On a prey-predator model

Igor Kortchemski
CNRS \& CMAP, École polytechnique

Bonn probability seminar - July 2015

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

Motivations:

LTP Model of two competing species, or model of first-passage percolation with destruction.

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

Motivations:

LTP Model of two competing species, or model of first-passage percolation with destruction.

喛 Other possible analogies: vacant vertex prey predator

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

Motivations:

嗗 Model of two competing species, or model of first-passage percolation with destruction.

喛 Other possible analogies:

vacant vertex	\Longleftrightarrow	vacant vertex prey predator
\Longleftrightarrow	healthy cell	

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

Motivations :

哏 Model of two competing species, or model of first-passage percolation with destruction.

喛 Other possible analogies:

vacant vertex prey predator	\Longleftrightarrow	normal individual individual trying to spread a rumor (spreader)
	\Longleftrightarrow	individual trying to scotch the rumor (stifler)

What is this about?

On a graph, we are interested in the following prey-predator model (introduced by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate $\lambda>0$, each prey propagates to every vacant neighbour,
- at fixed rate 1 , each predator propagates to every neighbouring prey.

Motivations :

哏 Model of two competing species, or model of first-passage percolation with destruction.

12 Other possible analogies: vacant vertex
prey
predator

Susceptible (S) individual Infected (I) individual
Recovered (R) individual

Here, $\{\mathrm{I}, \mathrm{S}\} \xrightarrow{\lambda}\{\mathrm{I}, \mathrm{I}\}, \quad\{\mathrm{R}, \mathrm{I}\} \xrightarrow{1}\{\mathrm{R}, \mathrm{R}\}$.

Other type of models studied in the literature:

Here, $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}$.

Other type of models studied in the literature:

- SIR model (Kermack—McKendrick '27), where $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad I \xrightarrow{1} R$

Here, $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}$.

Other type of models studied in the literature:

- SIR model (Kermack—McKendrick '27), where $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad I \xrightarrow{1} R$
- Daley-Kendall ('65) rumour propagation model, where $\{I, S\} \xrightarrow{1}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}, \quad\{I, I\} \xrightarrow{1}\{R, R\}$.

Here, $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}$.

Other type of models studied in the literature:

- SIR model (Kermack—McKendrick '27), where $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad I \xrightarrow{1} R$
- Daley-Kendall ('65) rumour propagation model, where $\{I, S\} \xrightarrow{1}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}, \quad\{I, I\} \xrightarrow{1}\{R, R\}$.
- Maki-Thompson ('73) directed rumour propagation model, where $(\mathrm{I}, \mathrm{S}) \xrightarrow{1}(\mathrm{I}, \mathrm{I}), \quad(\mathrm{R}, \mathrm{I}) \xrightarrow{1}(\mathrm{R}, \mathrm{R}), \quad(\mathrm{I}, \mathrm{I}) \xrightarrow{1}(\mathrm{I}, \mathrm{R})$.

Here, $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}$.

Other type of models studied in the literature:

- SIR model (Kermack—McKendrick '27), where $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad I \xrightarrow{1} R$
- Daley-Kendall ('65) rumour propagation model, where $\{I, S\} \xrightarrow{1}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}, \quad\{I, I\} \xrightarrow{1}\{R, R\}$.
- Maki-Thompson ('73) directed rumour propagation model, where $(\mathrm{I}, \mathrm{S}) \xrightarrow{1}(\mathrm{I}, \mathrm{I}), \quad(\mathrm{R}, \mathrm{I}) \xrightarrow{1}(\mathrm{R}, \mathrm{R}), \quad(\mathrm{I}, \mathrm{I}) \xrightarrow{1}(\mathrm{I}, \mathrm{R})$.
- Williams Bjerknes ('71) tumor growth model (or biased voter model), where $(\mathrm{I}, \mathrm{S}) \xrightarrow{\boldsymbol{\lambda}}(\mathrm{I}, \mathrm{I}), \quad(\mathrm{S}, \mathrm{I}) \xrightarrow{1}(\mathrm{~S}, \mathrm{~S})$.

Here, $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}$.

