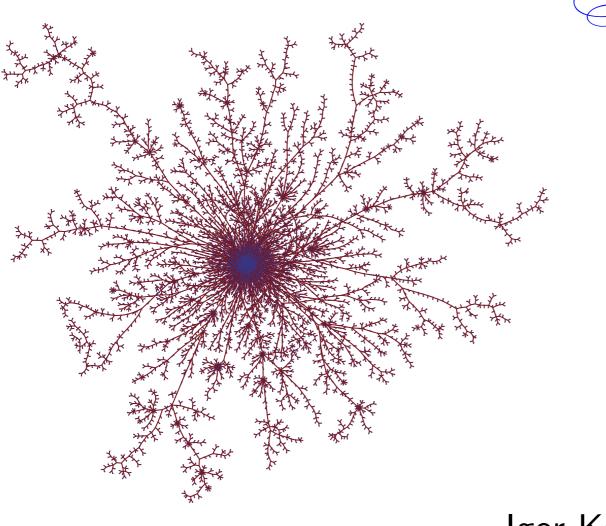


Limits of large random discrete structures



Igor Kortchemski CNRS & École polytechnique

Let \mathfrak{X}_n be a set of combinatorial objects of "size" n

Igor Kortchemski Limits of large random discrete structures

Let X_n be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_n .

 \bigwedge Find the cardinal of \mathfrak{X}_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

 $\Lambda \rightarrow$ Find the cardinal of \mathfrak{X}_n . (bijective methods, generating functions)

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

 $\Lambda \rightarrow$ Find the cardinal of \mathfrak{X}_n . (bijective methods, generating functions)

 $\Lambda \rightarrow$ Understand the typical properties of \mathfrak{X}_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

- \bigwedge Find the cardinal of χ_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*.

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_n .

 \bigwedge Find the cardinal of χ_n . (bijective methods, generating functions)

 Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_n .

- $\Lambda \rightarrow$ Find the cardinal of \mathfrak{X}_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?
- $\stackrel{\checkmark}{\longrightarrow} A \text{ possibility to study } X_n \text{ is to find a limiting object } X \text{ such that } X_n \to X \\ \text{ as } n \to \infty.$

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

 $\wedge \rightarrow$ In what space do the objects live?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

A→ In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

A→ In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

A→ In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).

 $\wedge \rightarrow$ What is the sense of the convergence when the objects are random?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

- A→ In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).
- √→ What is the sense of the convergence when the objects are random? Here, convergence in distribution:

$$\mathbb{E}\left[F(\mathbf{X}_{n})\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(\mathbf{X})\right]$$

for every continous bounded function $F: Z \to \mathbb{R}$.

I. MODELS CODED BY TREES

I. MODELS CODED BY TREES

II. Scaling limits of BGW trees

I. MODELS CODED BY TREES II. SCALING LIMITS OF BGW TREES III. LOCAL LIMITS OF BGW TREES

I. MODELS CODED BY TREES

II. Scaling limits of BGW trees

III. LOCAL LIMITS OF BGW TREES

Stack triangulations (Albenque, Marckert)

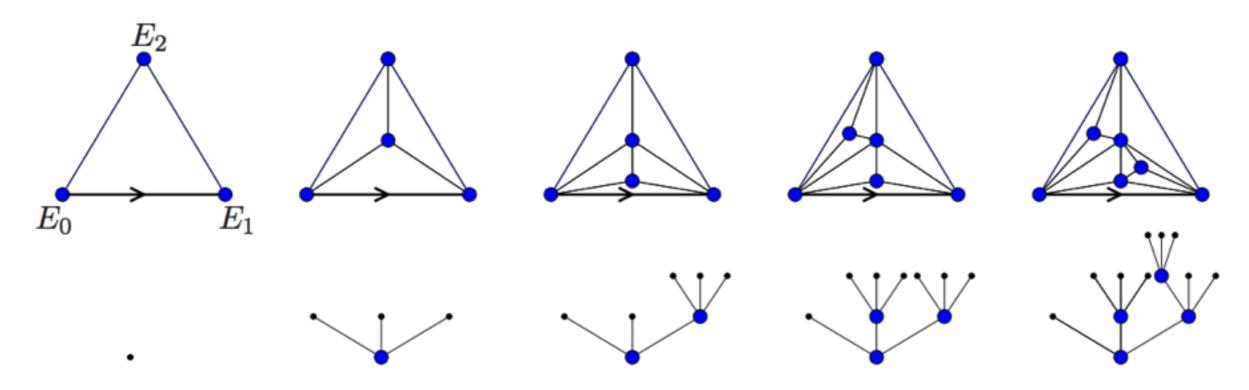


Figure 8: Construction of the ternary tree associated with an history of a stack-triangulation

Dissections (Curien, K.)

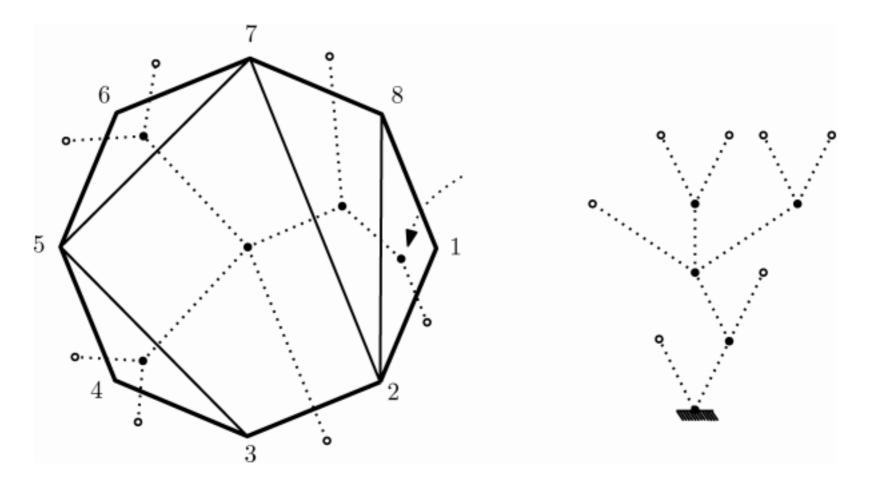


Fig. 4. The dual tree of a dissection of P_8 , note that the tree has 7 leaves.

