Random stable looptrees and percolation on random maps

Igor Kortchemski (joint work with Nicolas Curien) Universität Zürich

Seminar on Stochastic Processes – Zürich – October 2014

0. MOTIVATION

I. GALTON-WATSON TREES AND THEIR SCALING LIMITS

II. LOOPTREES

III. LOOPTREES AND PREFERENTIAL ATTACHMENT

IV. LOOPTREES AND PERCOLATION ON RANDOM TRIANGULATIONS

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_.$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What is the sense of the convergence when the objects are **random**?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What is the sense of the convergence when the objects are **random**?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What discrete objets will we consider ?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What discrete objets will we consider ?

∧→ Finite graphs, seen as compact metric spaces

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What will be the notion of convergence?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X_n$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

What will be the notion of convergence?

A→ Convergence of compact metric spaces for the Gromov–Hausdorff topology

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the minimal Hausdorff distance between all possible embeddings of X and Y into a common metric space Z.

0. MOTIVATIONS

I. GALTON-WATSON TREES AND THEIR SCALING LIMITS

II. LOOPTREES

III. LOOPTREES AND PREFERENTIAL ATTACHMENT

IV. LOOPTREES AND PERCOLATION ON RANDOM TRIANGULATIONS

Reminder on Galton-Watson trees

Let ρ be a probability measure on $\{0,1,2,\ldots\}$ such that $\sum_i i\rho(i)\leqslant 1$ and $\rho(1)<1.$

Reminder on Galton–Watson trees

Let ρ be a probability measure on $\{0, 1, 2, ...\}$ such that $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton–Watson tree with offspring distribution ρ is a random plane tree such that:

Reminder on Galton-Watson trees

- Let ρ be a probability measure on $\{0, 1, 2, ...\}$ such that $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton–Watson tree with offspring distribution ρ is a random plane tree such that:
 - the number of children of the root is distributed according to ρ ,

Reminder on Galton-Watson trees

- Let ρ be a probability measure on $\{0, 1, 2, ...\}$ such that $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton–Watson tree with offspring distribution ρ is a random plane tree such that:
 - \boxdot the number of children of the root is distributed according to $\rho,$
 - Conditionally on the fact that the root has j children, the number of children of these j children are independent of law ρ , and so on.

Reminder on Galton–Watson trees

- Let ρ be a probability measure on $\{0, 1, 2, ...\}$ such that $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton–Watson tree with offspring distribution ρ is a random plane tree such that:
 - \boxdot the number of children of the root is distributed according to $\rho,$
 - Conditionally on the fact that the root has j children, the number of children of these j children are independent of law ρ , and so on.

Here, the root has 2 children.

Reminder on Galton–Watson trees

- Let ρ be a probability measure on $\{0, 1, 2, ...\}$ such that $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton–Watson tree with offspring distribution ρ is a random plane tree such that:
 - \boxdot the number of children of the root is distributed according to $\rho,$
 - Conditionally on the fact that the root has j children, the number of children of these j children are independent of law ρ , and so on.

Here, the root has 2 children.

Here, τ has 8 vertices.

SCALING LIMITS: FINITE VARIANCE CASE

Let $\boldsymbol{\mu}$ be an offspring distribution such that

$$\begin{split} &\sum_{i \geqslant 0} i\mu_i &= 1 \qquad (\mu \text{ is critical}) \\ &\sum_{i \geqslant 0} i^2\mu_i &< \infty \qquad (\mu \text{ has finite variance}) \end{split}$$

Let $\boldsymbol{\mu}$ be an offspring distribution such that

$$\sum_{i \ge 0} i\mu_i = 1 \qquad (\mu \text{ is critical})$$
$$\sum_{i \ge 0} i^2\mu_i < \infty \qquad (\mu \text{ has finite variance})$$

Let t_n be a GW_{μ} tree conditioned on having n vertices.

Let $\boldsymbol{\mu}$ be an offspring distribution such that

$$\begin{split} &\sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ &\sum_{i \geqslant 0} i^2 \mu_i &< \infty & (\mu \text{ has finite variance}) \end{split}$$

Let t_n be a GW_µ tree conditioned on having n vertices.

