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State of the art Non-generic trees Limit theorems Extensions

What is this about?

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution µ is critical (
∑
i>0 iµ(i) = 1).

- µ has finite variance.
- one studies GWµ trees conditioned on having a fixed (large) number of
vertices (or edges).

Two approaches:

- Scaling limits

- Local limits

What happens when µ is not critical?
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Outline
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II. Non-generic trees
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IV. One conjecture and one problem

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



State of the art Non-generic trees Limit theorems Extensions

I. State of the art

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



State of the art Non-generic trees Limit theorems Extensions

Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on N = {0, 1, 2, . . .} with
∑
i iρ(i) 6 1 and

ρ(1) < 1. A Galton-Watson tree with offspring distribution ρ is a random tree
such that:
1. k∅ has distribution ρ, where k∅ is the number of children of the root.
2. for every j > 1 with ρ(j) > 0, under Pρ( · |k∅ = j), the number of children

of the j children of the root are independent with distribution ρ.

Here, k∅ = 2.

Here, ζ(τ) = 5.

Let ζ(τ) denote the total number of vertices of τ.
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Scaling limits
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Coding trees
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Coding trees

Order the vertices in the the lexicographical order :
k∅ = u(0) < u(1) < · · · < u(ζ(τ) − 1).

Let ku be the number of children of the vertex u.
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Definition
The Lukasiewicz path W(τ) = (Wn(τ), 0 6 n 6 ζ(τ)) of a tree τ is defined by :

W0(τ) = 0, Wn+1(τ) = Wn(τ) + ku(n)(τ) − 1.
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Proposition
The Lukasiewicz path of a GWµ tree has the same distribution as a random
walk with jump distribution ν(k) = µ(k+ 1),k > −1, started from 0, stopped
when it hits −1.
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Definition (of the contour function)
A capybara explores the tree at unit speed. For 0 6 t 6 2(ζ(τ) − 1), Ct(τ) is
the distance between the beast at time t and the root.
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Figure: The Lukasiewicz path and the contour function.

I The Lukasiewicz path behaves like a random walk.
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Scaling limits

Let µ be a critical offspring distribution with finite variance. Let tn be a
Pµ [ · | ζ(τ) = n] tree. What does tn look like for n large ?

Consequences:
- limit theorem for the height of tn,
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Scaling limits

Let µ be a critical offspring distribution with finite variance. Let tn be a
Pµ [ · | ζ(τ) = n] tree. What does tn look like for n large ?

Theorem (Aldous ’93, Duquesne ’04)
Let σ2 be the variance of µ. Then :(

1√
n
W[nt](tn),

1

2
√
n
C2nt(tn)

)
06t61

(d)−→
n→∞

(
σ · e(t), 1

σ
e(t)

)
06t61

,

where e is the normalized Brownian excursion.

Consequences:
- limit theorem for the height of tn,
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where e is the normalized Brownian excursion.

Remark:
I Duquesne ’04: extension to the case where µ is in the domain of attraction

of a stable law.

Consequences:
- limit theorem for the height of tn,
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Let µ be a critical offspring distribution with finite variance. Let tn be a
Pµ [ · | ζ(τ) = n] tree. What does tn look like for n large ?
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Let σ2 be the variance of µ. Then :(
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,

where e is the normalized Brownian excursion.

Consequences:
- limit theorem for the height of tn,

- convergence in the Gromov-Hausdorff sense of tn, suitably rescaled,
towards the Brownian CRT.
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II. Non-generic trees
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II. 1) Exponential families
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Exponential families

Let µ be an offspring distribution with 0 < µ(0) < 1.

Lemma (Kennedy ’75)
Let λ > 0 be such that

Zλ =
∑
i>0

µ(i)λi <∞.

Set
µ(λ)(i) =

1

Zλ
µ(i)λi, i > 0.

Then a GWµ tree conditioned on having n vertices has the same distribution as
a GWµ(λ) tree conditioned on having n vertices.

Consequence:

I if there exists λ > 0 such that Zλ <∞ and µ(λ) is critical, then we are
back to the critical case.
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Zλ
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Exponential families

Definition
We say that µ is non-generic if there exist no λ > 0 such that Zλ <∞ and
µ(λ) is critical.

Example:

- µ is subcritical (
∑
i iµ(i) < 1)

- and the radius of convergence of
∑
i>0

µ(i)zi is 1.

Example: µ(i) ∼ c/iβ with c > 0 and β > 2.
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II. 2) Large non-generic trees
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Large non-generic trees

Fix µ non-generic. What does a Pµ [ · | ζ(τ) = n] tree look like for n large
(Jonsson & Stefánsson 11’)?

Condensation phenomenon

(which also appears in the zero-range process !).
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Theorem (Jonsson & Stefánsson ’11)
Let µ be a subcritical offspring distribution such that µ(i) ∼ c/iβ with c > 0,
β > 2.

