Extensions

Limit theorems for conditioned non-generic Galton-Watson trees

Igor Kortchemski (Université Paris-Sud, Orsay) PIMS 2012

Goal: understand the structure of large conditioned Galton-Watson trees.

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0}i\mu(i)=1).$

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0} i\mu(i)=1).$
- μ has finite variance.

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0}i\mu(i)=1).$
- μ has finite variance.
- one studies GW_{μ} trees conditioned on having a fixed (large) number of vertices (or edges).

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0} i\mu(i)=1).$
- μ has finite variance.
- one studies GW_{μ} trees conditioned on having a fixed (large) number of vertices (or edges).

Two approaches:

- Scaling limits

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0} i\mu(i)=1).$
- μ has finite variance.
- one studies GW_{μ} trees conditioned on having a fixed (large) number of vertices (or edges).

Two approaches:

- Scaling limits
- Local limits

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:

- the offspring distribution μ is critical ($\sum_{i\geqslant 0} i\mu(i)=1).$
- μ has finite variance.
- one studies GW_{μ} trees conditioned on having a fixed (large) number of vertices (or edges).

Two approaches:

- Scaling limits
- Local limits

What happens when μ is not critical?

- I. STATE OF THE ART (CRITICAL CASE)
- II. NON-GENERIC TREES
- III. LIMIT THEOREMS FOR NON-GENERIC TREES
- IV. ONE CONJECTURE AND ONE PROBLEM

I. STATE OF THE ART

Extensions

Recap on Galton-Watson trees

Trees will be planar and rooted.

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_i i\rho(i)\leqslant 1$ and $\rho(1)<1.$

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{\mathfrak{i}} \mathfrak{i}\rho(\mathfrak{i})\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{\mathfrak{i}}\mathfrak{i}\rho(\mathfrak{i})\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_{\varnothing} has distribution $\rho,$ where k_{\varnothing} is the number of children of the root.

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{\mathfrak{i}}i\rho(\mathfrak{i})\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

- 1. k_{\varnothing} has distribution $\rho,$ where k_{\varnothing} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, under $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ .

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{\mathfrak{i}}i\rho(\mathfrak{i})\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

- 1. k_{\varnothing} has distribution $\rho,$ where k_{\varnothing} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, under $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ .

Here, $k_{\emptyset} = 2$.

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{i}i\rho(i)\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

- 1. k_{\varnothing} has distribution $\rho,$ where k_{\varnothing} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, under $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ .

Here, $k_{\emptyset} = 2$.

Let $\zeta(\tau)$ denote the total number of vertices of τ .

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N}=\{0,1,2,\ldots\}$ with $\sum_{\mathfrak{i}}i\rho(\mathfrak{i})\leqslant 1$ and $\rho(1)<1.$ A Galton-Watson tree with offspring distribution ρ is a random tree such that:

- 1. k_{\varnothing} has distribution $\rho,$ where k_{\varnothing} is the number of children of the root.
- 2. for every $j \ge 1$ with $\rho(j) > 0$, under $\mathbb{P}_{\rho}(\cdot | k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ .

Let $\zeta(\tau)$ denote the total number of vertices of $\tau.$

SCALING LIMITS

Coding trees

Coding trees

Order the vertices in the *the lexicographical order*: $k_{\varnothing} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1).$

Let k_u be the number of children of the vertex u.

Coding trees

Order the vertices in the *the lexicographical order*: $k_{\emptyset} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1).$

Let k_u be the number of children of the vertex u.

Coding trees

Order the vertices in the *the lexicographical order*: $k_{\emptyset} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1).$

Let k_u be the number of children of the vertex u.

Coding trees

Definition

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

The Lukasiewicz path $W(\tau) = (W_n(\tau), 0 \leqslant n \leqslant \zeta(\tau))$ of a tree τ is defined by :

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Coding trees

Definition

The Lukasiewicz path $W(\tau) = (W_n(\tau), 0 \leqslant n \leqslant \zeta(\tau))$ of a tree τ is defined by :

$$\mathcal{W}_0(\tau) = 0, \qquad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.$$

Coding trees

Definition

The Lukasiewicz path $W(\tau) = (W_n(\tau), 0 \leqslant n \leqslant \zeta(\tau))$ of a tree τ is defined by :

$$\mathcal{W}_0(\tau) = 0, \qquad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.$$

Coding trees

Proposition

The Lukasiewicz path of a GW_{μ} tree has the same distribution as a random walk with jump distribution $\nu(k)=\mu(k+1), k\geqslant -1$, started from 0, stopped when it hits -1.

