largest triangle of $L(\mathbb{e})$.
III. How does one establish the Convergence of all these NON-CROSSING UNIFORMLY DISTRIBUTED MODELS TOWARDS THE Brownian triangulation?
III. How does one establish the Convergence of all these NON-CROSSING UNIFORMLY DISTRIBUTED MODELS TOWARDS THE Brownian triangulation?

Key point: Each one of the previous models can be coded by a conditioned Galton-Watson tree.

Coding trees

Coding trees

Definition (of the contour function)

A platypus explores the tree at unit speed. For $0 \leqslant t \leqslant 2(\zeta(\tau)-1), C_{t}(\tau)$ is defined as the distance from the root at the position of the beast at time $t_{\underline{\overline{\underline{~}}}}$

Coding trees

Definition (of the contour function)

A platypus explores the tree at unit speed. For $0 \leqslant t \leqslant 2(\zeta(\tau)-1), C_{t}(\tau)$ is defined as the distance from the root at the position of the beast at time t.

Coding trees

Definition (of the contour function)

A platypus explores the tree at unit speed. For $0 \leqslant t \leqslant 2(\zeta(\tau)-1), C_{t}(\tau)$ is defined as the distance from the root at the position of the beast at time $t_{\underline{\underline{\underline{1}}}}$

Coding trees

Definition (of the contour function)

A platypus explores the tree at unit speed. For $0 \leqslant t \leqslant 2(\zeta(\tau)-1), C_{t}(\tau)$ is defined as the distance from the root at the position of the beast at time t.

Scaled contour function of a large conditioned Galton-Watson tree.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.
- The Brownian excursion codes the Brownian triangulation $L(\mathbb{E})$.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

- Each one of the non-crossing uniformly distributed models can be coded by a conditioned Galton-Watson tree.
- The scaled contour functions of conditioned Galton-Watson trees converge towards the Brownian excursion.
- The Brownian excursion codes the Brownian triangulation $L(\mathbb{e})$.

It follows that the non-crossing uniformly distributed models converge towards $L(\mathbb{e})$.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.
2. for every $j \geqslant 1$ with $\rho(j)>0$, conditionally on $\mathbb{P}_{\rho}\left(\cdot \mid k_{\emptyset}=j\right)$, the j subtrees of the j children of the root are independent with law \mathbb{P}_{ρ}.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.
2. for every $j \geqslant 1$ with $\rho(j)>0$, conditionally on $\mathbb{P}_{\rho}\left(\cdot \mid k_{\emptyset}=j\right)$, the j subtrees of the j children of the root are independent with law \mathbb{P}_{ρ}.

Here, $k_{\emptyset}=2$.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.
2. for every $j \geqslant 1$ with $\rho(j)>0$, conditionally on $\mathbb{P}_{\rho}\left(\cdot \mid k_{\emptyset}=j\right)$, the j subtrees of the j children of the root are independent with law \mathbb{P}_{ρ}.

Here, $k_{\emptyset}=2$.
The probability of getting this tree is $\rho(2)^{2} \rho(0)^{3}$.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.
2. for every $j \geqslant 1$ with $\rho(j)>0$, conditionally on $\mathbb{P}_{\rho}\left(\cdot \mid k_{\emptyset}=j\right)$, the j subtrees of the j children of the root are independent with law \mathbb{P}_{ρ}.

Here, $k_{\emptyset}=2$.
The probability of getting this tree is $\rho(2)^{2} \rho(0)^{3}$.

$\zeta(\tau)$ is the total number of vertices and $\lambda(\tau)$ is the total number of leaves.

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.
Let ρ be a probability measure on \mathbb{N} with mean $\leqslant 1$ s.t. $\rho(1)<1$. The law of a Galton-Watson tree with offspring distribution ρ is the unique probability distribution \mathbb{P}_{ρ} on the set of all trees such that:

1. k_{\varnothing} is distributed according to ρ, where k_{\varnothing} is the number of children of the root.
2. for every $j \geqslant 1$ with $\rho(j)>0$, conditionally on $\mathbb{P}_{\rho}\left(\cdot \mid k_{\emptyset}=j\right)$, the j subtrees of the j children of the root are independent with law \mathbb{P}_{ρ}.

