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Motivations

Let (Xn)n>1 be a sequence of �discrete� objects converging towards a
�continuous� object X:

Xn −→
n→∞ X.

Several consequences:

- From the discrete to the continuous world: if a property P is satis�ed by all
the Xn and passes to the limit, then X satis�es P.

- From the continuous world to the discrete world: if a property P is satis�ed
by X and passes to the limit, Xn satis�es �approximately� P for n large.

- Universality: if (Yn)n>1 is another sequence of objects converging towards
X, then Xn and Yn share approximately the same properties for n large.

What is the sense of the convergence when the objects are random?
→ Convergence in distribution
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Convergence in distribution

Let (Xn)n>1 and X be random variables with values in a metric space (E, d). Xn
converges in distribution towards X if

E [F(Xn)] −→
n→∞ E [F(X)]

for every bounded continuous function F : E→ R.

We write:

Xn
(d)−→

n→∞ X
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Outline

I. The discrete object

II. The limiting continuous object

III. Proving the convergence

IV. Application to the study of uniform dissections
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I. The discrete objects
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Let Pn be the polygon whose vertices are e
2iπj

n (j = 0, 1, . . . , n − 1).

Framework: choose a random non-crossing con�guration obtained from the
vertices of Pn, that is a collection of non-intersecting diagonals.

What happens for n large?
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Case of dissections of Pn.

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

Dissections

Let Pn be the polygon whose vertices are e
2iπj

n (j = 0, 1, . . . , n − 1).

A dissection of Pn is the union of the sides of Pn and of a collection of
diagonals that may intersect only at their endpoints.
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Dissections

Let Dn be a random dissection, chosen uniformly at random among all
dissections of Pn. What does Dn look like when n is large?

Samples of D18 and D15000.

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

Dissections

Let Dn be a random dissection, chosen uniformly at random among all
dissections of Pn. What does Dn look like when n is large?

Samples of D18 and D15000.

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

Case of non-crossing trees of Pn.
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Non-crossing trees

Example of a non-crossing tree of P10:
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Non-crossing trees

Let Tn be a random non-crossing tree, chosen uniformly at random among all
those of Pn. What does Tn look like for large n ?

Samples of T500 and T1000.
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Case of non-crossing pair-partitions of P2n .
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Non-crossing pair partitions

Example of a non-crossing pair-partition of P20:
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Non-crossing pair partitions

Let Qn be a random non-crossing pair-partitition of P2n, chosen uniformly
among all those of P2n. What does Qn look like for n large ?

Samples of Q250 and Q1000.
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History of non-crossing con�gurations of Pn

Combinatorical point of view:

I Counting and bijections for non-crossing trees: Dulucq & Penaud (1993),
Noy (1998), ...

I Counting of various non-crossing con�gurations: Flajolet & Noy (1999)

Probabilistical combinatorics point of view:

I Uniform triangulations (maximal degree): Devroye, Flajolet, Hurtado, Noy
& Steiger (1999) et Gao & Wormald (2000)

I Non-crossing trees (total length, maximal degree): Deutsch & Noy (2002),
Marckert & Panholzer (2002)

I Uniform dissections (degrees, maximal degree): Bernasconi, Panagiotou &
Steger (2010)

Geometrical point of view:

I Aldous (1994): large uniform triangulations

I K' (2011): dissections with large faces (non uniform)

Igor Kortchemski Universality of the Brownian triangulation
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II. Construction of the continuous limiting object:

the Brownian triangulation (Aldous, '94)
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Interlude: Brownian motion and the Brownian excursion
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Brownian motion

Theorem (Donsker)
Let (Xn)n>1 be a sequence of i.i.d random variables with E [X1] = 0 and

σ2 = E
[
X1

2] <∞.

Set Sn = X1 + X2 + · · ·+ Xn. Then:(
Snt

σ
√

n
, t > 0

)
(d)−→

n→∞ (Wt, t > 0),

where (Wt, t > 0) is a continuous random function called Brownian motion
(which does not depend on σ).

(
Snt

σ
√

n
, 0 6 t 6 1

)
for n = 100.000:
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Theorem (Donsker, conditioned version)
Let (Xn)n>1 be a sequence of i.i.d. random variables with E [X1] = 0 and

σ2 = E
[
X1

2] <∞.

Set Sn = X1 + X2 + · · ·+ Xn. Then:(
Snt

σ
√

n
, t > 0

∣∣∣∣Sn = 0, Si > 0 for i < n
)

(d)−→
n→∞ (et, t > 0),

where (et, t > 0) is a continuous random function called the Brownian
excursion.