Coding trees

Definition (of the contour function)

A capybara explores the tree at unit speed. For $0 \le t \le 2(\zeta(\tau) - 1)$, $C_t(\tau)$ is the distance between the beast at time t and the root.

Extensions

Coding trees

Definition (of the contour function)

A capybara explores the tree at unit speed. For $0\leqslant t\leqslant 2(\zeta(\tau)-1),\ C_t(\tau)$ is the distance between the beast at time t and the root.

Definition (of the contour function)

A capybara explores the tree at unit speed. For $0\leqslant t\leqslant 2(\zeta(\tau)-1),\ C_t(\tau)$ is the distance between the beast at time t and the root.

Coding trees

Definition (of the contour function)

A capybara explores the tree at unit speed. For $0\leqslant t\leqslant 2(\zeta(\tau)-1),\ C_t(\tau)$ is the distance between the beast at time t and the root.
Limit theorems

Coding trees

Figure: The Lukasiewicz path and the contour function.

► The Lukasiewicz path behaves like a random walk.

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large ?

Non-generic trees

Limit theorems

Extensions

Scaling limits

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large ?

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}\left[\,\cdot\,|\,\zeta(\tau)=n\right]$ tree. What does t_n look like for n large ?

Theorem (Aldous '93, Duquesne '04) Let σ^2 be the variance of μ . Then :

$$\left(\frac{1}{\sqrt{n}}\mathcal{W}_{[nt]}(t_n),\frac{1}{2\sqrt{n}}C_{2nt}(t_n)\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\sigma\cdot \operatorname{e}(t),\frac{1}{\sigma}\operatorname{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where e is the normalized Brownian excursion.

Limit theorems

Scaling limits

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}\left[\,\cdot\,|\,\zeta(\tau)=n\right]$ tree. What does t_n look like for n large ?

Theorem (Aldous '93, Duquesne '04) Let σ^2 be the variance of μ . Then :

$$\left(\frac{1}{\sqrt{n}}\mathcal{W}_{[\texttt{nt}]}(\texttt{t}_{\texttt{n}}),\frac{1}{2\sqrt{n}}C_{2\texttt{nt}}(\texttt{t}_{\texttt{n}})\right)_{0\leqslant t\leqslant 1} \quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\sigma\cdot \textbf{e}(t),\frac{1}{\sigma}\textbf{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where e is the normalized Brownian excursion.

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}\left[\,\cdot\,|\,\zeta(\tau)=n\right]$ tree. What does t_n look like for n large ?

Theorem (Aldous '93, Duquesne '04) Let σ^2 be the variance of μ . Then :

$$\left(\frac{1}{\sqrt{n}}\mathcal{W}_{[\texttt{nt}]}(\texttt{t}_{\texttt{n}}),\frac{1}{2\sqrt{n}}C_{2\texttt{nt}}(\texttt{t}_{\texttt{n}})\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\rightarrow\infty}{\longrightarrow}}\quad \left(\sigma\cdot \texttt{e}(\texttt{t}),\frac{1}{\sigma}\texttt{e}(\texttt{t})\right)_{0\leqslant t\leqslant 1},$$

where e is the normalized Brownian excursion.

Remark:

Duquesne '04: extension to the case where µ is in the domain of attraction of a stable law.

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}\left[\,\cdot\,|\,\zeta(\tau)=n\right]$ tree. What does t_n look like for n large ?

Theorem (Aldous '93, Duquesne '04) Let σ^2 be the variance of μ . Then :

$$\left(\frac{1}{\sqrt{n}}\mathcal{W}_{[\texttt{nt}]}(\texttt{t}_{\texttt{n}}),\frac{1}{2\sqrt{n}}C_{2\texttt{nt}}(\texttt{t}_{\texttt{n}})\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\rightarrow\infty}{\longrightarrow}}\quad \left(\sigma\cdot \texttt{e}(t),\frac{1}{\sigma}\texttt{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where e is the normalized Brownian excursion.

Consequences:

- limit theorem for the height of t_n ,

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_{\mu}\left[\,\cdot\,|\,\zeta(\tau)=n\right]$ tree. What does t_n look like for n large ?