Here, $k_{\emptyset}=2$.
The probability of getting this tree is $\rho(2)^{2} \rho(0)^{3}$.

Here, $\zeta(\tau)=5$ and $\lambda(\tau)=3$.
$\zeta(\tau)$ is the total number of vertices and $\lambda(\tau)$ is the total number of leaves.

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.
Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n.

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{v}[\tau]=\prod_{u \in \tau} v_{k_{u}}
$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{\nu}[\tau]=\prod_{u \in \tau} v_{k_{u}}=\prod_{u \in \tau} \frac{1}{2^{k_{u}+1}}
$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{v}[\tau]=\prod_{u \in \tau} v_{k_{u}}=\prod_{u \in \tau} \frac{1}{2^{k_{u}+1}}=2^{-\sum_{u \in \tau}\left(k_{u}+1\right)}
$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{v}[\tau]=\prod_{u \in \tau} v_{k_{u}}=\prod_{u \in \tau} \frac{1}{2^{k_{u}+1}}=2^{-\sum_{u \in \tau}\left(k_{u}+1\right)}
$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{v}[\tau]=\prod_{u \in \tau} v_{k_{u}}=\prod_{u \in \tau} \frac{1}{2^{k_{u}+1}}=2^{-\sum_{u \in \tau}\left(k_{u}+1\right)}
$$

$$
\begin{gathered}
\sum_{u \in \tau}\left(k_{u}+1\right)=3+3+1+1+1=9 \\
=2 \times 5-1
\end{gathered}
$$

Brief recap on Galton-Watson trees

Proposition

Let v be defined by $v(k)=1 / 2^{k+1}$ for $k \geqslant 0$. Then the law of a uniformly distributed tree with n vertices is the law of a GW ${ }_{v}$ tree conditioned on having n vertices.

Proof.

Let τ be a tree with n vertices. It suffices to prove that $\mathbb{P}_{\gamma}[\tau]$ depends only on n. We have (k_{u} being the number of children of u):

$$
\mathbb{P}_{v}[\tau]=\prod_{u \in \tau} v_{k_{u}}=\prod_{u \in \tau} \frac{1}{2^{k_{u}+1}}=2^{-\sum_{u \in \tau}\left(k_{u}+1\right)}=2^{-2 n+1} .
$$

$$
\begin{gathered}
\sum_{u \in \tau}\left(k_{u}+1\right)=3+3+1+1+1=9 \\
=2 \times 5-1
\end{gathered}
$$

How can one code non-crossing uniformly distributed models by a conditioned Galton-Watson tree?

Coding uniform pair-partitions by Galton-Watson trees.

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

It is a uniform tree with n edges.

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

It is a uniform tree with n edges.
Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom ($1 / 2$), conditioned on having n edges.

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

It is a uniform tree with n edges.
Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom ($1 / 2$), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_{n} be a random tree distributed according to $\mathbb{P}_{\text {Geom }(1 / 2)}[\cdot \mid \zeta(\tau)=n+1]$. Let σ^{2} be the variance of Geom $(1 / 2)$. Then:

$$
\left(\frac{\sigma}{2 \sqrt{n}} C_{2 n t}\left(\mathfrak{t}_{n}\right), 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) .
$$

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

It is a uniform tree with n edges.
Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom ($1 / 2$), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_{n} be a random tree distributed according to $\mathbb{P}_{\text {Geom }(1 / 2)}[\cdot \mid \zeta(\tau)=n+1]$. Let σ^{2} be the variance of $\operatorname{Geom}(1 / 2)$. Then:

$$
\left(\frac{\sigma}{2 \sqrt{n}} C_{2 n t}\left(\mathfrak{t}_{n}\right), 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) .
$$

Idea: the contour function of a Galton-Watson tree behaves as a random walk.