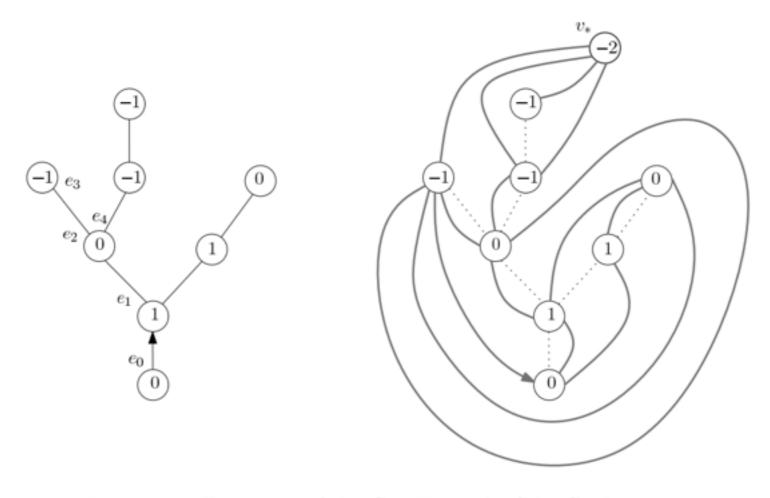
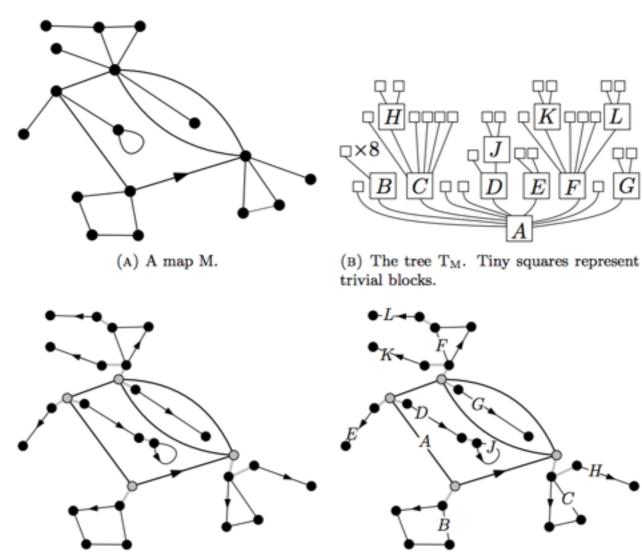


FIGURE 6. Illustration of the Cori-Vauquelin-Schaeffer bijection, in the case $\epsilon = 1$. For instance, e_3 is the successor of e_0 , e_2 the successor of e_1 , and so on.

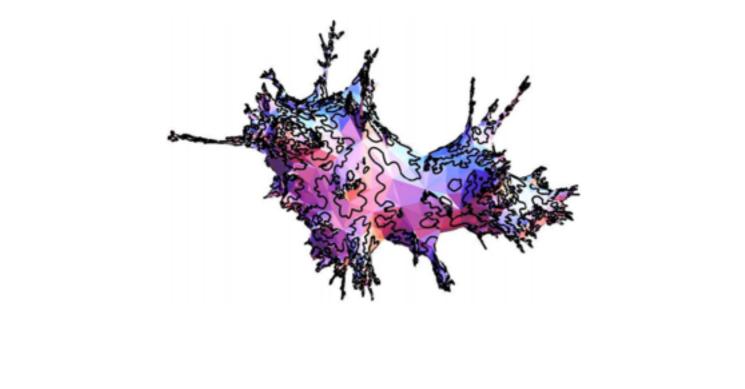
Maps (Addario-Berry)

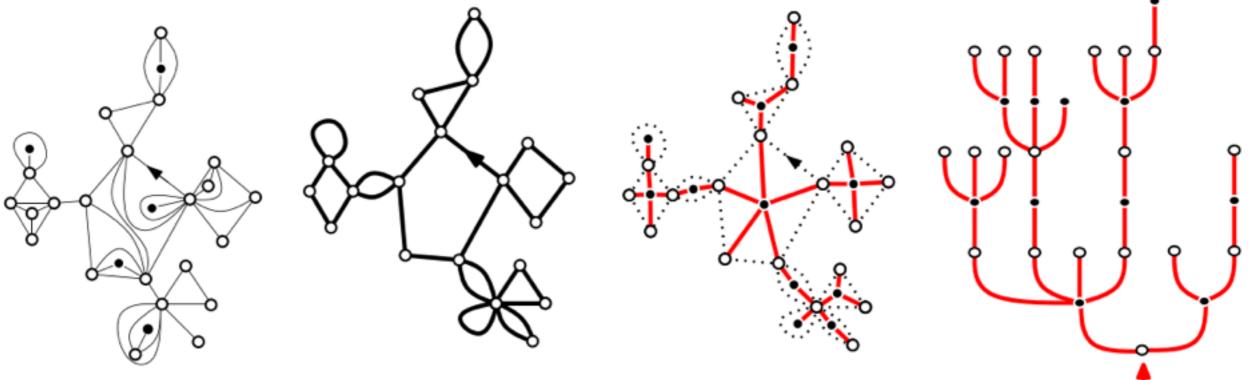


(C) The decomposition of M into blocks. Blocks are joined by grey lines according to the tree structure. Root edges of blocks are shown with arrows.