Theorem (Aldous '93, Duquesne '04) Let σ^2 be the variance of μ . Then :

$$\left(\frac{1}{\sqrt{n}}\mathcal{W}_{[\texttt{nt}]}(\texttt{t}_{\texttt{n}}),\frac{1}{2\sqrt{n}}C_{2\texttt{nt}}(\texttt{t}_{\texttt{n}})\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\rightarrow\infty}{\longrightarrow}}\quad \left(\sigma\cdot \texttt{e}(\texttt{t}),\frac{1}{\sigma}\texttt{e}(\texttt{t})\right)_{0\leqslant t\leqslant 1},$$

where e is the normalized Brownian excursion.

Consequences:

- limit theorem for the height of t_n ,
- convergence in the Gromov-Hausdorff sense of ${\mathfrak t}_n,$ suitably rescaled, towards the Brownian CRT.

II. NON-GENERIC TREES

II. 1) EXPONENTIAL FAMILIES

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees

Limit theorems

Exponential families

Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Limit theorems

Extensions

Exponential families

Let μ be an offspring distribution with $0<\mu(0)<1.$

Lemma (Kennedy '75)

Let $\lambda > 0$ be such that

$$Z_{\lambda} = \sum_{i \geqslant 0} \mu(i) \lambda^i < \infty.$$

Non-generic trees

Limit theorems

Extensions

Exponential families

Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Lemma (Kennedy '75)

Let $\lambda > 0$ be such that

$$Z_{\lambda} = \sum_{i \geqslant 0} \mu(i) \lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(\mathfrak{i}) = \frac{1}{Z_{\lambda}} \mu(\mathfrak{i}) \lambda^{\mathfrak{i}}, \qquad \qquad \mathfrak{i} \geqslant 0.$$

Non-generic trees

Limit theorems

Extensions

Exponential families

Let μ be an offspring distribution with $0<\mu(0)<1.$

Lemma (Kennedy '75)

Let $\lambda > 0$ be such that

$$Z_{\lambda} = \sum_{i \geqslant 0} \mu(i) \lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(\mathfrak{i}) = \frac{1}{Z_\lambda} \mu(\mathfrak{i}) \lambda^{\mathfrak{i}}, \qquad \qquad \mathfrak{i} \geqslant 0.$$

Then a GW_{μ} tree conditioned on having n vertices has the same distribution as a $GW_{\mu(\lambda)}$ tree conditioned on having n vertices.

Limit theorems

Exponential families

Let μ be an offspring distribution with $0<\mu(0)<1.$

Lemma (Kennedy '75)

Let $\lambda > 0$ be such that

$$Z_\lambda = \sum_{i \geqslant 0} \mu(i) \lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(\mathfrak{i}) = \frac{1}{Z_\lambda} \mu(\mathfrak{i}) \lambda^{\mathfrak{i}}, \qquad \qquad \mathfrak{i} \geqslant 0.$$

Then a GW_{μ} tree conditioned on having n vertices has the same distribution as a $GW_{\mu(\lambda)}$ tree conditioned on having n vertices.

Consequence:

▶ if there exists $\lambda > 0$ such that $Z_{\lambda} < \infty$ and $\mu^{(\lambda)}$ is critical, then we are back to the critical case.

Definition

We say that μ is **non-generic** if there exist no $\lambda>0$ such that $Z_\lambda<\infty$ and $\mu^{(\lambda)}$ is critical.

Definition

We say that μ is **non-generic** if there exist no $\lambda>0$ such that $Z_\lambda<\infty$ and $\mu^{(\lambda)}$ is critical.

Example:

- μ is subcritical $(\sum_i i\mu(i) < 1)$

Definition

We say that μ is **non-generic** if there exist no $\lambda>0$ such that $Z_\lambda<\infty$ and $\mu^{(\lambda)}$ is critical.

Example:

- μ is subcritical $\left(\sum_{i} i\mu(i) < 1\right)$
- and the radius of convergence of $\sum_{i\geqslant 0}\mu(i)z^i$ is 1.

Definition

We say that μ is **non-generic** if there exist no $\lambda>0$ such that $Z_\lambda<\infty$ and $\mu^{(\lambda)}$ is critical.