View at t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Let $\boldsymbol{\mu}$ be an offspring distribution such that

$$\begin{split} &\sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ &\sum_{i \geqslant 0} i^2 \mu_i &< \infty & (\mu \text{ has finite variance}) \end{split}$$

Let t_n be a GW_µ tree conditioned on having n vertices.

View at t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

What does t_n look like for large n?

A simulation of a large random critical GW tree

Let μ be a **critical** offspring distribution with **finite variance**.

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_{\mu} tree conditioned on having n vertices.

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Aldous '93)

There exists a random compact metric space \mathcal{T} such that:

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T},$$

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having π vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Aldous '93)

There exists a random compact metric space \mathcal{T} such that:

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathbf{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Aldous '93)

There exists a random compact metric space \mathcal{T} such that:

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

 $\ensuremath{\mathbb{T}}$ is called the Brownian Continuum Random Tree.

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having π vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Aldous '93)

There exists a random compact metric space \mathcal{T} such that:

$$\frac{\sigma}{2\sqrt{n}}\cdot \mathfrak{t}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{n}$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

 $\ensuremath{\mathbb{T}}$ is called the Brownian Continuum Random Tree.

Remarks $\land \rightarrow$ All the branchpoints of \Im are binary.

Let μ be a **critical** offspring distribution with **finite variance**. Let t_n be a GW_μ tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Aldous '93)

There exists a random compact metric space \mathcal{T} such that:

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

 $\ensuremath{\mathbb{T}}$ is called the Brownian Continuum Random Tree.

Remarks $\wedge \rightarrow$ $\wedge \rightarrow$ All the branchpoints of \mathcal{T} are binary. $\wedge \rightarrow$ \mathcal{T} is coded by the normalized Brownian excursion.
What is the Brownian Continuum Random Tree?

First define the contour function of a tree:

What is the Brownian Continuum Random Tree?

Knowing the contour function, it is easy to recover the tree by gluing:

What is the Brownian Continuum Random Tree?

The Brownian tree \mathcal{T} is obtained by gluing from the Brownian excursion \mathbf{e} .

Figure: A simulation of e.

A simulation of the Brownian CRT

Figure: A non isometric plane embedding of a realization of ${\mathbb T}_{{\bf e}}.$

SCALING LIMITS: INFINITE VARIANCE CASE

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \ge 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Fix $\alpha \in (1,2)$. Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \rightarrow \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let t_n be a GW_µ tree conditioned on having n vertices.

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let t_n be a GW_µ tree conditioned on having n vertices.

View at t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let t_n be a GW_µ tree conditioned on having n vertices.

View at t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

What does t_n look like for large n?

Figure: A large $\alpha = 1.1 - \text{stable tree}$

Figure: A large $\alpha = 1.5$ – stable tree

Figure: A large $\alpha = 1.9$ – stable tree

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\alpha},$$

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{t}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

The tree \mathcal{T}_{α} is called the stable tree of index α (introduced by Le Gall & Le Jan).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{t}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 $\wedge \rightarrow$ All the branchpoints of \mathcal{T}_{α} are of infinite degree.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{t}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

- ∧→ All the branchpoints of \mathcal{T}_{α} are of infinite degree.
- \wedge The maximal degree of t_n is of order $n^{1/\alpha}$.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices.

View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

- ∧→ All the branchpoints of \mathcal{T}_{α} are of infinite degree.
- \wedge The maximal degree of t_n is of order $n^{1/\alpha}$.

 $\bigwedge \mathcal{T}_{\alpha}$ is coded by the normalized excursion of a spectrally positive stable Lévy process of index α .

What happens if μ is not critical?

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$.

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices.

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices. The tree \mathfrak{t}_n is said to be nongeneric (Jonsson & Stefánsson).

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices. The tree \mathfrak{t}_n is said to be nongeneric (Jonsson & Stefánsson).

Figure: A large nongeneric tree

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices. The tree \mathfrak{t}_n is said to be nongeneric (Jonsson & Stefánsson).

Theorem (Jonsson & Stefánsson '11)

A condensation phenomenon occurs: there exists a unique vertex of t_n of degree of order n, and all the other degrees are o(n).

Fix $\alpha > 1$. Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having \mathfrak{n} vertices. The tree \mathfrak{t}_n is said to be nongeneric (Jonsson & Stefánsson).