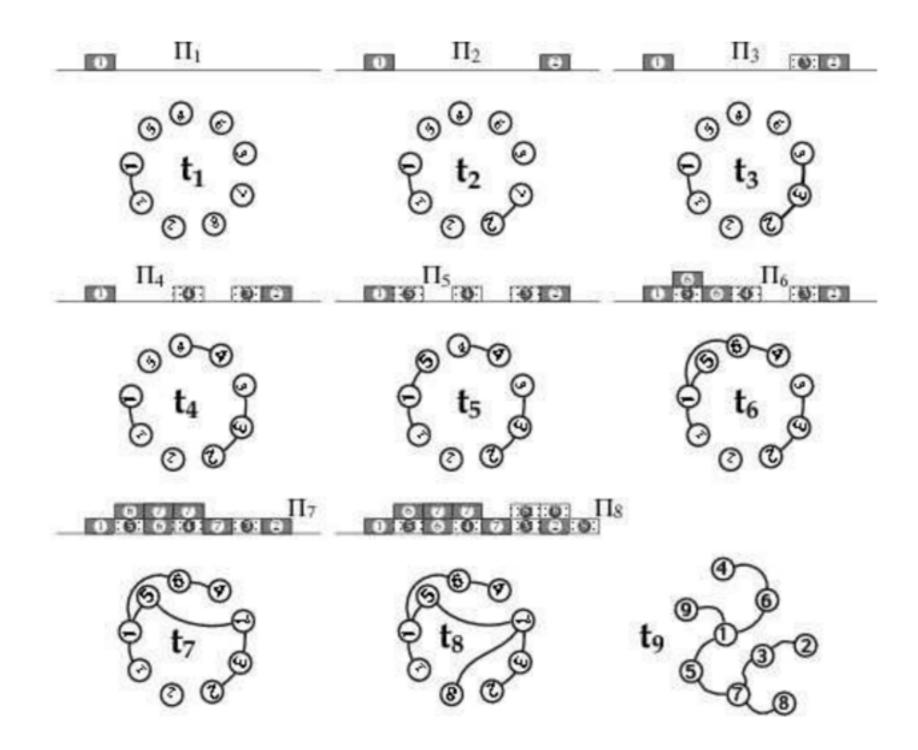
(D) The correspondence between blocks and nodes of T_M . Non-trivial blocks receive the alphabetical label (from A through L) of the corresponding node.

Maps with percolation (Curien, K.)





Parking functions (Chassaing, Louchard))



I. MODELS CODED BY TREES

II. LOCAL LIMITS OF BGW TREES

III. Scaling limits of BGW trees

Recall that in a BGW tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

Recall that in a BGW tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

What does a large BGW tree look like, near the root?

Local limits: critical case

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite BGW tree conditioned to survive.

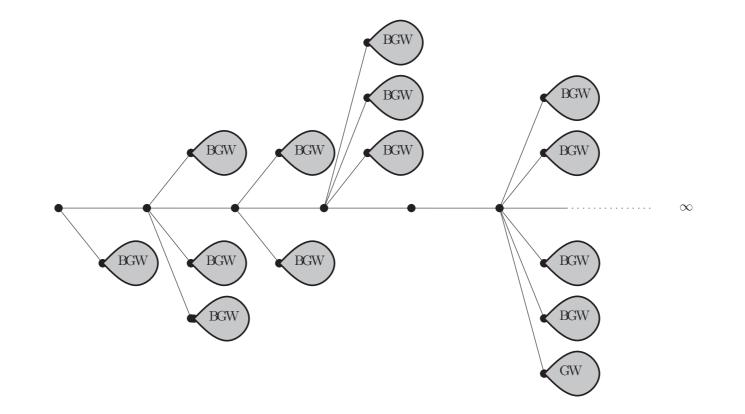
Local limits: critical case

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite BGW tree conditioned to survive.



Local limits: subcritical case

Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Local limits: subcritical case

Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$\mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\infty}^{*}$$

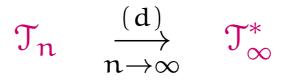
holds in distribution for the local topology, where \mathcal{T}^*_{∞} is a "condensation" tree

Local limits: subcritical case

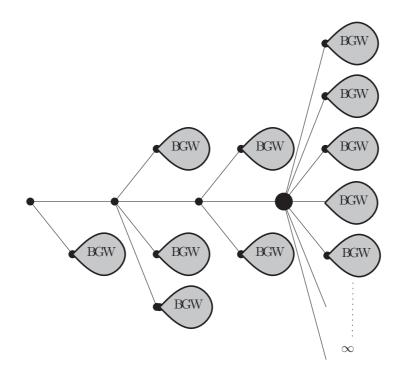
Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence



holds in distribution for the local topology, where \mathcal{T}^*_{∞} is a "condensation" tree



