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What is this about?

Goal: understand the structure of large conditioned Galton-Watson trees.
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What is this about?

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:
- the offspring distribution W is critical ( 3_;5ip(i) = 1).
- W has finite variance.

- one studies GW,, trees conditioned on having a fixed (large) number of
vertices (or edges).

Two approaches:
- Scaling limits

- Local limits

What happens when p is not critical?
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State of the art
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State of the art

Recap on Galton-Watson trees

Trees will be planar and rooted.
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State of the art

Recap on Galton-Watson trees

Trees will be planar and rooted.
Let p be a probability measure on N=1{0,1,2,...} with > ,ip(i) <1 and

p(1) < 1. A Galton-Watson tree with offspring distribution p is a random tree
such that:
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State of the art

Recap on Galton-Watson trees

Trees will be planar and rooted.

Let p be a probability measure on N=1{0,1,2,...} with > ,ip(i) <1 and
p(1) < 1. A Galton-Watson tree with offspring distribution p is a random tree
such that:

1. kg has distribution p, where kg is the number of children of the root.

2. for every j > 1 with p(j) > 0, under Py(-|ky = j), the number of children
of the j children of the root are independent with distribution p.

Here, ky = 2.
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State of the art

Recap on Galton-Watson trees

Trees will be planar and rooted.

Let p be a probability measure on N=1{0,1,2,...} with > ,ip(i) <1 and
p(1) < 1. A Galton-Watson tree with offspring distribution p is a random tree
such that:

1. kg has distribution p, where kg is the number of children of the root.

2. for every j > 1 with p(j) > 0, under Py(-|ky = j), the number of children
of the j children of the root are independent with distribution p.

Here, ky = 2.

Let {(t) denote the total number of vertices of T.
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State of the art

Recap on Galton-Watson trees

Trees will be planar and rooted.

Let p be a probability measure on N=1{0,1,2,...} with > ,ip(i) <1 and
p(1) < 1. A Galton-Watson tree with offspring distribution p is a random tree
such that:

1. kg has distribution p, where kg is the number of children of the root.

2. for every j > 1 with p(j) > 0, under Py(-|ky = j), the number of children
of the j children of the root are independent with distribution p.

Here, ky = 2.
Here, ((t) = 5.

Let {(t) denote the total number of vertices of T.
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State of the art

SCALING LIMITS
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State of the art

Coding trees
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State of the art

Coding trees

Order the vertices in the the lexicographical order:
kg =u(0) <u(l) <--- <u(f(t) —1).

Let k., be the number of children of the vertex w.
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State of the art

Coding trees

Definition
The Lukasiewicz path W(t) = (W, (1),0 < n < {(7)) of a tree T is defined by :

Wolt) =0, Wara (1) = Wi (1) + Ky (1) — 1.
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State of the art

Coding trees

Definition
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State of the art

Coding trees

Proposition
The Lukasiewicz path of a GW|, tree has the same distribution as a random
walk with jump distribution v(k) = u(k + 1),k > —1, started from 0, stopped

when it hits —1.

Condensation in Galton-Watson trees

Igor Kortchemski (Université Paris-Sud, Orsay)



State of the art

Coding trees

Definition (of the contour function)

A capybara explores the tree at unit speed. For 0 <t < 2(¢(t) — 1), Ci(T) is
the distance between the beast at time t and the root.
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State of the art

Coding trees

Figure: The Lukasiewicz path and the contour function.

» The Lukasiewicz path behaves like a random walk.
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State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Theorem (Aldous '93, Duquesne '04)

Let o2 be the variance of w. Then :

1 1 () 1
— Wi (tn), —=Cont (¢ — -e(t), —elt '
<\/ﬁ mt] (tn) 2y/n znt n)>o<t<1 n—eo <0 ot U(B( )>0<t<1

where e is the normalized Brownian excursion.
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State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Theorem (Aldous '93, Duquesne '04)

Let o2 be the variance of w. Then :

1 1 (a) 1
W th), —=Cone(t -elt), —elt '
<\/ﬁ mt] (tn) 2y/n znt n)>o<t<1 - <0 ot U(B( )>0<t<1

where e is the normalized Brownian excursion.

Remark:

» Duquesne '04: extension to the case where  is in the domain of attraction
of a stable law.
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State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Theorem (Aldous '93, Duquesne '04)

Let o2 be the variance of w. Then :

1 1 () 1
— Wi (tn), —=Cont (¢ — -e(t), —elt '
<\/ﬁ mt] (tn) 2y/n znt n)>o<t<1 n—eo <0 ot U(B( )>0<t<1

where e is the normalized Brownian excursion.