Theorem (Jonsson & Stefánsson '11)

A condensation phenomenon occurs: there exists a unique vertex of t_n of degree of order n, and all the other degrees are o(n).

Theorem (K.).

The height of t_n is of order ln(n).

- **0.** MOTIVATIONS
- I. GALTON-WATSON TREES AND THEIR SCALING LIMITS

II. LOOPTREES

III. LOOPTREES AND PREFERENTIAL ATTACHMENT

IV. LOOPTREES AND PERCOLATION ON RANDOM TRIANGULATIONS

Given a plane tree $\tau,$ define $Loop(\tau)$ as the graph obtained from τ

Given a **plane tree** τ , define $\text{Loop}(\tau)$ as the graph obtained from τ by replacing each vertex \mathfrak{u} by a loop with deg(\mathfrak{u}) vertices,

Given a plane tree $\tau,$ define $Loop(\tau)$ as the graph obtained from τ

Solution by replacing each vertex \mathfrak{u} by a loop with deg(\mathfrak{u}) vertices,

^{IMP} then by gluing the loops together according to the tree structure of τ .

Given a **plane tree** τ , define $Loop(\tau)$ as the graph obtained from τ

We by replacing each vertex \mathfrak{u} by a loop with deg(\mathfrak{u}) vertices,

^I then by gluing the loops together according to the tree structure of τ .

Figure: A plane tree τ and its associated discrete looptree Loop(τ).d(a,b)=2d(b,c)=3d(a,c)=4

Given a **plane tree** τ , define $Loop(\tau)$ as the graph obtained from τ

by replacing each vertex \mathfrak{u} by a loop with deg(\mathfrak{u}) vertices,

^{IMP} then by gluing the loops together according to the tree structure of τ .

Figure: A plane tree τ and its associated discrete looptree $\text{Loop}(\tau)$.

We view $Loop(\tau)$ as a compact metric space.

0. Motivations

- I. GALTON-WATSON TREES AND THEIR SCALING LIMITS
- **II.** LOOPTREES

III. LOOPTREES AND PREFERENTIAL ATTACHMENT

IV. LOOPTREES AND PERCOLATION ON RANDOM TRIANGULATIONS

Trees built by preferential attachment

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

Trees built by preferential attachment

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random: T_1 is just one vertex,

Trees built by preferential attachment

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- ▶ T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- ▶ T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

 \longrightarrow Does the sequence (T_n) admit scaling limits?

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- ▶ T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

 \bigwedge Does the sequence (T_n) admit scaling limits? It is known that the diameter of T_n is of order log(n):

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

∧→ Does the sequence (T_n) admit scaling limits? It is known that the diameter of T_n is of order log(n): Does $\frac{1}{log(n)} \cdot T_n$ converge towards a limiting compact metric space?

Let $(T_n)_{n \ge 1}$ be a sequence of random plane trees grown recursively at random:

- ▶ T_1 is just one vertex,
- For every $n \ge 1$, T_{n+1} is obtained from T_n by adding an edge into a corner of T_n chosen uniformly at random.

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

∧→ Does the sequence (T_n) admit scaling limits? It is known that the diameter of T_n is of order log(n): Does $\frac{1}{log(n)} \cdot T_n$ converge towards a limiting compact metric space?

Answer: no.

Scaling limits of trees built by preferential attachment

Theorem (Curien, Duquesne, K., Manolescu).

There exists a random compact metric space \mathcal{L} such that:

$$n^{-1/2} \cdot \text{Loop}(\mathsf{T}_n) \xrightarrow[n \to \infty]{a.s.} \mathcal{L},$$

where the convergence holds almost surely for the Gromov–Hausdorff topology.

Scaling limits of trees built by preferential attachment

Theorem (Curien, Duquesne, K., Manolescu).

There exists a random compact metric space \mathcal{L} such that:

$$n^{-1/2} \cdot \text{Loop}(\mathsf{T}_n) \xrightarrow[n \to \infty]{a.s.} \mathcal{L},$$

where the convergence holds almost surely for the Gromov–Hausdorff topology.