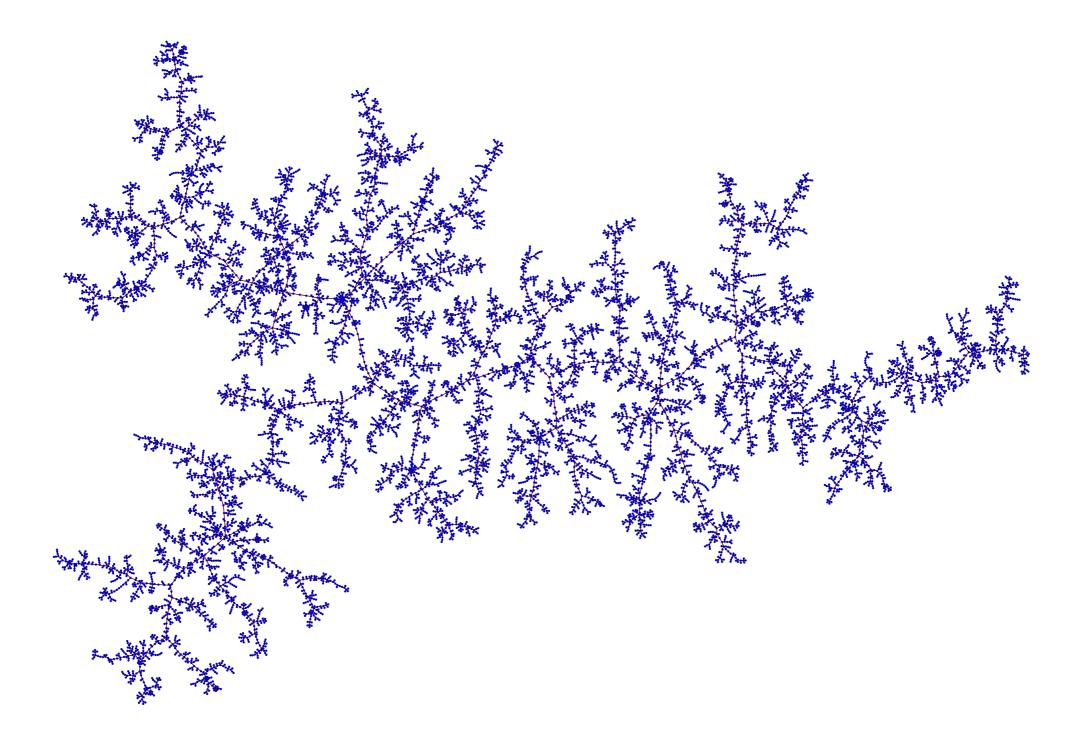
I. MODELS CODED BY TREES

II. LOCAL LIMITS OF BGW TREES

III. Scaling limits of BGW trees

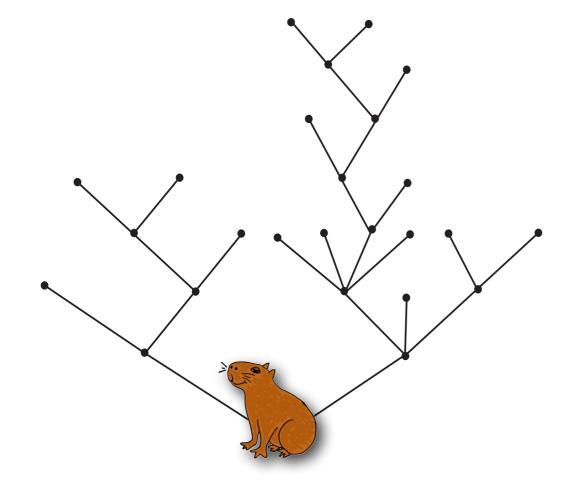
What does a large BGW tree look like, globally?

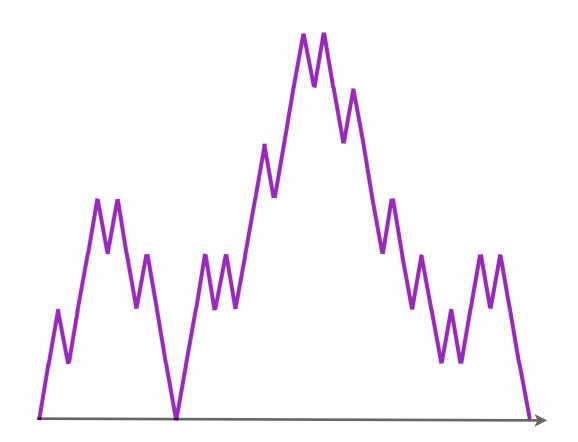
A simulation of a large random critical GW tree



CODING TREES BY FUNCTIONS

Define the contour function of a tree:





Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.

SCALING LIMITS: FINITE VARIANCE

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \underline{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

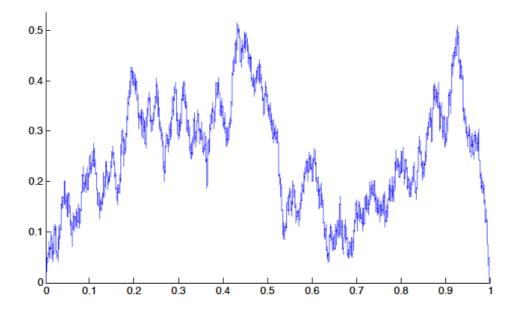
Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1}$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.



Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

 $\begin{array}{ll} & & & & \\ & & & \\ & & \\ & & \\ & & \\ &$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

$$\begin{array}{ll} & \bigwedge \quad \text{Consequence: for every } a > 0, \\ & \mathbb{P}\left(\frac{\sigma}{2} \cdot \text{Height}(\mathfrak{T}_{n}) > a \cdot \sqrt{n}\right) \qquad \underset{n \to \infty}{\longrightarrow} \quad \mathbb{P}\left(\sup \mathbb{e} > a\right) \\ & = & \sum_{k=1}^{\infty} (4k^{2}a^{2} - 1)e^{-2k^{2}a^{2}} \end{array}$$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

 $\land \rightarrow$ The Lukasieiwicz path of \Im_n , appropriately scaled, converges in distribution to e (conditioned Donsker's invariance principle).

1

Scaling limits : finite variance

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\rightarrow\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot\underline{e(t)}\right)_{0\leqslant t\leqslant 1}$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

- $\land \rightarrow$ The Lukasieiwicz path of \Im_n , appropriately scaled, converges in distribution to e (conditioned Donsker's invariance principle).
- $\Lambda \rightarrow$ Go from the Lukasieiwicz path of \mathfrak{T}_n to its contour function.

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Yes, if we view trees as compact metric spaces by equiping the vertices with the graph distance!

- 7

Let X, Y be two subsets of the same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{X}) \leqslant \mathsf{r} \}, \qquad Y_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y.

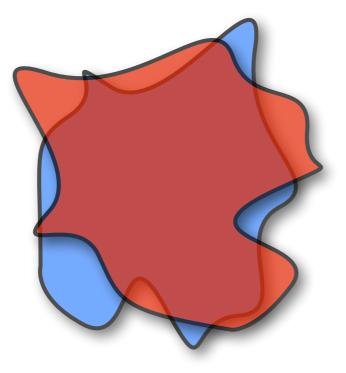
The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

 $d_{H}(X,Y) = \inf \{r > 0; X \subset Y_{r} \text{ and } Y \subset X_{r} \}.$



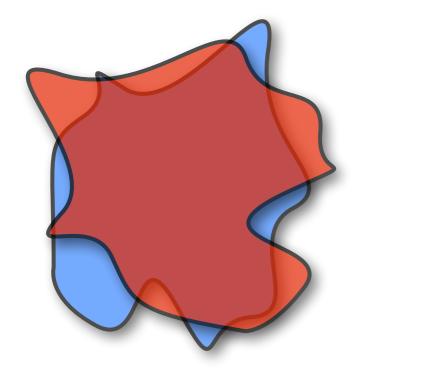
The Hausdorff distance

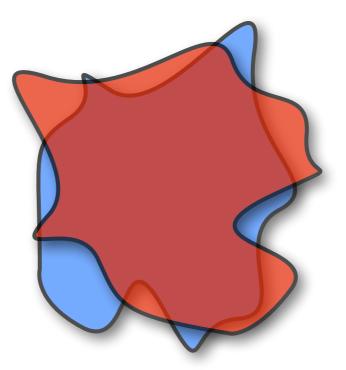
Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