Consequences:
- limit theorem for the height of t,,
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State of the art

Scaling limits

Let u be a critical offspring distribution with finite variance. Let t,, be a
[-1¢(T) = n] tree. What does t,, look like for n large 7

Theorem (Aldous '93, Duquesne '04)

Let o2 be the variance of w. Then :

1 1 1
7W[n ](tﬂ)v 7C2n (tn)> — <0 . (B(t)v (B(t)) y
<\/TiL ‘ 2y/n t o<tgly ™ o o<t

where e is the normalized Brownian excursion.
Consequences:
- limit theorem for the height of t,,

- convergence in the Gromov-Hausdorff sense of t,,, suitably rescaled,
towards the Brownian CRT.
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II. NON-GENERIC TREES
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Non-generic trees

I1. 1) EXPONENTIAL FAMILIES
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Non-generic trees

Exponential families

Let 1 be an offspring distribution with 0 < p(0) < 1.
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Non-generic trees

Exponential families

Let 1 be an offspring distribution with 0 < p(0) < 1.

Lemma (Kennedy '75)

Let A > 0 be such that .
Zy=) ui\' <oo.

i>0
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Non-generic trees

Exponential families

Let 1 be an offspring distribution with 0 < p(0) < 1.

Lemma (Kennedy '75)

Let A > 0 be such that .
Zy=) ui\' <oo.

i>0

Set
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Non-generic trees

Exponential families

Let 1 be an offspring distribution with 0 < p(0) < 1.

Lemma (Kennedy '75)

Let A > 0 be such that .
Zy=) ui\' <oo.
i>0
Set 1
nM () = ——pAY i>0.

Zy
Then a GW,, tree conditioned on having n vertices has the same distribution as
a GW () tree conditioned on having n vertices.
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Non-generic trees

Exponential families

Let 1 be an offspring distribution with 0 < p(0) < 1.

Lemma (Kennedy '75)
Let A > 0 be such that .
Zy=) ui\' <oo.
i>0
Set 1
nM () = ——pAY i>0.
Zy

Then a GW,, tree conditioned on having n vertices has the same distribution as
a GW () tree conditioned on having n vertices.

Consequence:

> if there exists A > 0 such that Z) < co and u») is critical, then we are
back to the critical case.
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Non-generic trees

Exponential families

Definition
We say that p is non-generic if there exist no A > 0 such that Z) < oo and
1) s critical.
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Non-generic trees

Exponential families

Definition
We say that p is non-generic if there exist no A > 0 such that Z) < oo and
1) s critical.

Example:
- W is subcritical (3_; ipn(i) < 1)
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Non-generic trees

Exponential families

Definition
We say that p is non-generic if there exist no A > 0 such that Z) < oo and
1) s critical.

Example:
- W is subcritical (3_; ipn(i) < 1)

- and the radius of convergence of Z u(i)ztis 1.
i>0
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Non-generic trees

Exponential families

Definition
We say that p is non-generic if there exist no A > 0 such that Z) < oo and
1) s critical.

Example:
- W is subcritical (3_; ipn(i) < 1)
- and the radius of convergence of Z u(i)ztis 1.

i>0

Ezample: u(i) ~c/iP with ¢ > 0and B > 2.
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Non-generic trees

II. 2) LARGE NON-GENERIC TREES
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Non-generic trees

Large non-generic trees

Fix i non-generic. What does a P, [-| (1) = 1] tree look like for n large
(Jonsson & Stefansson 11')7
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Non-generic trees

Large non-generic trees

Fix i non-generic. What does a P, [-| (1) = 1] tree look like for n large
(Jonsson & Stefansson 11')7
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Non-generic trees

Large non-generic trees

Fix i non-generic. What does a P, [-| (1) = 1] tree look like for n large
(Jonsson & Stefansson 11')7

Condensation phenomenon
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Non-generic trees

Large non-generic trees

Fix i non-generic. What does a P, [-| (1) = 1] tree look like for n large
(Jonsson & Stefansson 11')7

Condensation phenomenon (which also appears in the zero-range process !).
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B >2.
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) Then:

d o~
g, W7
n—oo
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) Then:

d o~
g, W7
n—oo

where the convergence holds for the local convergence
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) Then:
t, Y7
n—oo
where the convergence holds for the local convergence and the tree T has

the following form:
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) Then:

where the convergence holds for the local convergence and the tree T has
the following form:

The spine has a finite random
length S, where:
PS=il=(1—m)m! fori>0
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:

n—o0
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:

n—o0

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) We have t, W F where T is:

n—o00

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

Remarks:
» In the critical case the spine is infinite (Kesten '86).
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) We have t, W F where T is:

n—o00

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

Remarks:
» In the critical case the spine is infinite (Kesten '86).

> Janson '12: Assertion 1) holds for every non-generic p.
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) We have t, W F where T is:

n—o00

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

Remarks:
» In the critical case the spine is infinite (Kesten '86).

