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Motivations

Let (Xn)n>1

be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all
the Xn and passes to the limit, then X satisfies P.

- From the world to the discrete world: if a property P is satisfied by X and
passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n>1

is another sequence of objects converging towards
X, then Xn and Yn share approximately the same properties for n large.
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the Xn and passes to the limit, then X satisfies P.
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the minimal Hausdorff
distance between all possible embeddings of X and Y into a common metric
space Z.
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Reminder on Galton–Watson trees

Let ⇢ be a probability measure on {0, 1, 2, . . .} such that
P

i i⇢(i) 6 1 and
⇢(1) < 1.

A Galton–Watson tree with offspring distribution ⇢ is a random plane
tree such that:

the number of children of the root is distributed according to ⇢,
Conditionally on the fact that the root has j children, the number of
children of these j children are independent of law ⇢, and so on.

Here, the root has 2 children.

Here, ⌧ has 8 vertices.
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Scaling limits: finite variance case
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Scaling limits: finite variance
Let µ be an offspring distribution such that

X

i>0

iµi = 1 (µ is critical)

X

i>0

i

2

µi < 1 (µ has finite variance)

Let tn be a GWµ tree conditioned on having n vertices.

View at tn as a compact metric space (the vertices of tn are endowed with the
graph distance).

What does tn look like for large n?
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A simulation of a large random critical GW tree
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Scaling limits: finite variance case
Let µ be a critical offspring distribution with finite variance.

Let tn be a GWµ

tree conditioned on having n vertices.
View tn as a compact metric space (the vertices of tn are endowed with the

graph distance).

Theorem (Aldous ’93)

There exists a random compact metric space T such that:

�

2

p
n

· tn
(d)�!

n!1
T,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

T is called the Brownian Continuum Random Tree.

Remarksy All the branchpoints of T are binary.

y T is coded by the normalized Brownian excursion.
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What is the Brownian Continuum Random Tree?
First define the contour function of a tree:
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What is the Brownian Continuum Random Tree?
Knowing the contour function, it is easy to recover the tree by gluing:
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What is the Brownian Continuum Random Tree?
The Brownian tree T is obtained by gluing from the Brownian excursion e.
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Figure: A simulation of e.
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A simulation of the Brownian CRT

Figure: A non isometric plane embedding of a realization of Te.
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Scaling limits: infinite variance case
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Scaling limits: domain of attraction of a stable law

Fix ↵ 2 (1, 2). Let µ be an offspring distribution such that
X

i>0

iµi = 1 (µ is critical)

µi ⇠
i!1

c

i

1+↵
(µ has a heavy tail)

Let tn be a GWµ tree conditioned on having n vertices.

View at tn as a compact metric space (the vertices of tn are endowed with the
graph distance).

What does tn look like for large n?

Igor Kortchemski Random stable looptrees and random maps 17 /
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Figure: A large ↵ = 1.1 – stable tree
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Figure: A large ↵ = 1.5 – stable tree
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Figure: A large ↵ = 1.9 – stable tree
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Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let tn be a GWµ tree conditioned on having n vertices.

View tn as a compact metric space (the vertices of tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarksy All the branchpoints of T↵ are of infinite degree.

y The maximal degree of tn is of order n1/↵.y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.
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What happens if µ is not critical?
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Scaling limits: nongeneric case
Fix ↵ > 1. Let µ be a subcritical offspring distribution such that µi ⇠ c/i

1+↵.

Let tn be a GWµ tree conditioned on having n vertices. The tree tn is said to
be nongeneric (Jonsson & Stefánsson).

Theorem (Jonsson & Stefánsson ’11)

A condensation phenomenon occurs: there exists a unique vertex of tn of degree
of order n, and all the other degrees are o(n).

The height of tn is of order ln(n).

Theorem (K.).
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0. Motivations

I. Galton–Watson trees and their scaling limits

II. Looptrees

III. Looptrees and preferential attachment

IV. Looptrees and percolation on random triangulations
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Discrete looptrees
Given a plane tree ⌧, define Loop(⌧) as the graph obtained from ⌧

by replacing each vertex u by a loop with deg(u) vertices,
then by gluing the loops together according to the tree structure of ⌧.

Figure: A plane tree ⌧ and its associated discrete looptree Loop(⌧).