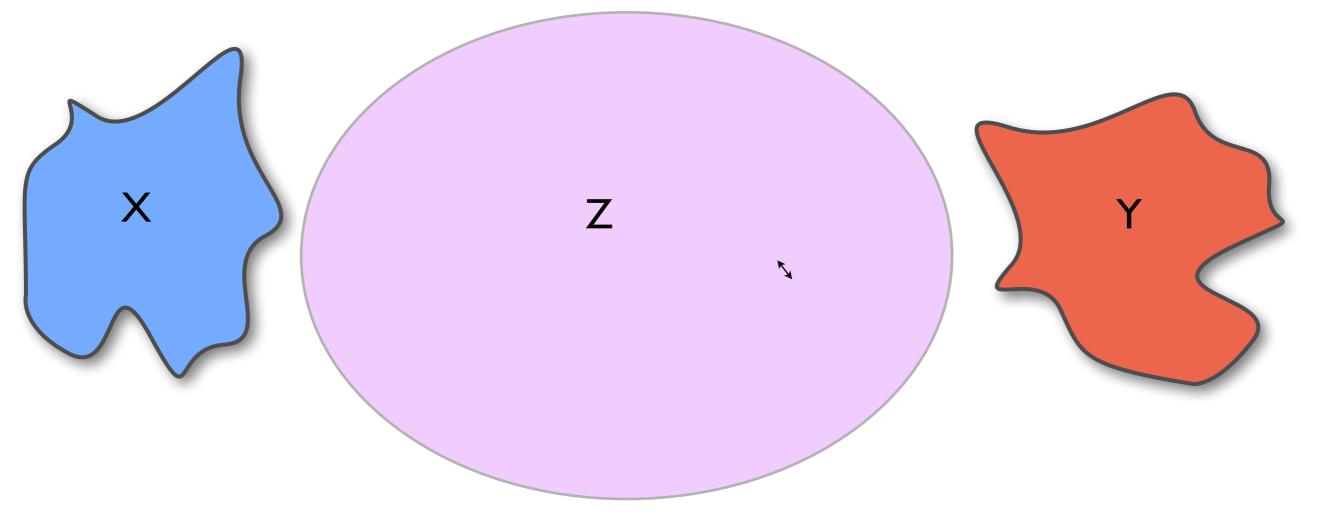
 $d_{H}(X, Y) = \inf \{r > 0; X \subset Y_r \text{ and } Y \subset X_r\}.$





Let X, Y be two compact metric spaces.

Let X, Y be two compact metric spaces.



The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y in a same metric space Z.

The Brownian tree

 \wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad \mathfrak{T}_{\mathfrak{e}},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

The Brownian tree

 \wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad \mathfrak{T}_{\mathfrak{e}},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The Brownian tree

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\mathfrak{E}},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The metric space \mathcal{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

SCALING LIMITS: INFINITE VARIANCE CASE

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \ge 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i \mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let \mathcal{T}_n be a BGW_µ tree conditioned on having n vertices.

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let \mathcal{T}_n be a BGW_µ tree conditioned on having \mathfrak{n} vertices.

View at \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \geqslant 0} i\mu_i &= 1 & (\mu \text{ is critical}) \\ \mu_i & \mathop{\sim}\limits_{i \to \infty} \frac{c}{i^{1+\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let \mathfrak{T}_n be a BGW_µ tree conditioned on having \mathfrak{n} vertices.

View at \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

What does \mathcal{T}_n look like for large n?