Consider the dual of a uniform non-crossing pair-partition of $P_{2 n}$:

It is a uniform tree with n edges.
Hence the law of a conditioned Galton-Watson tree with offspring distribution Geom(1/2), conditioned on having n edges.

Theorem (Aldous '93)

Let \mathfrak{t}_{n} be a random tree distributed according to $\mathbb{P}_{\text {Geom }(1 / 2)}[\cdot \mid \zeta(\tau)=n+1]$. Let σ^{2} be the variance of Geom $(1 / 2)$. Then:

$$
\left(\frac{\sigma}{2 \sqrt{n}} C_{2 n t}\left(\mathfrak{t}_{n}\right), 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) .
$$

Idea: the contour function of a Galton-Watson tree behaves as a random walk. It follows that uniform non-crossing pair-partitions of $P_{2 n}$ converge towards the Brownian triangulation.

Coding uniform dissections by Galton-Watson trees.

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_{n}

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_{n}, suitably rooted:

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_{n}, suitably rooted:

This is a uniform tree on the set of all trees with $n-1$ leaves s.t. no vertex has exactly one child.

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_{n}, suitably rooted:

This is a uniform tree on the set of all trees with $n-1$ leaves s.t. no vertex has exactly one child.

Proposition (Curien \& K. '12, Pitman \& Rizzolo '11)

The law of a uniform tree on the set of all trees with $n-1$ leaves s.t. no vertex has exactly one child is the law of a $\mathrm{GW}_{\mu_{0}}$ tree with offspring distribution μ_{0} conditioned on having $n-1$ leaves, where:

Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of P_{n}, suitably rooted:

This is a uniform tree on the set of all trees with $n-1$ leaves s.t. no vertex has exactly one child.

Proposition (Curien \& K. '12, Pitman \& Rizzolo '11)

The law of a uniform tree on the set of all trees with $n-1$ leaves s.t. no vertex has exactly one child is the law of a $\mathrm{GW}_{\mu_{0}}$ tree with offspring distribution μ_{0} conditioned on having $n-1$ leaves, where:

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1} \text { for } i \geqslant 2 .
$$

Coding uniform dissections by Galton-Watson trees

Theorem (K. '11)

Let \mathfrak{t}_{n} be a random tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n]$. Let σ^{2} be the variance of μ_{0}. Then:

$$
\left(\frac{\sigma}{2 \sqrt{\zeta\left(\mathfrak{t}_{n}\right)}} C_{2 \zeta\left(\mathfrak{t}_{n}\right) t}\left(\mathfrak{t}_{n}\right), 0 \leqslant t \leqslant 1\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \quad\left(e_{t}, 0 \leqslant t \leqslant 1\right) .
$$

Coding uniform dissections by Galton-Watson trees

Theorem (K. '11)

Let \mathfrak{t}_{n} be a random tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n]$. Let σ^{2} be the variance of μ_{0}. Then:

$$
\left(\frac{\sigma}{2 \sqrt{\zeta\left(\mathfrak{t}_{n}\right)}} C_{2 \zeta\left(\mathfrak{t}_{n}\right) t}\left(\mathfrak{t}_{n}\right), 0 \leqslant t \leqslant 1\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \quad\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) .
$$

It follows that uniform dissections of P_{n} converge towards the Brownian triangulation.

Conclusion: In these uniform models, some independence is hiding.

IV. Application to the study of uniform dissections

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 1 (Counting dissections). Probabilistic proof of the following result:
Theorem (Flajolet \& Noy '99)
Let a_{n} be the number of dissections of P_{n}. Then:

$$
a_{n} \quad \stackrel{\sim}{\sim}
$$

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 1 (Counting dissections). Probabilistic proof of the following result:
Theorem (Flajolet \& Noy '99)
Let a_{n} be the number of dissections of P_{n}. Then:

$$
a_{n} \underset{n \rightarrow \infty}{\sim} \frac{1}{4} \sqrt{\frac{99 \sqrt{2}-140}{\pi}} n^{-3 / 2}(3+2 \sqrt{2})^{n}
$$

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 2 (Study of the maximal face degree). Denote by $D^{(n)}$ the maximal face degree of \mathcal{D}_{n}.