0. Motivations

- I. GALTON-WATSON TREES AND THEIR SCALING LIMITS
- **II.** LOOPTREES
- **III.** LOOPTREES AND PREFERENTIAL ATTACHMENT

IV. LOOPTREES AND PERCOLATION ON RANDOM TRIANGULATIONS

RANDOM STABLE LOOPTREES

Fix $\alpha \in (1,2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}.$

Fix $\alpha \in (1, 2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Fix $\alpha \in (1, 2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Theorem (Curien & K.). There exists a random compact metric space \mathscr{L}_{α} such that: $\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1/\alpha}} \cdot \operatorname{Loop}(t_n) \quad \stackrel{(d)}{\underset{n \to \infty}{\overset{(d)}{\longrightarrow}}} \quad \mathscr{L}_{\alpha},$

Fix $\alpha \in (1, 2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Theorem (Curien & K.). There exists a random compact metric space \mathscr{L}_{α} such that: $\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1/\alpha}} \cdot \operatorname{Loop}(\mathfrak{t}_{n}) \quad \stackrel{(d)}{\underset{n \to \infty}{\overset{(d)}{\longrightarrow}}} \quad \mathscr{L}_{\alpha},$ where the convergence holds in distribution for the Gromov-Hausdorff on compact metric spaces.

Fix $\alpha \in (1, 2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Theorem (Curien & K.). There exists a random compact metric space \mathscr{L}_{α} such that: $\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1/\alpha}} \cdot \operatorname{Loop}(\mathfrak{t}_{n}) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad \mathscr{L}_{\alpha},$ where the convergence holds in distribution for the Gromov-Hausdorff on compact metric spaces.

 \mathscr{L}_{α} is called the **random stable looptree** of index α .

Fix $\alpha \in (1,2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Theorem (Curien & K.). There exists a random compact metric space \mathscr{L}_{α} such that: $\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1/\alpha}} \cdot \operatorname{Loop}(\mathfrak{t}_{n}) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad \mathscr{L}_{\alpha},$ where the convergence holds in distribution for the Gromov-Hausdorff on compact metric spaces.

 \mathscr{L}_{α} is called the **random stable looptree** of index α .

Remark

 \bigwedge An alternative definition of \mathscr{L}_{α} uses the normalized excursion of a stable spectrally positive Lévy process of index α .

Fix $\alpha \in (1,2)$ and let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{t}_n be a GW_{μ} tree conditioned on having n vertices.

Theorem (Curien & K.). There exists a random compact metric space \mathscr{L}_{α} such that: $\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1/\alpha}} \cdot \operatorname{Loop}(t_n) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad \mathscr{L}_{\alpha},$ where the convergence holds in distribution for the Gromov-Hausdorff on compact metric spaces.

 \mathscr{L}_{α} is called the **random stable looptree** of index α .

Remark

 \bigwedge An alternative definition of \mathscr{L}_{α} uses the normalized excursion of a stable spectrally positive Lévy process of index α . In particular, the lengths of the loops in \mathscr{L}_{α} are the jumps in the excursion.

Figure: A large $\alpha = 1.1$ tree and its associated looptree.

A map is a finite connected graph properly embedded in the sphere (up to orientation preserving continuous deformations).

A map is a finite connected graph properly embedded in the sphere (up to orientation preserving continuous deformations). A map is a **triangulation** when all the faces are triangles.

Definitions

A map is a finite connected graph properly embedded in the sphere (up to orientation preserving continuous deformations). A map is a **triangulation** when all the faces are triangles.

Figure: Two identical triangulations.

Definitions

A map is a finite connected graph properly embedded in the sphere (up to orientation preserving continuous deformations). A map is a **triangulation** when all the faces are triangles. A map is **rooted** when an oriented edge is distinguished.

Figure: Two identical triangulations.

Definitions

A map is a finite connected graph properly embedded in the sphere (up to orientation preserving continuous deformations). A map is a **triangulation** when all the faces are triangles. A map is **rooted** when an oriented edge is distinguished.

Figure: Two identical rooted triangulations.

The UIPT

Angel & Schramm defined an infinite triangulation T_{∞} , called the Uniform Infinite Plane Triangulation (UIPT), by local approximations using finite uniform random triangulations.

Figure: (due to N. Curien): an artistic view of the UIPQ.

PERCOLATION ON THE UIPT

Conditionally on T_∞ , consider a site percolation with parameter $p\in(0,1)$

Figure: A realization of a site percolation on the UIPT.

Conditionally on T_{∞} , consider a site percolation with parameter $p \in (0, 1)$ with an additional special conditioning for the root.