Other type of models studied in the literature:

- SIR model (Kermack—McKendrick '27), where $\{\mathrm{I}, \mathrm{S}\} \xrightarrow{\lambda}\{\mathrm{I}, \mathrm{I}\}, \quad \mathrm{I} \xrightarrow{1} \mathrm{R}$
- Daley-Kendall ('65) rumour propagation model, where $\{I, S\} \xrightarrow{1}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}, \quad\{I, I\} \xrightarrow{1}\{R, R\}$.
- Maki-Thompson ('73) directed rumour propagation model, where $(\mathrm{I}, \mathrm{S}) \xrightarrow{1}(\mathrm{I}, \mathrm{I}), \quad(\mathrm{R}, \mathrm{I}) \xrightarrow{1}(\mathrm{R}, \mathrm{R}), \quad(\mathrm{I}, \mathrm{I}) \xrightarrow{1}(\mathrm{I}, \mathrm{R})$.
- Williams Bjerknes ('71) tumor growth model (or biased voter model), where $(\mathrm{I}, \mathrm{S}) \xrightarrow{\boldsymbol{\lambda}}(\mathrm{I}, \mathrm{I}), \quad(\mathrm{S}, \mathrm{I}) \xrightarrow{1}(\mathrm{~S}, \mathrm{~S})$.
- Kordzakhia ('05), where $\{I, S\} \xrightarrow{\lambda}\{I, I\}, \quad\{R, I\} \xrightarrow{1}\{R, R\}, \quad\{R, S\} \xrightarrow{1}\{R, R\}$.

IIME Business \& Money

Home	NewsFeed	U.s.	Politics	World	Buslnese	Tech	Health	Science	En
Economy	Wall Street	Tech \mid Small Business	Personal Flnance	Real Estate	Business of Creativity	Management \mid 1			

FACEBOOK

Facebook Is About to Lose 80\% of Its Users, Study Says

Social media is like a disease that spreads, and then dies
By Sam Frizell @Sam_Frizell|Jan. 21, 2014 | 266 Comments
f Share Tweet 4,155 In Share 741 Pintt Read Later

Facebook's growth will eventually come to a quick end, much like an infectious disease that spreads rapidly and suddenly dies, say Princeton researchers who are using diseases to model the life cycles of social media.

Facebook To Lose 80\% Of Users By 2017

InformationWeek - 23 janv. 2014
Online social networks spread like disease epidemics, and Facebook will lose 80% of its victims - I mean, users - by 2017, according to a study from Princeton University researchers. The study, "Epidemiological modeling of online social network dynamics" ...

Facebook could lose 80 percent of users by 2017, report claims
Fox News - 23 janv. 2014
"Facebook has already reached the peak of its popularity and has entered a decline phase," they concluded. "The future suggests that Facebook will undergo a rapid decline in the coming years, losing 80 percent of its peak user base between 2015 and 2017 ...

Facebook will lose 80 percent of its users in next 4 years, Princeton study says
The Star-Ledger - NJ.com-23 janv. 2014
Most of the 874 million people across the world who sign on to Facebook will stop doing so in the next four years, according to a Princeton University study. The study predicts the social media site will lose 80 percent of the users it had at its 2010 peak ...

Facebook Losing Users; 30 Years of Mac Ads; Snapchat 'Ghost' Verification
PC Magazine - 23 janv. 2014
Topping tech headlines Wednesday, a new study predicts a rapid decline for Facebook, which researchers said will lose 80 percent of its peak user base between 2015 and 2017. Using epidemiological models to track the spread of infectious diseases and ...

Facebook Might Lose 80\% of Users and be the Next 'MySpace,' Study Says
Morning Ledger - 23 janv. 2014
Facebook Might Lose 80 percent and be the Next MySpace A new study conducted and released by Princeton University has described social networks as similar to infectious diseases. It pointed out that such sites gain millions of users within just a short span ...

Facebook Will Lose 80 Percent of Users by 2017

Guardian Liberty Voice - 23 janv. 2014
Facebook According to researchers at Princeton University, Facebook will lose 80 percent of its users by 2017. The researchers have also stated that that decline is already happening now and could reach the total any time within 2015 and the 2017 deadline.

Facebook to 'lose 80\% of users by 2017'
Irish Times - 23 janv. 2014
Facebook has spread like an infectious disease but we are slowly becoming immune to its attractions, and the platform will be largely abandoned by 2017, say researchers at Princeton University. The forecast of Facebook's impending doom was made by ...

Facebook will LOSE 80\% of its users by 2017 - epidemiological study
Register - 23 janv. 2014
According to the students' paper, Facebook is "just beginning to show the onset of an abandonment phase", after reaching its popularity peak in 2012, which will lead to it losing 80 per cent of its peak user base between 2015 and 2017. The paper, which has ...

Facebook Predicts Princeton Won't Exist In 2021
InformationWeek - 24 janv. 2014
Princeton's report, from the university's Department of Mechanical and Aerospace Engineering, used Google search data to predict engagement trends, ultimately concluding that Facebook was set to lose a whopping 80% of users by 2017. Such a ...

Could Facebook Really Lose 80\% of its Users?
DailyFinance-23 janv. 2014
Facebook has so far been the only super-hot social media network to escape the fate of former top sites like MySpace, Friendster, or even GeoCities/Tripod back in the day. And with its now-successful stock offering and seeming ubiquity among nearly every ...