> Janson '12: Assertion 1) holds for every non-generic p.

» A GW,, tree has in expectation 1 + m+m? +--- =1/(1 —m) vertices.
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that (i) ~ ¢/iP with ¢ > 0,
B >2 Lett, bealP,[-|((T) =n] tree and m be the mean of ..

1) We have t, W F where T is:

n—o00

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

Remarks:
» In the critical case the spine is infinite (Kesten '86).

> Janson '12: Assertion 1) holds for every non-generic p.

» A GW,, tree has in expectation 1 + m+m? +--- =1/(1 —m) vertices.
Hence a forest of cn trees GW,, has in expectation cn/(1 — m) vertices.
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:

n—o0

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

fuestions:
- Do the Lukasiewicz path and contour function of t,,, properly rescaled,
converge?
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:

n—o0

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

fuestions:
- Do the Lukasiewicz path and contour function of t,,, properly rescaled,
converge?
- What are the fluctuations of the maximal degree?
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Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:
n—oo

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

fuestions:
- Do the Lukasiewicz path and contour function of t,,, properly rescaled,

converge?
- What are the fluctuations of the maximal degree?

- Where is located the vertex of maximal degree ?

Condensation in Galton-Watson trees

Igor Kortchemski (Université Paris-Sud, Orsay)



Non-generic trees

Theorem (Jonsson & Stefansson '11)

Let w be a subcritical offspring distribution such that u(i) ~ c/iP with ¢ > 0,
B>2 Letty, bealP,[-|((t) =n] tree and m be the mean of .

1) We have t, ﬂ T where T is:

n—o0

2) The maximal degree of t,, divided by n, converges in probability towards
1—m.

fuestions:
- Do the Lukasiewicz path and contour function of t,,, properly rescaled,
converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree ?
- What is the height of t,7
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Limit theorems

II1I. LIMIT THEOREMS FOR NON-GENERIC TREES
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Limit theorems

Assumptions

We consider an offspring distribution u such that:
- wis subcritical (0 < ) ;ip(i) < 1)
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Limit theorems

Assumptions

We consider an offspring distribution u such that:
- wis subcritical (0 < ) ;ip(i) < 1)
- There exists a slowly varying function L such that
L(n)

u(n)=nl+e, n>1

with fixed 0 > 1.
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Limit theorems

Assumptions

We consider an offspring distribution u such that:
- wis subcritical (0 < ) ;ip(i) < 1)
- There exists a slowly varying function L such that
L(n)

u(n)=nl+e, n>1

with fixed 0 > 1.

(L is slowly varying if L(tx)/L(x) — 1 when x — oo, ¥Vt > 0.)
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Limit theorems

Assumptions

We consider an offspring distribution u such that:
- wis subcritical (0 < ) ;ip(i) < 1)
- There exists a slowly varying function L such that
L(n)

u(n)=nl+e, n>1

with fixed 0 > 1.

(L is slowly varying if L(tx)/L(x) — 1 when x — oo, ¥Vt > 0.)

Let t, be a P, [-]((T) = n] tree.
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Limit theorems

ITI. 1) CONVERGENCE OF THE LUKASIEWICZ PATH
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Limit theorems

Let k., be the number of children of the vertex w.
Definition
The Lukasiewicz path W(t) = (W(1),0 < n < {(7)) of a tree T is defined by :

Wo(t) =0, Wii1(1) = W (T) + ku(n) (1) -1
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Limit theorems

Convergence of the Lukasiewicz path
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.

Theorem (K. 12)
We have:
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.

Theorem (K. 12)
We have:

(i) U(tn)/n converges in probability towards 0 as n — oo.
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.
Theorem (K. 12)
We have:
(i) U(tn)/n converges in probability towards 0 as n — oo.
(i) sup Wiltn) @)

o<igU(t,) T n—eo

0.
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.
Theorem (K. 12)
We have:

(i) U(tn)/n converges in probability towards 0 as n — oo.
Wi(tn) @
—

(i) sup 0.
ogigU(t,) M noreo
W t
(iii) ( [nt]wur(i“)ﬂ)( n) 0t 1> n%f; (1 =m)(1—1t))ocica
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.
Theorem (K. 12)
We have:

(i) U(tn)/n converges in probability towards 0 as n — oo.
Wi(tn) @
—

(i) sup 0.
ogigU(t,) T noee
W t
(m)< [“”W“g“)“’(“),ossl) e CET ) [FE )

Remarks:
» The limit is deterministic and depends only on m (the mean of p).
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Limit theorems

Convergence of the Lukasiewicz path

Let U(t,) be the index of the first vertex with maximal degree of t,,.
Theorem (K. 12)
We have:

(i) U(tn)/n converges in probability towards 0 as n — oo.
Wi(tn) @
—

(i) sup 0.
ogigU(t,) T noee
W t
(i) ( [nuwu]:n)m( L 1> e CET ) [FE )

Remarks:
» The limit is deterministic and depends only on m (the mean of p).