We view Loop(⌧) as a compact metric space.

Igor Kortchemski Random stable looptrees and random maps 25 /

p
17



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

Discrete looptrees
Given a plane tree ⌧, define Loop(⌧) as the graph obtained from ⌧

by replacing each vertex u by a loop with deg(u) vertices,

then by gluing the loops together according to the tree structure of ⌧.

Figure: A plane tree ⌧ and its associated discrete looptree Loop(⌧).

We view Loop(⌧) as a compact metric space.

Igor Kortchemski Random stable looptrees and random maps 25 /

p
17



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

Discrete looptrees
Given a plane tree ⌧, define Loop(⌧) as the graph obtained from ⌧

by replacing each vertex u by a loop with deg(u) vertices,
then by gluing the loops together according to the tree structure of ⌧.

Figure: A plane tree ⌧ and its associated discrete looptree Loop(⌧).

We view Loop(⌧) as a compact metric space.

Igor Kortchemski Random stable looptrees and random maps 25 /

p
17



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

Discrete looptrees
Given a plane tree ⌧, define Loop(⌧) as the graph obtained from ⌧

by replacing each vertex u by a loop with deg(u) vertices,
then by gluing the loops together according to the tree structure of ⌧.

Figure: A plane tree ⌧ and its associated discrete looptree Loop(⌧).

We view Loop(⌧) as a compact metric space.

Igor Kortchemski Random stable looptrees and random maps 25 /

p
17

a

c

d(a,b)=2       d(b,c)=3        d(a,c)=4

b



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

Discrete looptrees
Given a plane tree ⌧, define Loop(⌧) as the graph obtained from ⌧

by replacing each vertex u by a loop with deg(u) vertices,
then by gluing the loops together according to the tree structure of ⌧.
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Trees built by preferential attachment
Let (Tn)n>1

be a sequence of random plane trees grown recursively at random:

I
T

1

is just one vertex,
I For every n > 1, Tn+1

is obtained from Tn by adding an edge into a corner
of Tn chosen uniformly at random.

This is the preferential attachement model (Szymánski ’87; Albert & Barabási
’99; Bollobás, Riordan, Spencer & Tusnády ’01).

y Does the sequence (Tn) admit scaling limits? It is known that the
diameter of Tn is of order log(n): Does 1

log(n) · Tn converge towards a limiting
compact metric space?

y Answer: no.
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Scaling limits of trees built by preferential attachment

There exists a random compact metric space L such that:

n

-1/2 · Loop(Tn)
a.s.���!

n!1
L,

where the convergence holds almost surely for the Gromov–Hausdorff
topology.

Theorem (Curien, Duquesne, K., Manolescu).

Figure: The looptree of a large tree built by preferential attachement.
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Random stable looptrees
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Stable looptrees
Fix ↵ 2 (1, 2) and let µ be a critical offspring distribution such that
µi ⇠ c/i

1+↵.

Let tn be a GWµ tree conditioned on having n vertices.

There exists a random compact metric space L↵ such that:

(c|�(1- ↵)|)1/↵

n

1/↵
· Loop(tn)

(d)�!
n!1

L↵,

where the convergence holds in distribution for the Gromov-Hausdorff on
compact metric spaces.

Theorem (Curien & K.).

L↵ is called the random stable looptree of index ↵.

Remarky An alternative definition of L↵ uses the normalized excursion of a stable
spectrally positive Lévy process of index ↵.

In particular, the lengths of the
loops in L↵ are the jumps in the excursion.
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Figure: A large ↵ = 1.1 tree and its associated looptree.
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Triangulations

Igor Kortchemski Random stable looptrees and random maps 33 / 20



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

Definitions
A map is a finite connected graph properly embedded in the sphere (up to
orientation preserving continuous deformations).

A map is a triangulation
when all the faces are triangles. A map is rooted when an oriented edge is
distinguished.
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Definitions
A map is a finite connected graph properly embedded in the sphere (up to
orientation preserving continuous deformations). A map is a triangulation
when all the faces are triangles.

A map is rooted when an oriented edge is
distinguished.

Figure: Two identical triangulations.
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Definitions
A map is a finite connected graph properly embedded in the sphere (up to
orientation preserving continuous deformations). A map is a triangulation
when all the faces are triangles. A map is rooted when an oriented edge is
distinguished.