Example:

- μ is subcritical ($\sum_{\mathfrak{i}}\mathfrak{i}\mu(\mathfrak{i})<1)$

- and the radius of convergence of $\sum_{i\geqslant 0}\mu(i)z^i$ is 1.

 $\textit{Example: } \mu(i) \sim c/i^\beta \text{ with } c > 0 \text{ and } \beta > 2.$

II. 2) LARGE NON-GENERIC TREES

Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11')?

Limit theorems

Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11')?

Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11')?

Condensation phenomenon

Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11')?

Condensation phenomenon (which also appears in the zero-range process !).

Let μ be a subcritical offspring distribution such that $\mu(i)\sim c/i^\beta$ with c>0, $\beta>2.$

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and **m** be the mean of μ .

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) Then:

$$\mathfrak{t}_{\mathfrak{n}} \quad \xrightarrow{(d)}{\mathfrak{T}}$$

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) Then:

where the convergence holds for the local convergence

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) Then:

 $\mathfrak{t}_{\mathfrak{n}} \quad \xrightarrow{(d)}_{\mathfrak{n} \to \infty} \quad \widehat{\mathfrak{T}}$

where the convergence holds for the local convergence and the tree $\widehat{\mathfrak{T}}$ has the following form:

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) Then:

 $\mathfrak{t}_{\mathfrak{n}} \quad \stackrel{(d)}{\underset{\mathfrak{n} \to \infty}{\longrightarrow}} \quad \widehat{\mathfrak{T}}$

where the convergence holds for the local convergence and the tree $\widehat{\mathfrak{T}}$ has the following form:

The spine has a finite random length S, where: $\mathbb{P}[S = i] = (1 - \mathbf{m})\mathbf{m}^i$ for $i \ge 0$

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) We have
$$\mathfrak{t}_{\mathfrak{n}} \xrightarrow{(d)} \widehat{\mathfrak{T}}$$
 where $\widehat{\mathfrak{T}}$ is:

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Remarks:

▶ In the critical case the spine is infinite (Kesten '86).

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Remarks:

- ▶ In the critical case the spine is infinite (Kesten '86).
- > Janson '12: Assertion 1) holds for every non-generic μ .

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Remarks:

- ▶ In the critical case the spine is infinite (Kesten '86).
- Janson '12: Assertion 1) holds for every non-generic μ.
- ► A GW_µ tree has in expectation $1 + \mathbf{m} + \mathbf{m}^2 + \cdots = 1/(1 \mathbf{m})$ vertices.

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Remarks:

- ▶ In the critical case the spine is infinite (Kesten '86).
- Janson '12: Assertion 1) holds for every non-generic μ .
- ► A GW_µ tree has in expectation $1 + \mathbf{m} + \mathbf{m}^2 + \cdots = 1/(1 \mathbf{m})$ vertices. Hence a forest of cn trees GW_µ has in expectation $cn/(1 - \mathbf{m})$ vertices.
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

2) The maximal degree of t_n , divided by n, converges in probability towards 1 - m.

Questions:

- Do the Lukasiewicz path and contour function of $\mathfrak{t}_n,$ properly rescaled, converge?

S = 4 $\mathbb{P}(S = i) = (1 - \mathbf{m})\mathbf{m}$

Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

Questions:

- Do the Lukasiewicz path and contour function of $\mathfrak{t}_n,$ properly rescaled, converge?
- What are the fluctuations of the maximal degree?

Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) We have
$$\mathbf{t}_n \xrightarrow[n \to \infty]{d} \widehat{\mathcal{T}}$$
 where $\widehat{\mathcal{T}}$ is:

 The maximal degree of t_n, divided by n, converges in probability towards 1 - m.

Questions:

- Do the Lukasiewicz path and contour function of $\mathfrak{t}_n,$ properly rescaled, converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree ?

Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with c > 0, $\beta > 2$. Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree and \mathbf{m} be the mean of μ .

1) We have
$$\mathfrak{t}_{\mathfrak{n}} \xrightarrow{(d)} \widehat{\mathfrak{T}}$$
 where $\widehat{\mathfrak{T}}$ is:

 The maximal degree of t_n, divided by n, converges in probability towards 1 - m.

Questions:

- Do the Lukasiewicz path and contour function of $\mathfrak{t}_n,$ properly rescaled, converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree ?
- What is the height of t_n ?