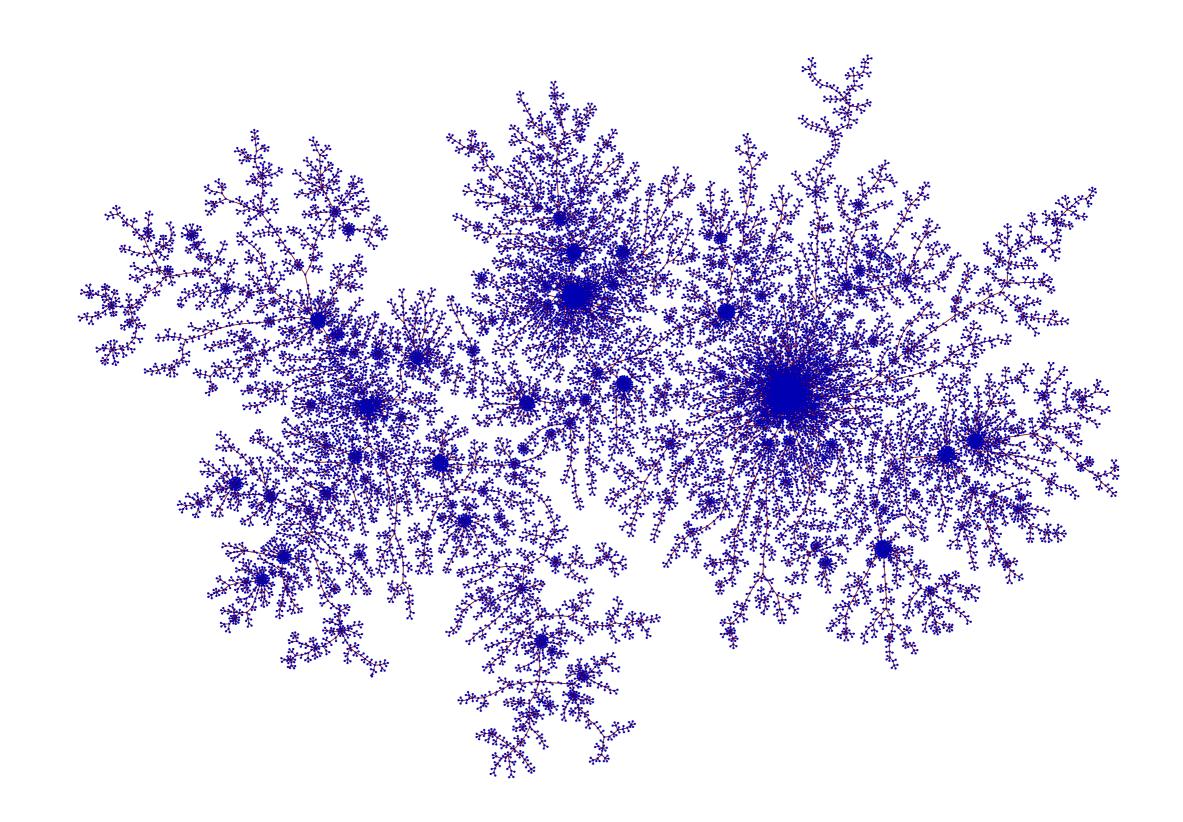


Figure: A large $\alpha = 1.1 - \text{stable tree}$

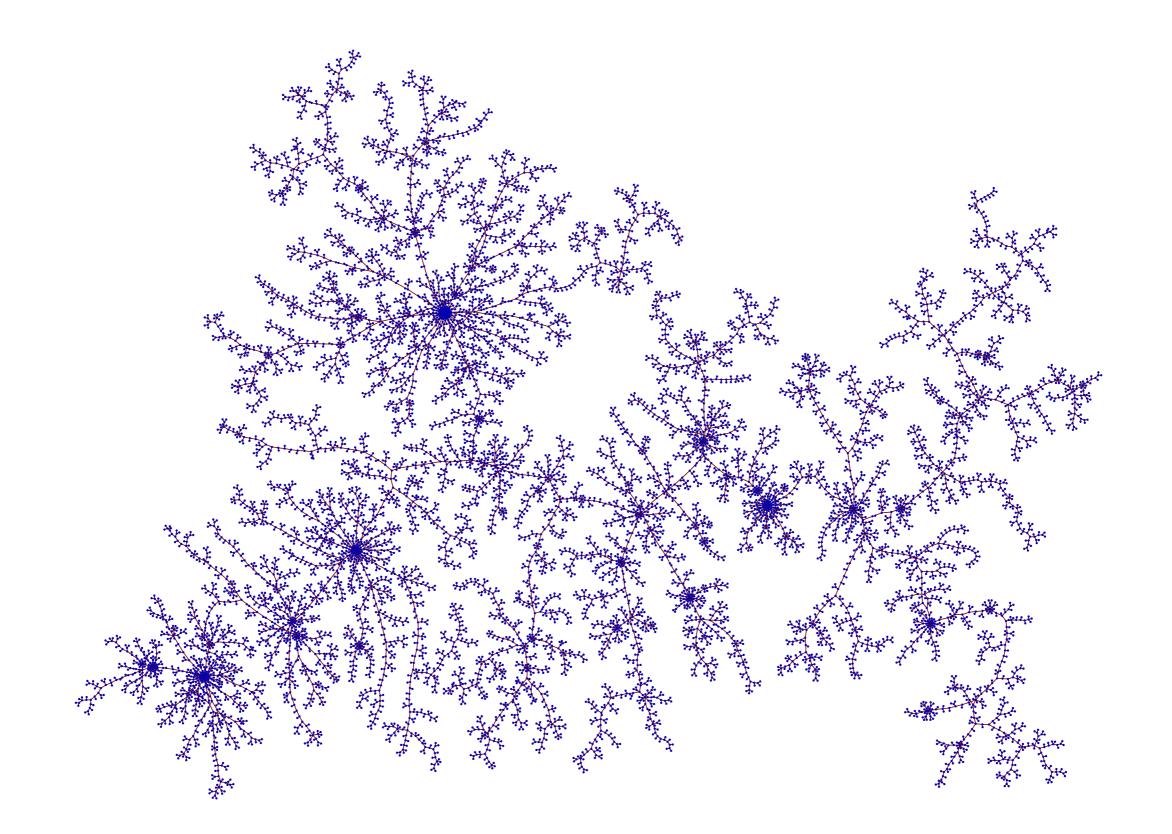


Figure: A large $\alpha = 1.5$ – stable tree

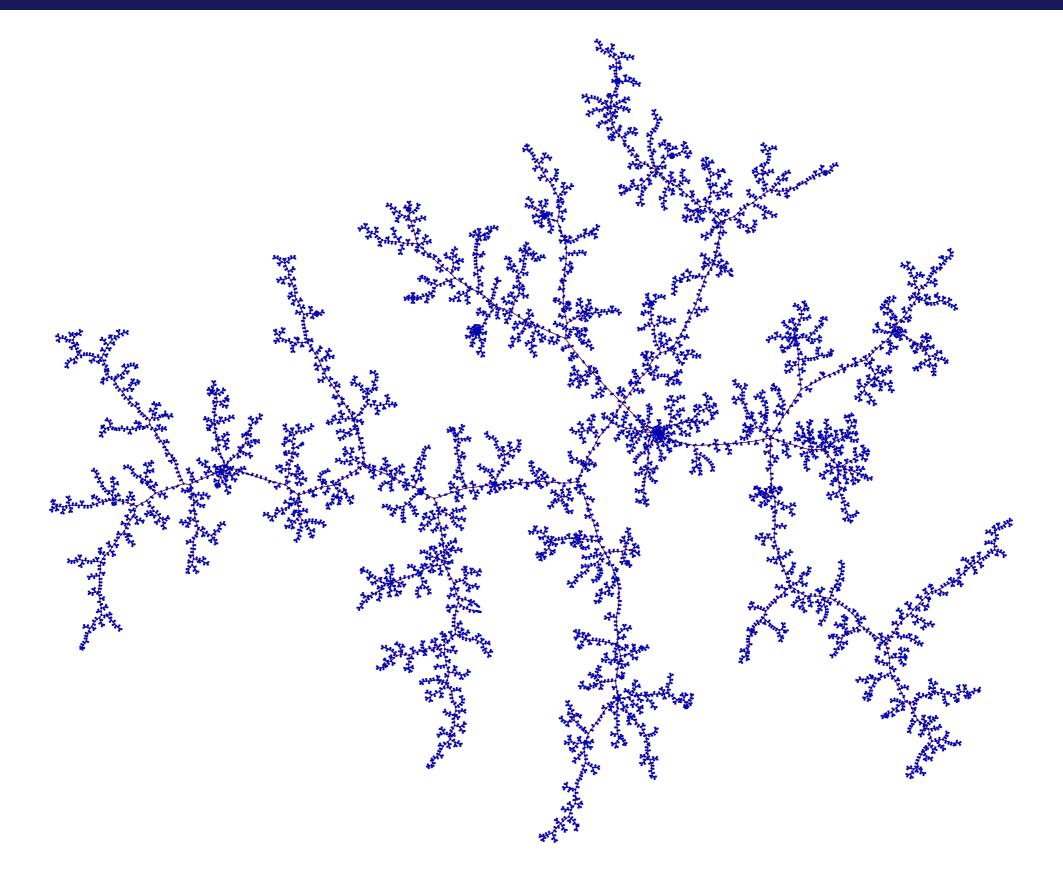


Figure: A large $\alpha = 1.9$ – stable tree

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathcal{T}_n be a BGW_µ tree conditioned on having n vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{T}_n be a BGW_µ tree conditioned on having \mathfrak{n} vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathcal{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{T}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathcal{T}_n be a BGW_µ tree conditioned on having n vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathcal{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{T}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{T}_n be a BGW_µ tree conditioned on having n vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{T}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 $\land \rightarrow$ The tree $𝔅_{\alpha}$ is called the stable tree of index α (introduced by Le Gall & Le Jan).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathfrak{T}_n be a BGW_µ tree conditioned on having n vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{T}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 \bigwedge The tree \mathcal{T}_{α} is called the stable tree of index α (introduced by Le Gall & Le Jan).

 $\bigwedge \mathcal{T}_{\alpha}$ is coded by the normalized excursion of a spectrally positive stable Lévy process of index α .

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu_i \sim c/i^{1+\alpha}$. Let \mathcal{T}_n be a BGW_µ tree conditioned on having n vertices.