The Brownian excursion can be seen as Brownian motion (Wt, 0 6 t 6 1)
conditioned on W1 = 0 and Wt > 0 for t ∈ (0, 1).

Igor Kortchemski Universality of the Brownian triangulation
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Construction of the limiting object

We start from the Brownian excursion e:
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Construction of the limiting object

We start from the Brownian excursion e:

0.2 0.4 0.6 0.8 10.
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0.2 0.4 0.6 0.8 10.

Let t be a local minimum time.
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Construction of the limiting object

We start from the Brownian excursion e:

0.2 0.4 0.6 0.8 10. t

Let t be a local minimum time. Set gt = sup{s < t; es = et} and
dt = inf{s > t; es = et}.
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Theorem (Curien & K. '12)
For n > 3, let χn be a uniformly distributed dissection of Pn, or a uniformly
distributed non-crossing tree of Pn or a uniformly distributed non-crossing
pair-partition of P2n.

Then:

χn
(d)−−−→

n→∞ L(e),

where the convergence holds in distribution for the Hausdor� distance on
compact subsets of the unit disk.

Applications:

I The length of the longest diagonal of χn converges in distribution towards
the probability measure with density:

1
π

3x − 1
x2(1 − x)2

√
1 − 2x

1{ 1
36x6 1

2 }
dx.

This stems from a small calculation when χn is a triangulation (Aldous
'94)!

I The area of the largest face of χn converges in distribution towards the area
of the largest triangle of L(e).
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III. How does one establish the convergence of all these

non-crossing uniformly distributed models towards the

Brownian triangulation?

Key point: Each one of the previous models can be coded by a conditioned
Galton-Watson tree.

Igor Kortchemski Universality of the Brownian triangulation
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Coding trees

De�nition (of the contour function)
A platypus explores the tree at unit speed. For 0 6 t 6 2(ζ(τ) − 1), Ct(τ) is
de�ned as the distance from the root at the position of the beast at time t.
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0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).
It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).
It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).
It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).
It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).

It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

0.2 0.4 0.6 0.8 10.

Scaled contour function of a large conditioned Galton-Watson tree.

Strategy to prove the convergence towards the Brownian triangulation:

I Each one of the non-crossing uniformly distributed models can be coded by
a conditioned Galton-Watson tree.

I The scaled contour functions of conditioned Galton-Watson trees converge
towards the Brownian excursion.

I The Brownian excursion codes the Brownian triangulation L(e).
It follows that the non-crossing uniformly distributed models converge towards
L(e).

Igor Kortchemski Universality of the Brownian triangulation



Discrete non-crossing models The continuous model Proving the convergence Application to uniform dissections

Brief recap on Galton-Watson trees

We consider rooted plane (oriented) trees.

Let ρ be a probability measure on N with mean 6 1 s.t. ρ(1) < 1. The law of
a Galton-Watson tree with o�spring distribution ρ is the unique probability
distribution Pρ on the set of all trees such that:

1. k∅ is distributed according to ρ, where k∅ is the number of children of the
root.

2. for every j > 1 with ρ(j) > 0, conditionally on Pρ( · | k∅ = j), the j subtrees
of the j children of the root are independent with law Pρ.

Here, k∅ = 2.

The probability of getting this
tree is ρ(2)2ρ(0)3.

Here, ζ(τ) = 5 and λ(τ) = 3.

ζ(τ) is the total number of vertices and λ(τ) is the total number of leaves.

Igor Kortchemski Universality of the Brownian triangulation
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Brief recap on Galton-Watson trees

Proposition
Let ν be de�ned by ν(k) = 1/2k+1 for k > 0. Then the law of a uniformly
distributed tree with n vertices is the law of a GWν tree conditioned on having
n vertices.

Proof.
Let τ be a tree with n vertices. It su�ces to prove that Pν[τ] depends only on
n. We have (ku being the number of children of u):

Pν[τ] =
∏
u∈τ

νku =
∏
u∈τ

1
2ku+1 = 2

−

∑
u∈τ

(ku + 1)
= 2−2n+1.

∑
u∈τ

(ku + 1) = 3+ 3+ 1+ 1+ 1 = 9

= 2× 5 − 1
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How can one code non-crossing uniformly distributed models by a conditioned
Galton-Watson tree?
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Coding uniform pair-partitions by Galton-Watson trees.
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Consider the dual of a uniform non-crossing pair-partition of P2n:

It is a uniform tree with n edges.