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that:
the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 2 (Study of the maximal face degree). Denote by $D^{(n)}$ the maximal face degree of \mathcal{D}_{n}.
Theorem (Curien \& K. '12)
Set $\beta=2+\sqrt{2}$. For every $c>0$, we have:
$\mathbb{P}\left(\log _{\beta}(n)-c \log _{\beta} \log _{\beta}(n) \leqslant D^{(n)} \leqslant \log _{\beta}(n)+c \log _{\beta} \log _{\beta}(n)\right) \xrightarrow[n \rightarrow \infty]{ } 1$.

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 3 (Study of the vertex degree).
Theorem (Curien \& K. '12)
Let $\partial^{(n)}$ be the number of diagonals ending at the vertex with affix 1 in \mathcal{D}_{n}.

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 3 (Study of the vertex degree).
Theorem (Curien \& K. '12)
Let $\partial^{(n)}$ be the number of diagonals ending at the vertex with affix 1 in \mathcal{D}_{n}. Then $\partial^{(n)}$ converges in distribution towards the sum of two independent $\operatorname{Geom}(\sqrt{2}-1)$ random variables, i.e. for $k \geqslant 0$:

$$
\mathbb{P}\left(\partial^{(n)}=k\right) \quad \underset{n \rightarrow \infty}{ }(k+1) \mu_{0}^{2}\left(1-\mu_{0}\right)^{k}
$$

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 4 (Study of the maximal vertex degree). Proof of a conjecture by Bernasconi, Panagiotou \& Steger:
Theorem (Curien \& K. '12)
Let $\Delta^{(n)}$ be the maximal number of diagonals ending at any vertex in \mathcal{D}_{n}.

Application to the study of uniform dissections

\mathcal{D}_{n} : uniform dissection of P_{n}. Recall that: the dual of \mathcal{D}_{n} is a tree with law $\mathbb{P}_{\mu_{0}}[\cdot \mid \lambda(\tau)=n-1]$, where ($i \geqslant 2$):

$$
\mu_{0}(0)=\frac{2-\sqrt{2}}{2}, \quad \mu_{0}(1)=0, \quad \mu_{0}(i)=(2-\sqrt{2})^{i-1}
$$

Application 4 (Study of the maximal vertex degree). Proof of a conjecture by Bernasconi, Panagiotou \& Steger:
Theorem (Curien \& K. '12)
Let $\Delta^{(n)}$ be the maximal number of diagonals ending at any vertex in \mathcal{D}_{n}. Set $b=\sqrt{2}+1$. Then for every $c>0$, we have

$$
\mathbb{P}\left(\Delta^{(n)} \geqslant \log _{b}(n)+(1+c) \log _{b} \log _{b}(n)\right) \quad \underset{n \rightarrow \infty}{ } 0
$$

Conjecture

Let $\Delta^{(n)}$ be the maximum number of diagonals ending at some vertex of \mathcal{D}_{n}. Set $b=\sqrt{2}+1$. For every $c>0$:

$$
\mathbb{P}\left(\left|\Delta^{(n)}-\left(\log _{b}(n)+\log _{b} \log _{b}(n)\right)\right|>c \log _{b} \log _{b}(n)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

This is satisfied for another value of b in the case of uniform triangulations (Devroye, Flajolet, Hurtado, Noy \& Steiger '99 et Gao \& Wormald '00)

Conjecture

Let $\Delta^{(n)}$ be the maximum number of diagonals ending at some vertex of \mathcal{D}_{n}. Set $b=\sqrt{2}+1$. For every $c>0$:

$$
\mathbb{P}\left(\left|\Delta^{(n)}-\left(\log _{b}(n)+\log _{b} \log _{b}(n)\right)\right|>c \log _{b} \log _{b}(n)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

This is satisfied for another value of b in the case of uniform triangulations (Devroye, Flajolet, Hurtado, Noy \& Steiger '99 et Gao \& Wormald '00)