Figure: Two identical rooted triangulations.
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The UIPT
Angel & Schramm defined an infinite triangulation T1, called the Uniform
Infinite Plane Triangulation (UIPT), by local approximations using finite uniform
random triangulations.

Figure: (due to N. Curien): an artistic view of the UIPQ.
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Percolation on the UIPT
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Percolation on the UIPT
Conditionally on T1, consider a site percolation with parameter p 2 (0, 1)

with
an additional special conditioning for the root.

Figure: A realization of a site percolation on the UIPT.

By definition, #@H is the number of half-edges on @H.
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Percolation on the UIPT
Conditionally on T1, consider a site percolation with parameter p 2 (0, 1) with
an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin.

By definition, #@H is the number of half-edges on @H.
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Percolation on the UIPT
Conditionally on T1, consider a site percolation with parameter p 2 (0, 1) with
an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin, denoted by H.

By definition, #@H is the number of half-edges on @H.
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Percolation on the UIPT
Conditionally on T1, consider a site percolation with parameter p 2 (0, 1) with
an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin H, and its boundary

denoted by @H.

By definition, #@H is the number of half-edges on @H.
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Fix p 2 (0, 1), and for m > 1 let @H(p)
m be the random variable @H conditioned

by the event {#@H = m}.

When 0 < p < 1/2, m

-1/2 · @H(p)
m

(d)����!
m!1

Cp · T,

when p = 1/2, m

-2/3 · @H(1/2)
m

(d)����!
m!1

3

1/3 · L
3/2,

when 1/2 < p < 1, m

-1 · @H(p)
m

(d)����!
m!1

2p-1p
3-1+2p

· C
1

.

where Cp is an explicit constant

such that

Cp ⇠
p#1/2

2p
3

· (p- 1/2)1/2, Cp ⇠
p"1/2

3

3/4

8

· 1

(1/2- p)1/2
.

Theorem (Curien & K.).

Remarky Angel proved that pc = 1/2.
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Theorem (Curien & K.).

Here, T is the Brownian CRT and C
1

is the circle of unit length.

Remarky Angel proved that pc = 1/2.
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We have:

P(#@H(1/2) = m) ⇠
m!1

3

2 · |�(-2/3)|3
·m-4/3

.

Theorem (Curien & K.).
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Idea of the proof: Galton–Watson trees
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Figure: Construction of a two-type tree Tree(@H).

The tree Tree(@H(p)
m ) is a two-type GW tree

, conditioned on having
m+1 vertices, whose offspring distributions are denoted by µ

(p)
� and µ•.

In addition µ

(p)
� is a geometric random variable.

Key Proposition (Curien & K.).
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m ) is a two-type GW tree

, conditioned on having
m+1 vertices, whose offspring distributions are denoted by µ

(p)
� and µ•.

In addition µ

(p)
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Key Proposition (Curien & K.).
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Towards a one-type Galton–Watson tree
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Towards a one-type Galton–Watson tree

Figure: Construction due to Janson & Stefánsson of a tree G(⌧) from another tree ⌧.

Proposition (Janson & Stefánsson)

If t is a two-type Galton–Watson tree such that µ� is geometrical, then G(t) is a
one-type Galton–Watson tree.
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Conclusion

Igor Kortchemski Random stable looptrees and random maps 45 / @
3



Galton–Watson trees Looptrees Looptrees and preferential attachment Looptrees and percolation

The tree G(Tree(@H(p)
m )) is a Galton–Watson tree

conditioned on having
m+ 1 vertices with offspring distribution ⌫

(p) defined by:

X

i>0

⌫

(p)
i z

i =
2p- 1+

p
3z+ (1- z)3/2

2p- 1+
p
3

.

Proposition (Curien & K.).

y The mean of ⌫(p) is 1

1+2(p-1/2)/
p
3

.y When p = 1/2, ⌫(1/2) is critical and we have

⌫

(1/2)
i ⇠

i!1

p
3

4

p
⇡

· 1

i

1+3/2
.

y When p > 1/2, ⌫(p) is subcritical. It is a nongeneric tree: a condensation
phenomenon occurs (studied by Jonsson & Stefánsson, Janson, K.).y When p < 1/2, ⌫(p) is supercritical and we are in the Brownian case.
The theorems follow.
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