View \mathfrak{T}_n as a compact metric space (the vertices of \mathfrak{T}_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{-1/\alpha}}{n^{1-1/\alpha}}\cdot \mathfrak{T}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 \wedge The tree \mathcal{T}_{α} is called the stable tree of index α (introduced by Le Gall & Le Jan).

 $\bigwedge \mathcal{T}_{\alpha}$ is coded by the normalized excursion of a spectrally positive stable Lévy process of index α .

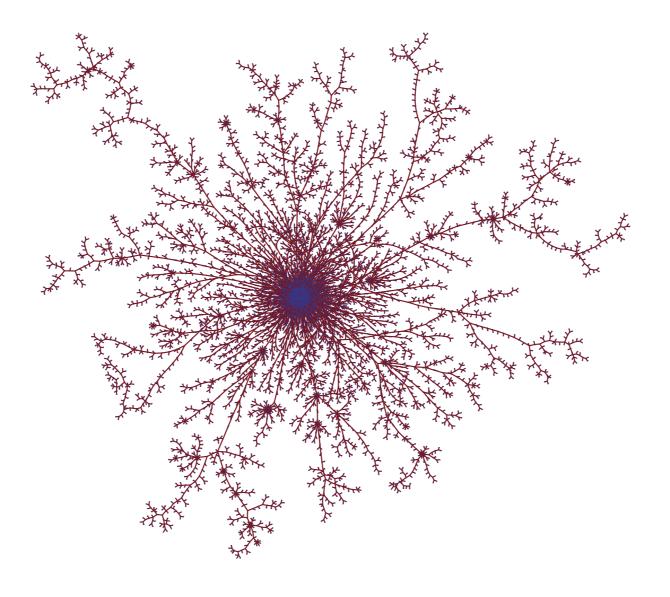
 \bigwedge The maximal degree of \mathfrak{T}_n is of order $n^{1/\alpha}$.

CONDENSATION : SUBCRITICAL CASE

Igor Kortchemski Limits of large random discrete structures

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.



Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

We saw that :

- there is a unique vertex of degree of order n (up to a constant),

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

We saw that :

- there is a unique vertex of degree of order n (up to a constant),
- the other degrees are of order ar most $n^{1/\min(2,\beta)}$ (up to a constant),

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

We saw that :

- there is a unique vertex of degree of order n (up to a constant),
- the other degrees are of order ar most $n^{1/\min(2,\beta)}$ (up to a constant),
- the height of the vertex with maximal degree converges in distribution.

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

We saw that :

- there is a unique vertex of degree of order n (up to a constant),
- the other degrees are of order ar most $n^{1/\min(2,\beta)}$ (up to a constant),
- the height of the vertex with maximal degree converges in distribution.

It is also possible to show that:

– the height of \mathfrak{T}_n is of order In(n);

Let μ be a **subcritical** offspring distribution such that $\mu_i \sim c/i^{1+\beta}$ with $\beta > 1$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