Figure: A realization of a site percolation on the UIPT.

Conditionally on T_{∞} , consider a site percolation with parameter $p \in (0, 1)$ with an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin.

Conditionally on T_{∞} , consider a site percolation with parameter $p \in (0, 1)$ with an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin, denoted by \mathcal{H} .

Conditionally on T_{∞} , consider a site percolation with parameter $p \in (0, 1)$ with an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin \mathcal{H} , and its boundary denoted by $\partial \mathcal{H}$.

Conditionally on T_{∞} , consider a site percolation with parameter $p \in (0, 1)$ with an additional special conditioning for the root.

Figure: The convex hull of the connected component of the origin \mathcal{H} , and its boundary denoted by $\partial \mathcal{H}$.

By definition, $\#\partial \mathcal{H}$ is the number of **half-edges** on $\partial \mathcal{H}$.

$$\label{eq:constraint} \begin{array}{ll} \mbox{When } 0$$

$$\label{eq:constraint} \begin{array}{ll} \mbox{Theorem (Curien \& K.).} \end{array}$$

$$\label{eq:when 0
$$\mbox{when p = 1/2, m^{-2/3} \cdot \partial \mathcal{H}_m^{(1/2)} & \frac{(d)}{m \to \infty} & \end{array}$$

$$\mbox{when 1/2$$$$

$$\label{eq:constraint} \begin{array}{ll} \mbox{Theorem (Curien \& K.).} \end{array}$$

$$\label{eq:when 0
$$\mbox{when p = 1/2, m^{-2/3} \cdot \partial \mathcal{H}_m^{(1/2)} & \frac{(d)}{m \to \infty} & 3^{1/3} \cdot \mathscr{L}_{3/2}, \end{array}$$

$$\mbox{when 1/2$$$$

$$\label{eq:constraint} \begin{array}{ll} \mbox{Theorem (Curien \& K.).} \end{array}$$

$$\label{eq:when 0
$$\mbox{when p = 1/2, m^{-2/3} \cdot \partial \mathcal{H}_m^{(1/2)} & \frac{(d)}{m \to \infty} & 3^{1/3} \cdot \mathscr{L}_{3/2}, \end{array}$$

$$\mbox{when 1/2$$$$
$$\begin{array}{l} \hline \mbox{Theorem (Curien \& K.).} \\ \mbox{When } 0
$$\mbox{where } C_p \mbox{ is an explicit constant}$$$$

$$\begin{split} \hline & \textbf{Theorem (Curien \& K.).} \\ & \textbf{When } 0$$

$$\begin{array}{c|c} \hline \textbf{Theorem (Curien \& K.).} \\ & \text{When } 0$$

Here, \mathcal{T} is the Brownian CRT and \mathcal{C}_1 is the circle of unit length.

Remark

$$\rightarrow$$
 Angel proved that $p_c = 1/2$.

Theorem (Curien & K.).We have:
$$\mathbb{P}(\#\partial \mathcal{H}^{(1/2)} = m)$$
 $\sim m \to \infty$ $\frac{3}{2 \cdot |\Gamma(-2/3)|^3} \cdot m^{-4/3}.$

IDEA OF THE PROOF: GALTON-WATSON TREES

Key Proposition (Curien & K.). The tree Tree $(\partial \mathcal{H}_m^{(p)})$ is a two-type GW tree

Key Proposition (Curien & K.). The tree Tree($\partial \mathcal{H}_m^{(p)}$) is a two-type GW tree, conditioned on having m+1 vertices

Key Proposition (Curien & K.). The tree Tree($\partial \mathcal{H}_{m}^{(p)}$) is a two-type GW tree, conditioned on having m+1 vertices, whose offspring distributions are denoted by $\mu_{o}^{(p)}$ and μ_{\bullet} .

Key Proposition (Curien & K.). The tree Tree $(\partial \mathcal{H}_m^{(p)})$ is a two-type GW tree, conditioned on having m+1 vertices, whose offspring distributions are denoted by $\mu_o^{(p)}$ and μ_{\bullet} . In addition $\mu_o^{(p)}$ is a geometric random variable.

Figure: Construction due to Janson & Stefánsson of a tree $\mathcal{G}(\tau)$ from another tree τ .