Facebook Will Lose 80 Percent Of Users In Next Three Years, Researchers Say
Opposing Views - 23 janv. 2014
People are slowly building up an immunity to Facebook and researchers predict it will lose 80 percent of its peak user base by 2017. Researchers at Princeton University compared the growth of the social media site to the spread of disease. They believe ...
I. Test your intuition!

I. Test your intuition!

II. Preys \& predators on a complete graph

I. Test your intuition!

II. Preys \& predators on a complete graph
 III. Preys \& predators on an infinite tree

I. Test your intuition!

II. Preys \& predators on a complete graph
III. Preys \& predators on an infinite tree

Seen on Gil Kalai's blog

You have a box with \mathfrak{n} red balls and \mathfrak{n} blue balls.

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random.

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball.

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. How many balls will be left (as a function of n)?

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. How many balls will be left (as a function of n)?

1) Roughly $\in \mathfrak{n}$ for some $\epsilon>0$.
2) Roughly \sqrt{n}.
3) Roughly $\log n$.
4) Roughly a constant.
5) Some other behavior.

Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. How many balls will be left (as a function of n)?

1) Roughly $\in \mathfrak{n}$ for some $\epsilon>0$.
2) Roughly \sqrt{n}.
3) Roughly $\log n$.
4) Roughly a constant.
5) Some other behavior.

Other formulation (O.K. Corral problem, Williams \& Mcllroy, 1998) . There are two groups of n gunmen that shoot at each other. Once a gunman is hit he stops shooting, and leaves the place happily and peacefully. How many gunmen will be left after all gunmen in one team have left?

Figure: Excerpt of the film "Gunfight at the O.K. Corral" (1957)

Vu sur le blog de Gil Kalai

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep as before until left only with balls of the same color. How many balls will be left (as a function of n)?

1) Roughly $\in \mathfrak{n}$ for some $\epsilon>0$.
2) Roughly \sqrt{n}.
3) Roughly $\log n$.
4) Roughly a constant.
5) Some other behavior.

Other formulation (O.K. Corral problem, Williams \& Mcllroy, 1998) . There are two groups of n gunmen that shoot at each other. Once a gunman is hit he stops shooting, and leaves the place happily and peacefully. How many gunmen will be left after all gunmen in one team have left?

Vu sur le blog de Gil Kalai

You have a box with n red balls and n blue balls. You take out each time a ball at random. If the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep as before until left only with balls of the same color. How many balls will be left (as a function of n)?

1) Roughly $\in \mathfrak{n}$ for some $\epsilon>0$.
2) Roughly \sqrt{n}.
3) Roughly $\log n$.
4) Roughly a constant.
5) Some other behavior.

Other formulation (O.K. Corral problem two groups of n gunmen that shoot at , stops shooting, and leaves the place hap will be left after all gunmen in one tear
How many balls will be left when you
take out a ball of the opposite color

A constant time n
square root n

Some other behavior $\quad 13.85 \%$ (18 votes)
 ; hit he iy gunmen

Tingman er Volkov's solution (1/3)

If urn A has m balls and urn B has n balls, the probability that a ball is removed from A is $\frac{n}{m+n}$.

Tingman er Volkov's solution (1/3)

If urn A has m balls and urn B has n balls, the probability that a ball is removed from A is $\frac{n}{m+n}$. But

$$
\frac{n}{m+n}=\frac{1 / m}{1 / m+1 / n}=\mathbb{P}(\operatorname{Exp}(1 / m)<\operatorname{Exp}(1 / n)) .
$$

Kingman ej Volkov's solution (2/3)

Let $\left(X_{i}, Y_{i}\right)_{i \geqslant 1}$ be independent random variables such that X_{i} are Y_{i} exponential random variables with mean i.

Kingman ej Volkov's solution (2/3)

Let $\left(X_{i}, Y_{i}\right)_{i \geqslant 1}$ be independent random variables such that X_{i} are Y_{i} exponential random variables with mean \mathfrak{i}.

Consider a piece of wood represented by the interval $[-n, n]$ and made of $2 n$ pieces such that

$$
\operatorname{length}([\mathfrak{i}-1, \mathfrak{i}])=X_{i}, \quad \operatorname{length}([-\mathfrak{i},-\mathfrak{i}+1])=Y_{i} \quad(1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}) .
$$

Kingman év Volkov's solution (2/3)

Let $\left(X_{i}, Y_{i}\right)_{i \geqslant 1}$ be independent random variables such that X_{i} are Y_{i} exponential random variables with mean \mathfrak{i}.

Consider a piece of wood represented by the interval $[-n, n]$ and made of $2 n$ pieces such that

$$
\operatorname{length}([i-1, i])=X_{i}, \quad \operatorname{length}([-\mathfrak{i},-\mathfrak{i}+1])=Y_{i} \quad(1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}) .
$$

Light both ends, and stop the fire when the origin is reached.