Let tn be a Pµ [ · | ζ(τ) = n] tree and m be the mean of µ.

1) We have tn
(d)−→
n→∞ T̂ where T̂ is:

2) The maximal degree of tn, divided by n, converges in probability towards
1− m.

Questions:
- Do the Lukasiewicz path and contour function of tn, properly rescaled,
converge?

- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree ?
- What is the height of tn?
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III. Limit theorems for non-generic trees
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Assumptions

We consider an offspring distribution µ such that:
- µ is subcritical (0 <

∑
i iµ(i) < 1)

- There exists a slowly varying function L such that

µ(n) =
L(n)

n1+θ
, n > 1

with fixed θ > 1.

(L is slowly varying if L(tx)/L(x)→ 1 when x→∞, ∀t > 0.)

Let tn be a Pµ [ · | ζ(τ) = n] tree.
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III. 1) Convergence of the Lukasiewicz path
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Recap
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Let ku be the number of children of the vertex u.

Definition
The Lukasiewicz path W(τ) = (Wn(τ), 0 6 n 6 ζ(τ)) of a tree τ is defined by :

W0(τ) = 0, Wn+1(τ) = Wn(τ) + ku(n)(τ) − 1.
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Convergence of the Lukasiewicz path
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Let U(tn) be the index of the first vertex with maximal degree of tn.

Theorem (K. 12’)
We have:

(i) U(tn)/n converges in probability towards 0 as n→∞.

(ii) sup
06i6U(tn)

Wi(tn)

n

(P)−→
n→∞ 0.

(iii)
(
W[nt]∨(U(tn)+1)(tn)

n
, 0 6 t 6 1

)
(d)−→
n→∞ ((1− m)(1− t))06t61 .
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Theorem (K. 12’)
We have:
(i) U(tn)/n converges in probability towards 0 as n→∞.

(ii) sup
06i6U(tn)

Wi(tn)

n

(P)−→
n→∞ 0.

(iii)
(
W[nt]∨(U(tn)+1)(tn)

n
, 0 6 t 6 1

)
(d)−→
n→∞ ((1− m)(1− t))06t61 .
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Remarks:
I The limit is deterministic and depends only on m (the mean of µ).
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Convergence of the Lukasiewicz path

Let U(tn) be the index of the first vertex with maximal degree of tn.

Theorem (K. 12’)
We have:
(i) U(tn)/n converges in probability towards 0 as n→∞.

(ii) sup
06i6U(tn)

Wi(tn)

n

(P)−→
n→∞ 0.

(iii)
(
W[nt]∨(U(tn)+1)(tn)

n
, 0 6 t 6 1

)
(d)−→
n→∞ ((1− m)(1− t))06t61 .

Remarks:
I The limit is deterministic and depends only on m (the mean of µ).

I With high probability, there is one vertex with degree roughly (1−m)n and
the others have degree o(n).
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Idea of the proof

I We know that W(tn) has the law of a random walk (Wn)n>0 with jump
distribution ν(k) = µ(k+ 1),k > −1

, conditioned on
W1 > 0,W2 > 0, . . . ,Wn−1 > 0 and Wn = −1.

I But E [W1] = m − 1 < 0.

I By the “one big jump principle”, W(tn) makes one macroscopic jump, and
all the other jumps are asymptotically independent (the distribution of W1

is (0, 1]–subexponential).
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Applications

Let u?(tn) be the vertex of maximal degree

, ∆(tn) its degree and |u?(tn)| its
height.

Recall the local con-
vergence of tn to
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Applications

Let u?(tn) be the vertex of maximal degree, ∆(tn) its degree and |u?(tn)| its
height.

I The fluctuations of ∆(tn) around (1− m)n are of order n2∧θ.
I For i > 0, P [|u?(tn)| = i] −→

n→∞ (1− m)mi. This is not an immediate
consequence of the local convergence!

I For every sequence (λn)n>1 such that λn → +∞:

P
[∣∣∣∣H(tn) −

ln(n)

ln(1/m)

∣∣∣∣ 6 λn] −→
n→∞ 1.

Recall the local con-
vergence of tn to
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IV. Extensions
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Conjecture
We have:

E [H(tn)] ∼
n→∞ ln(n)

ln(1/m)
.

Question
What happens when µ is any non-generic probability distribution?

Thank you for your attention!
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Contour function of tn

Theorem (K. 12’)
Let (rn)n>1 be a sequence of positive real numbers.

(i) If rn/ ln(n)→∞, then (C2nt(tn)/rn, 0 6 t 6 1) converges to the
function equal to 0 on [0, 1] as n→∞.

(ii) Otherwise, the sequence (C2nt(tn)/rn, 0 6 t 6 1) is not tight in the space
C([0, 1],R).
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