Hence the law of a conditioned Galton-Watson
tree with o�spring distribution Geom(1/2), con-
ditioned on having n edges.

Theorem (Aldous '93)
Let tn be a random tree distributed according to PGeom(1/2)[ · | ζ(τ) = n + 1].
Let σ2 be the variance of Geom(1/2). Then:(

σ

2
√

n
C2nt(tn), 0 6 t 6 1

)
(d)−→

n→∞ (et, 0 6 t 6 1).

Idea: the contour function of a Galton-Watson tree behaves as a random walk.

It follows that uniform non-crossing pair-partitions of P2n converge towards the
Brownian triangulation.

Igor Kortchemski Universality of the Brownian triangulation
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Coding uniform dissections by Galton-Watson trees.
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Coding uniform dissections by Galton-Watson trees

Consider the dual of a uniform dissection of Pn

, suitably rooted

:

This is a uniform tree on the set of all trees with
n− 1 leaves s.t. no vertex has exactly one child.

Proposition (Curien & K. '12, Pitman & Rizzolo '11)
The law of a uniform tree on the set of all trees with n − 1 leaves s.t. no vertex
has exactly one child is the law of a GWµ0 tree with o�spring distribution µ0
conditioned on having n − 1 leaves, where:

µ0(0) =
2 −
√

2
2

, µ0(1) = 0, µ0(i) = (2 −
√

2)i−1 for i > 2.
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Coding uniform dissections by Galton-Watson trees

Theorem (K. '11)
Let tn be a random tree with law Pµ0 [ · | λ(τ) = n]. Let σ2 be the variance of
µ0. Then:(

σ

2
√
ζ(tn)

C2ζ(tn)t(tn), 0 6 t 6 1

)
(d)−→

n→∞ (et, 0 6 t 6 1).

It follows that uniform dissections of Pn converge towards the Brownian
triangulation.
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Conclusion: In these uniform models, some independence is hiding.
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IV. Application to the study of uniform dissections
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Application to the study of uniform dissections

Dn : uniform dissection of Pn. Recall that:
the dual of Dn is a tree with law Pµ0 [ · | λ(τ) = n − 1],
where (i > 2):

µ0(0) =
2 −
√

2
2

, µ0(1) = 0, µ0(i) = (2 −
√

2)i−1.
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where (i > 2):

µ0(0) =
2 −
√

2
2

, µ0(1) = 0, µ0(i) = (2 −
√

2)i−1.

Application 1 (Counting dissections). Probabilistic proof of the following
result:

Theorem (Flajolet & Noy '99)
Let an be the number of dissections of Pn. Then:

an ∼
n→∞

1
4

√
99
√

2 − 140
π

n−3/2(3 + 2
√

2)n.
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√

2)i−1.

Application 2 (Study of the maximal face degree). Denote by D(n) the
maximal face degree of Dn.

Theorem (Curien & K. '12)
Set β = 2 +

√
2. For every c > 0, we have:

P(logβ(n) − c logβ logβ(n) 6 D(n) 6 logβ(n) + c logβ logβ(n)) −−−→
n→∞ 1.
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Application 3 (Study of the vertex degree).

Theorem (Curien & K. '12)
Let ∂(n) be the number of diagonals ending at the vertex with a�x 1 in Dn.

Then ∂(n) converges in distribution towards the sum of two independent
Geom(

√
2 − 1) random variables, i.e. for k > 0:

P(∂(n) = k) −−−→
n→∞ (k + 1)µ2

0(1 − µ0)
k.
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Application 4 (Study of the maximal vertex degree). Proof of a conjecture
by Bernasconi, Panagiotou & Steger:

Theorem (Curien & K. '12)
Let ∆(n) be the maximal number of diagonals ending at any vertex in Dn.

Set
b =
√

2 + 1. Then for every c > 0, we have

P(∆(n) > logb(n) + (1 + c) logb logb(n)) −−−→
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Conjecture
Let ∆(n) be the maximum number of diagonals ending at some vertex of Dn.
Set b =

√
2 + 1. For every c > 0:

P
(∣∣∣∆(n) − (logb(n) + logb logb(n))

∣∣∣ > c logb logb(n)
)
−−−→
n→∞ 0.

This is satis�ed for another value of b in the case of uniform triangulations
(Devroye, Flajolet, Hurtado, Noy & Steiger '99 et Gao & Wormald '00)

Thank you for your attention!
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