III. LIMIT THEOREMS FOR NON-GENERIC TREES

We consider an offspring distribution $\boldsymbol{\mu}$ such that:

- μ is subcritical (0 $<\sum_{\mathfrak{i}}\mathfrak{i}\mu(\mathfrak{i})<1)$

We consider an offspring distribution $\boldsymbol{\mu}$ such that:

- μ is subcritical (0 $<\sum_{\mathfrak{i}}\mathfrak{i}\mu(\mathfrak{i})<1)$
- There exists a slowly varying function L such that

$$\mu(\mathbf{n}) = \frac{L(\mathbf{n})}{\mathbf{n}^{1+\theta}}, \qquad \mathbf{n} \ge 1$$

with fixed $\theta > 1$.

We consider an offspring distribution $\boldsymbol{\mu}$ such that:

- μ is subcritical (0 $<\sum_{\mathfrak{i}}\mathfrak{i}\mu(\mathfrak{i})<1)$
- There exists a slowly varying function L such that

$$\mu(n) = \frac{L(n)}{n^{1+\theta}}, \qquad n \ge 1$$

with fixed $\theta > 1$.

(L is slowly varying if $L(tx)/L(x) \rightarrow 1$ when $x \rightarrow \infty$, $\forall t > 0$.)

We consider an offspring distribution $\boldsymbol{\mu}$ such that:

- μ is subcritical (0 $<\sum_{\mathfrak{i}}\mathfrak{i}\mu(\mathfrak{i})<1)$
- There exists a slowly varying function L such that

$$\mu(n) = \frac{L(n)}{n^{1+\theta}}, \qquad n \ge 1$$

with fixed $\theta > 1$.

(L is slowly varying if $L(tx)/L(x) \rightarrow 1$ when $x \rightarrow \infty$, $\forall t > 0$.)

Let \mathfrak{t}_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree.

III. 1) CONVERGENCE OF THE LUKASIEWICZ PATH

Non-generic trees

Limit theorems

Recap

Let k_u be the number of children of the vertex u.

Definition

The Lukasiewicz path $\mathcal{W}(\tau)=(\mathcal{W}_n(\tau), 0\leqslant n\leqslant \zeta(\tau))$ of a tree τ is defined by :

$$\mathcal{W}_0(\tau)=0,\qquad \mathcal{W}_{n+1}(\tau)=\mathcal{W}_n(\tau)+k_{\mathfrak{u}(n)}(\tau)-1.$$

Let $U(\mathfrak{t}_n)$ be the index of the first vertex with maximal degree of $\mathfrak{t}_n.$

Let $U(t_n)$ be the index of the first vertex with maximal degree of $t_n.$ Theorem (K. 12')

We have:

Let $U(t_n)$ be the index of the first vertex with maximal degree of $t_n.$ Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

Let $U(t_n)$ be the index of the first vertex with maximal degree of $t_n.$ Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

 $\text{(ii)} \ \sup_{0\leqslant i\leqslant U(\mathfrak{t}_n)} \frac{\mathcal{W}_i(\mathfrak{t}_n)}{n} \quad \overset{(\mathbb{P})}{\underset{n\to\infty}{\longrightarrow}} \quad 0.$

Let $U(\mathfrak{t}_n)$ be the index of the first vertex with maximal degree of $\mathfrak{t}_n.$ Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii)
$$\sup_{0 \leq i \leq u(t_{n})} \frac{\mathcal{W}_{i}(t_{n})}{n} \xrightarrow{(\mathbb{P})} 0.$$

(iii) $\left(\frac{\mathcal{W}_{[nt]} \vee (u(t_{n})+1)(t_{n})}{n}, 0 \leq t \leq 1\right) \xrightarrow{(d)} ((1-m)(1-t))_{0 \leq t \leq 1}.$

Let $U(\mathfrak{t}_n)$ be the index of the first vertex with maximal degree of $\mathfrak{t}_n.$ Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

$$\begin{array}{ll} (\text{ii}) & \sup_{0 \leqslant i \leqslant U(\mathfrak{t}_{n})} & \frac{\mathcal{W}_{i}(\mathfrak{t}_{n})}{n} & \stackrel{(\mathbb{P})}{\longrightarrow} & 0. \\ \\ (\text{iii}) & \left(\frac{\mathcal{W}_{[nt] \lor (U(\mathfrak{t}_{n})+1)}(\mathfrak{t}_{n})}{n}, 0 \leqslant t \leqslant 1 \right) & \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} & \left((1-\textbf{m})(1-t) \right)_{0 \leqslant t \leqslant 1}. \end{array}$$

Remarks:

• The limit is deterministic and depends only on \mathbf{m} (the mean of μ).