» With high probability, there is one vertex with degree roughly (1 —m)n and
the others have degree o(n).
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Limit theorems

ldea of the proof

> We know that W(t,,) has the law of a random walk (Wp)n>o with jump
distribution v(k) = u(k+ 1),k > —1
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Limit theorems

ldea of the proof

> We know that W(t,,) has the law of a random walk (Wp)n>o with jump
distribution v(k) = w(k 4+ 1),k > —1, conditioned on
W1>0,W2>0 ..... Wn_1>0and anf]..
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Limit theorems

ldea of the proof

> We know that W(t,,) has the law of a random walk (Wp)n>o with jump
distribution v(k) = w(k 4+ 1),k > —1, conditioned on
W1>0,W2>0 ..... Wn_1>0and anf]..

» ButEW;]=m—-1<0.

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



Limit theorems

ldea of the proof

> We know that W(t,,) has the law of a random walk (Wp)n>o with jump
distribution v(k) = w(k 4+ 1),k > —1, conditioned on
W1>0,W2>0 ..... Wn_1>0and anf]..

» ButEW;]=m—-1<0.

» By the “one big jump principle”, W(t,,) makes one macroscopic jump, and
all the other jumps are asymptotically independent
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Limit theorems

ldea of the proof

> We know that W(t,,) has the law of a random walk (Wp)n>o with jump
distribution v(k) = w(k 4+ 1),k > —1, conditioned on
W1>0,W2>0 ..... Wn_1>0and anf]..

» ButEW;]=m—-1<0.

» By the “one big jump principle”, W(t,,) makes one macroscopic jump, and
all the other jumps are asymptotically independent (the distribution of W;
is (0, 1]-subexponential).
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and |u,(t,,)| its
height.
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and [u,(t.)] its
height.
» The fluctuations of A(t,) around (1 —m)n are of order n?/\°.
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and [u,(t.)] its
height.
» The fluctuations of A(t,) around (1 —m)n are of order n?/\°.

» Fori> 0, Plu,(tn) =1 — (1—m)m'.
n—oo
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and [u,(t.)] its
height.
» The fluctuations of A(t,) around (1 —m)n are of order n?/\°.

i

» Fori> 0, Pllu,(ty)l=1 — (1—m)m.
n—oo

Recall the local con-
vergence of t, to
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and [u,(t.)] its
height.
» The fluctuations of A(t,) around (1 —m)n are of order n?/\°.

» Fori>0, Plu,(t,)|=1 — (1 —m)mt. Thisis not an immediate
n—oo

consequence of the local convergence!

Recall the local con-
vergence of t, to
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Limit theorems

Applications

Let u,(t,,) be the vertex of maximal degree, A(t,,) its degree and [u,(t.)] its
height.

» The fluctuations of A(t,) around (1 —m)n are of order n?\°

» Fori>0, Plu,(t,)|=1 — (1 —m)mt. Thisis not an immediate
n—oo
consequence of the local convergence!

> For every sequence (An)n>1 such that A, — +o0:

[

|n(1/m)<>‘“} — 1.

n—o0o
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IV. EXTENSIONS
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Conjecture

We have: I
E [H(tn)] n—roo %
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Conjecture
We have: In(n)
nin
BOEI S Tnia/m)
Question

What happens when p is any non-generic probability distribution?
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Conjecture
We have: In(n)
nin
BOEI S Tnia/m)
Question

What happens when p is any non-generic probability distribution?
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Extensions

Contour function of t,
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Extensions

Contour function of t,

Theorem (K. 12")

Let (tn)n>1 be a sequence of positive real numbers.
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Extensions

Contour function of t,

Theorem (K. 12")

Let (tn)n>1 be a sequence of positive real numbers.

(i) Ifrn/In(n) — oo, then (Cont(tn)/mm, 0 < t < 1) converges to the
function equal to 0 on [0,1] asn — oo.
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Extensions

Contour function of t,

Theorem (K. 12")

Let (tn)n>1 be a sequence of positive real numbers.
(i) Ifrn/In(n) — oo, then (Cont(tn)/mm, 0 < t < 1) converges to the
function equal to 0 on [0,1] asn — oo.

(ii) Otherwise, the sequence (Cont(tn)/Tn,0 < t < 1) is not tight in the space
e([o,1], R).

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees



	State of the art
	Non-generic trees
	Limit theorems
	Extensions

	0.0: 
	anm0: 