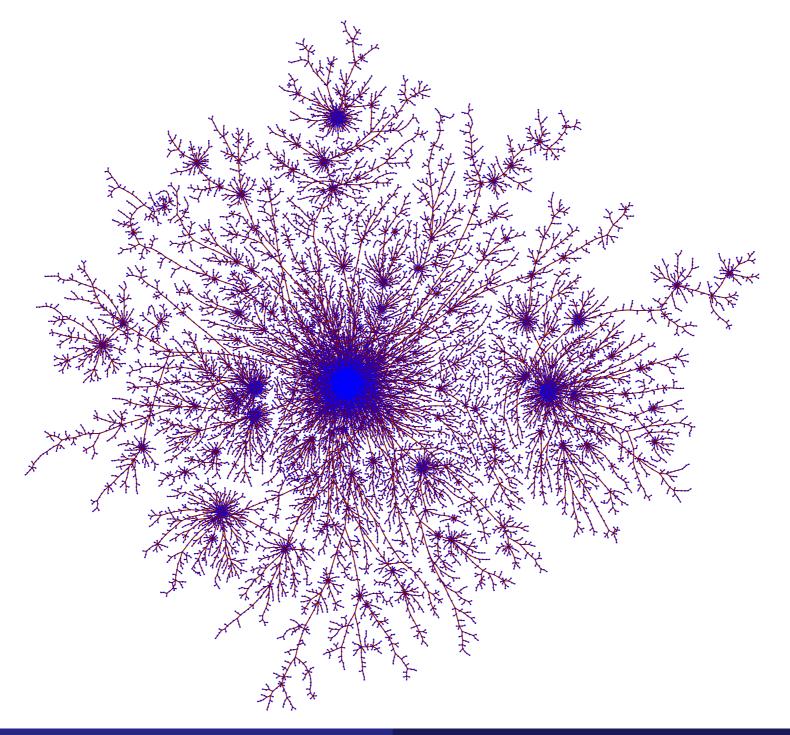
We saw that :

- there is a unique vertex of degree of order n (up to a constant),
- the other degrees are of order ar most $n^{1/\min(2,\beta)}$ (up to a constant),
- the height of the vertex with maximal degree converges in distribution.
- It is also possible to show that:
 - the height of \mathfrak{T}_n is of order ln(n);
 - there are no nontrivial scaling limits.

CONDENSATION: CRITICAL CASE

Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.



Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let T_n be a BGW_{μ} tree conditioned on having n vertices.

- Theorem (K. & Richier '19)
 - The maximal degree is of order $n/L_1(n)$ (where L_1 is slowly varying);

Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having n vertices.

Theorem (K. & Richier '19)

- The maximal degree is of order $n/L_1(n)$ (where L_1 is slowly varying);
- the maximum of the other degrees is of order $n/L_2(n)$ (where L_2 is slowly varying, with $L_2 = o(L_1)$);

Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let T_n be a BGW_{μ} tree conditioned on having n vertices.

Theorem (K. & Richier '19)

- The maximal degree is of order $n/L_1(n)$ (where L_1 is slowly varying);
- the maximum of the other degrees is of order $n/L_2(n)$ (where L_2 is slowly varying, with $L_2 = o(L_1)$);
- the height of the vertex with maximal degree converges in probability to ∞ .

Let μ be a **critical** offspring distribution such that $\mu_i \sim L(i)/i^2$. Let \mathfrak{T}_n be a BGW_{μ} tree conditioned on having \mathfrak{n} vertices.

Theorem (K. & Richier '19)

- The maximal degree is of order $n/L_1(n)$ (where L_1 is slowly varying);
- the maximum of the other degrees is of order $n/L_2(n)$ (where L_2 is slowly varying, with $L_2 = o(L_1)$);
- the height of the vertex with maximal degree converges in probability to ∞ .

For example, if

$$\mu_{i} \sim \frac{1}{\text{ln}(i)^{2}i^{2}},$$

the maximal degree is of order $n/\ln(n)$, the maximum of the other degrees is of order $n/\ln(n)^2$, and the height of the vertex with maximal degree is of order $\ln(n)$.

- µ is critical and has finite variance.

Then distances in \mathfrak{T}_n are of order \sqrt{n} (up to a constant), and the scaling limit is the Brownian CRT.

Recap

- μ is critical and has finite variance. Then distances in \mathfrak{T}_n are of order \sqrt{n} (up to a constant), and the scaling limit is the Brownian CRT.

- μ is critical, has infinite variance, and $\mu([n, \infty)) = L(n)/n^{\alpha}$, with L slowly varying and $1 < \alpha \leq 2$.

Then distances in \mathcal{T}_n are of order $n^{1/\alpha}$ (up to a slowly varying function), and the scaling limit is the α -stable tree.

Recap

- μ is critical and has finite variance. Then distances in \mathfrak{T}_n are of order \sqrt{n} (up to a constant), and the scaling limit is the Brownian CRT.

- μ is critical, has infinite variance, and $\mu([n, \infty)) = L(n)/n^{\alpha}$, with L slowly varying and $1 < \alpha \leq 2$.

Then distances in \mathfrak{T}_n are of order $\mathfrak{n}^{1/\alpha}$ (up to a slowly varying function), and the scaling limit is the α -stable tree.

- μ is subcritical and $\mu(n) = L(n)/n^{1+\beta}$ with $\beta > 1$ and L slowly varying. Then condensation occurs: there is a unique vertex of degree of order n (up to a constant), the other degrees are of order $n^{1/\min(2,\beta)}$ (up to a slowly varying constant), the height of the vertex with maximal degree converges in distribution, the height of the tree is of order $\ln(n)$ and there are no nontrivial scaling limits.

Recap

- μ is critical and has finite variance. Then distances in \mathfrak{T}_n are of order \sqrt{n} (up to a constant), and the scaling limit is the Brownian CRT.

- μ is critical, has infinite variance, and $\mu([n, \infty)) = L(n)/n^{\alpha}$, with L slowly varying and $1 < \alpha \leq 2$.

Then distances in \mathfrak{T}_n are of order $\mathfrak{n}^{1/\alpha}$ (up to a slowly varying function), and the scaling limit is the α -stable tree.

- μ is subcritical and $\mu(n) = L(n)/n^{1+\beta}$ with $\beta > 1$ and L slowly varying. Then condensation occurs: there is a unique vertex of degree of order n (up to a constant), the other degrees are of order $n^{1/\min(2,\beta)}$ (up to a slowly varying constant), the height of the vertex with maximal degree converges in distribution, the height of the tree is of order $\ln(n)$ and there are no nontrivial scaling limits.

- μ is critical and $\mu(n) = L(n)/n^2$ with L slowly varying.

Condensation occurs, but at a smaller scale, that is $n/L_1(n)$ (where L_1 is slowly varying), the other degrees are of order $n/L_2(n)$ (where L_2 is slowly varying, with $L_2 = o(L_1)$), and the height of the vertex with maximal degree converges in probability to ∞ .