Let $U(\mathfrak{t}_n)$ be the index of the first vertex with maximal degree of $\mathfrak{t}_n.$ Theorem (K. 12')

We have:

(i) $U(\mathfrak{t}_n)/n$ converges in probability towards 0 as $n \to \infty$.

$$\begin{array}{ll} (\text{ii}) & \sup_{0 \leqslant i \leqslant U(\mathfrak{t}_{n})} & \frac{\mathcal{W}_{i}(\mathfrak{t}_{n})}{n} & \stackrel{(\mathbb{P})}{\longrightarrow} & 0. \\ \\ (\text{iii}) & \left(\frac{\mathcal{W}_{[nt] \lor (U(\mathfrak{t}_{n})+1)}(\mathfrak{t}_{n})}{n}, 0 \leqslant t \leqslant 1 \right) & \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} & \left((1-\textbf{m})(1-t) \right)_{0 \leqslant t \leqslant 1}. \end{array}$$

Remarks:

- The limit is deterministic and depends only on \mathbf{m} (the mean of μ).
- ▶ With high probability, there is one vertex with degree roughly $(1 \mathbf{m})n$ and the others have degree o(n).

▶ We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \ge 0}$ with jump distribution $v(k) = \mu(k+1), k \ge -1$

▶ We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \ge 0}$ with jump distribution $\nu(k) = \mu(k+1), k \ge -1$, conditioned on $W_1 \ge 0, W_2 \ge 0, \dots, W_{n-1} \ge 0$ and $W_n = -1$.

- ▶ We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \ge 0}$ with jump distribution $\nu(k) = \mu(k+1), k \ge -1$, conditioned on $W_1 \ge 0, W_2 \ge 0, \dots, W_{n-1} \ge 0$ and $W_n = -1$.
- ▶ But $\mathbb{E}[W_1] = \mathbf{m} 1 < 0.$

- ▶ We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \ge 0}$ with jump distribution $\nu(k) = \mu(k+1), k \ge -1$, conditioned on $W_1 \ge 0, W_2 \ge 0, \dots, W_{n-1} \ge 0$ and $W_n = -1$.
- ▶ But $\mathbb{E}[W_1] = \mathbf{m} 1 < 0.$
- ▶ By the "one big jump principle", W(t_n) makes one macroscopic jump, and all the other jumps are asymptotically independent

- ▶ We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \ge 0}$ with jump distribution $\nu(k) = \mu(k+1), k \ge -1$, conditioned on $W_1 \ge 0, W_2 \ge 0, \dots, W_{n-1} \ge 0$ and $W_n = -1$.
- ▶ But $\mathbb{E}[W_1] = \mathbf{m} 1 < 0.$
- ▶ By the "one big jump principle", W(t_n) makes one macroscopic jump, and all the other jumps are asymptotically independent (the distribution of W₁ is (0, 1]-subexponential).

Let $\mathfrak{u}_\star(\mathfrak{t}_n)$ be the vertex of maximal degree

Let $u_{\star}(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree

State of the art	Non-generic trees	Limit theorems	Extensions
Applications			
Let $u_{\star}(\mathfrak{t}_n)$ be the verte height.	x of maximal degree, $\Delta(\mathfrak{t}_{\mathfrak{n}})$) its degree and $ u_{\star}(t_n) $	its

Let $u_{\star}(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_{\star}(t_n)|$ its height.

• The fluctuations of $\Delta(\mathfrak{t}_n)$ around $(1-\mathbf{m})n$ are of order $n^{2\wedge\theta}$.

Limit theorems

Applications

Let $u_{\star}(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_{\star}(t_n)|$ its height.

- The fluctuations of $\Delta(\mathfrak{t}_n)$ around $(1 \mathbf{m})n$ are of order $n^{2 \wedge \theta}$.
- $\blacktriangleright \mbox{ For } i \geqslant 0, \ \mathbb{P}\left[|\mathfrak{u}_{\star}(\mathfrak{t}_n)| = i \right] \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad (1-m) m^i.$

Let $u_{\star}(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_{\star}(t_n)|$ its height.