Figure: Construction due to Janson & Stefánsson of a tree $\mathcal{G}(\tau)$ from another tree τ .

Proposition (Janson & Stefánsson)

If t is a two-type Galton–Watson tree such that μ_o is geometrical, then $\mathcal{G}(t)$ is a one-type Galton–Watson tree.

CONCLUSION

Proposition (Curien & K.).

The tree $\mathcal{G}(\mathbf{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree

Proposition (Curien & K.).

The tree $\mathcal{G}(\text{Tree}(\partial \mathcal{H}_m^{(p)}))$ is a Galton–Watson tree conditioned on having m+1 vertices

Proposition (Curien & K.).

The tree $\mathcal{G}(\text{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(\mathbf{p})} z^i = \frac{2\mathbf{p} - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2\mathbf{p} - 1 + \sqrt{3}}.$$

The tree $\mathcal{G}(\text{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(p)} z^i = \frac{2p - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2p - 1 + \sqrt{3}}.$$

$$\wedge$$
 The mean of $\nu^{(p)}$ is $\frac{1}{1+2(p-1/2)/\sqrt{3}}$.

The tree $\mathcal{G}(\text{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(p)} z^i = \frac{2p - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2p - 1 + \sqrt{3}}.$$

$$\begin{array}{l} & & \\$$

$$v_{i}^{(1/2)} \sim \frac{\sqrt{3}}{i \rightarrow \infty} \frac{\sqrt{3}}{4\sqrt{\pi}} \cdot \frac{1}{i^{1+3/2}}$$

The tree $\mathcal{G}(\mathsf{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(\mathbf{p})} z^i = \frac{2\mathbf{p} - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2\mathbf{p} - 1 + \sqrt{3}}.$$

$$\begin{array}{l} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & &$$

$$\mathbf{v}_{i}^{(1/2)} \quad \mathop{\sim}\limits_{i
ightarrow \infty} \quad rac{\sqrt{3}}{4\sqrt{\pi}} \cdot rac{1}{i^{1+3/2}}.$$

 Λ → When p > 1/2, $\nu^{(p)}$ is **subcritical**. It is a nongeneric tree: a condensation phenomenon occurs (studied by Jonsson & Stefánsson, Janson, K.).

The tree $\mathcal{G}(\mathsf{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(\mathbf{p})} z^i = \frac{2\mathbf{p} - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2\mathbf{p} - 1 + \sqrt{3}}.$$

$$\begin{array}{l} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & &$$

$$\mathbf{v}_{i}^{(1/2)} \quad \mathop{\sim}\limits_{i
ightarrow \infty} \quad rac{\sqrt{3}}{4\sqrt{\pi}} \cdot rac{1}{i^{1+3/2}}.$$

 \rightarrow When p > 1/2, $\nu^{(p)}$ is **subcritical**. It is a nongeneric tree: a condensation phenomenon occurs (studied by Jonsson & Stefánsson, Janson, K.). \rightarrow When p < 1/2, $\nu^{(p)}$ is **supercritical** and we are in the Brownian case.

The tree $\mathcal{G}(\mathsf{Tree}(\partial \mathcal{H}_{\mathfrak{m}}^{(p)}))$ is a Galton–Watson tree conditioned on having $\mathfrak{m} + 1$ vertices with offspring distribution $\nu^{(p)}$ defined by:

$$\sum_{i \ge 0} v_i^{(\mathbf{p})} z^i = \frac{2\mathbf{p} - 1 + \sqrt{3}z + (1 - z)^{3/2}}{2\mathbf{p} - 1 + \sqrt{3}}.$$

$$\begin{array}{l} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$$

$$\mathbf{v}_{\mathbf{i}}^{(\mathbf{1/2})} \quad \mathop{\sim}\limits_{\mathbf{i}
ightarrow\infty} \quad \frac{\sqrt{3}}{4\sqrt{\pi}}\cdot \frac{1}{\mathbf{i}^{\mathbf{1}+\mathbf{3/2}}}.$$

 \rightarrow When p > 1/2, $\nu^{(p)}$ is **subcritical**. It is a nongeneric tree: a condensation phenomenon occurs (studied by Jonsson & Stefánsson, Janson, K.). \rightarrow When p < 1/2, $\nu^{(p)}$ is **supercritical** and we are in the Brownian case. The theorems follow.