• The fluctuations of $\Delta(\mathfrak{t}_n)$ around $(1-\mathbf{m})n$ are of order $n^{2\wedge\theta}$.

$$\blacktriangleright \ \text{For} \ i \geqslant 0, \ \mathbb{P}\left[|\mathfrak{u}_{\star}(\mathfrak{t}_n)| = i \right] \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad (1 - \boldsymbol{m}) \boldsymbol{m}^i.$$

Recall the local convergence of \mathfrak{t}_n to

Let $u_\star(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\star(t_n)|$ its height.

- The fluctuations of $\Delta(\mathfrak{t}_n)$ around $(1 \mathbf{m})n$ are of order $n^{2 \wedge \theta}$.
- ▶ For $i \ge 0$, $\mathbb{P}[|u_{\star}(t_n)| = i] \xrightarrow[n \to \infty]{} (1 m)m^i$. This is not an immediate consequence of the local convergence!

Recall the local convergence of \mathfrak{t}_n to

Let $u_\star(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\star(t_n)|$ its height.

- The fluctuations of $\Delta(\mathfrak{t}_n)$ around $(1 \mathbf{m})n$ are of order $n^{2 \wedge \theta}$.
- ▶ For $i \ge 0$, $\mathbb{P}[|u_{\star}(t_n)| = i] \xrightarrow[n \to \infty]{} (1 m)m^i$. This is not an immediate consequence of the local convergence!
- For every sequence $(\lambda_n)_{n \ge 1}$ such that $\lambda_n \to +\infty$:

$$\mathbb{P}\left[\left|\mathcal{H}(\mathfrak{t}_{\mathfrak{n}}) - \frac{\mathsf{ln}(\mathfrak{n})}{\mathsf{ln}(1/\mathbf{m})}\right| \leqslant \lambda_{\mathfrak{n}}\right] \quad \underset{\mathfrak{n} \to \infty}{\longrightarrow} \quad 1.$$

IV. EXTENSIONS

Conjecture We have:

$$\mathbb{E}\left[\mathcal{H}(\mathfrak{t}_n)\right] \quad \mathop{\sim}_{n \to \infty} \quad \frac{\mathsf{ln}(n)}{\mathsf{ln}(1/m)}.$$

State of the art	Non-generic trees		Limit theorems	Extensions
Conjecture We have:	$\mathbb{E}\left[\mathcal{H}(\mathfrak{t}_n)\right]$	$\stackrel{\sim}{\mathfrak{n} ightarrow \infty}$	$\frac{\ln(n)}{\ln(1/m)}.$	

Question

What happens when μ is any non-generic probability distribution?

Conjecture We have:

$$\mathbb{E}\left[\mathcal{H}(\mathbf{t}_{\mathbf{n}})\right] \quad \underset{\mathbf{n}\to\infty}{\sim} \quad \frac{\ln(\mathbf{n})}{\ln(1/\mathbf{m})}.$$

Question

What happens when $\boldsymbol{\mu}$ is any non-generic probability distribution?

Thank you for your attention!
Limit theorems

Extensions

Contour function of t_n

Igor Kortchemski (Université Paris-Sud, Orsay)

Condensation in Galton-Watson trees

Contour function of \mathfrak{t}_n

Theorem (K. 12') Let $(r_n)_{n \ge 1}$ be a sequence of positive real numbers.

Contour function of \mathfrak{t}_n

Theorem (K. 12')

Let $(r_n)_{n \ge 1}$ be a sequence of positive real numbers.

(i) If $r_n/\ln(n) \to \infty$, then $(C_{2nt}(t_n)/r_n, 0 \leqslant t \leqslant 1)$ converges to the function equal to 0 on [0, 1] as $n \to \infty$.

Contour function of \mathfrak{t}_n

Theorem (K. 12')

Let $(r_n)_{n \ge 1}$ be a sequence of positive real numbers.

- (i) If $r_n/\ln(n)\to\infty$, then $(C_{2nt}(\mathfrak{t}_n)/r_n, 0\leqslant t\leqslant 1)$ converges to the function equal to 0 on [0,1] as $n\to\infty.$
- (ii) Otherwise, the sequence $(C_{2nt}(t_n)/r_n, 0 \leqslant t \leqslant 1)$ is not tight in the space $C([0,1], \mathbb{R})$.