Ringman ev Volkov's solution (2/3)

Let $\left(X_{i}, Y_{i}\right)_{i \geqslant 1}$ be independent random variables such that X_{i} are Y_{i} exponential random variables with mean i.

Consider a piece of wood represented by the interval $[-n, n]$ and made of $2 n$ pieces such that

$$
\operatorname{length}([i-1, i])=X_{i}, \quad \operatorname{length}([-\mathfrak{i},-\mathfrak{i}+1])=Y_{i} \quad(1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}) .
$$

Light both ends, and stop the fire when the origin is reached. Let $R(n)$ be the number of remaining pieces.

Kingman év Volkov's solution (2/3)

Let $\left(X_{i}, Y_{i}\right)_{i \geqslant 1}$ be independent random variables such that X_{i} are Y_{i} exponential random variables with mean \mathfrak{i}.

Consider a piece of wood represented by the interval $[-n, n]$ and made of $2 n$ pieces such that

$$
\operatorname{length}([i-1, i])=X_{i}, \quad \operatorname{length}([-\mathfrak{i},-\mathfrak{i}+1])=Y_{i} \quad(1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}) .
$$

Light both ends, and stop the fire when the origin is reached. Let $R(n)$ be the number of remaining pieces. Then $R(n)$ has the same law as the number of remaining balls in the urn/gunman problem.

Kingman ej Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
L(n) \simeq n^{3 / 2}
$$

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
\mathrm{L}(\mathrm{n}) \simeq \mathrm{n}^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$.

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
\mathrm{L}(\mathrm{n}) \simeq \mathrm{n}^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$. We have $\mathbb{E}\left[S_{k}\right] \simeq k^{2}$

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
\mathrm{L}(\mathrm{n}) \simeq \mathrm{n}^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$. We have $\mathbb{E}\left[S_{k}\right] \simeq k^{2}$, so $S_{k} \simeq k^{2}$.

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
L(n) \simeq n^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$. We have $\mathbb{E}\left[S_{k}\right] \simeq k^{2}$, so $S_{k} \simeq k^{2}$. But, if the left part burns first, $S_{R(n)} \simeq L(n)$.

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
\mathrm{L}(\mathrm{n}) \simeq \mathrm{n}^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$. We have $\mathbb{E}\left[S_{k}\right] \simeq k^{2}$, so $S_{k} \simeq k^{2}$. But, if the left part burns first, $S_{R(n)} \simeq L(n)$. Hence

$$
R(n)^{2} \simeq n^{3 / 2}
$$

Kingman év Volkov's solution (3/3)

In order to estimate the number $R(n)$ of remaining pieces, first estimate the remaining length $L(n)$:

$$
L(n)=\left|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right| .
$$

Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right)=\sum_{j=1}^{n} 2 j^{2} \simeq n^{3} .
$$

Hence

$$
\mathrm{L}(\mathrm{n}) \simeq \mathrm{n}^{3 / 2}
$$

Set $S_{k}=X_{1}+\cdots+X_{k}$. We have $\mathbb{E}\left[S_{k}\right] \simeq k^{2}$, so $S_{k} \simeq k^{2}$. But, if the left part burns first, $S_{R(n)} \simeq L(n)$. Hence

$$
R(n)^{2} \simeq n^{3 / 2}
$$

so that $R(n) \simeq n^{3 / 4}$.

This "decoupling" idea is called the Athreya-Karlin embedding, and is useful to study more general Pólya urn schemes.
I. Test your intuition!

II. Prey \& predators on a complete graph

\qquad
III. Preys \& predators on an infinite tree

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

Set
$E_{e x t}^{N}=\{$ at a certain moment, there are no more S vertices $\}$.

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

Set

$$
\mathrm{E}_{e \times t}^{N}=\{\text { at a certain moment, there are no more } S \text { vertices }\} .
$$

Question. How does $\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right)$ behave as $\mathrm{N} \rightarrow \infty$?

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

Set

$$
E_{e x t}^{N}=\{\text { at a certain moment, there are no more } S \text { vertices }\} .
$$

Question. How does $\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right)$ behave as $\mathrm{N} \rightarrow \infty$?

Theorem (K. '13).

We have

$$
\mathbb{P}\left(E_{e x t}^{N}\right) \underset{N \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{lll}
0 & \text { if } & \lambda \in \\
& \text { if } & \lambda= \\
1 & \text { if } & \lambda>.
\end{array}\right.
$$

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

Set

$$
E_{e x t}^{N}=\{\text { at a certain moment, there are no more } S \text { vertices }\} .
$$

Question. How does $\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right)$ behave as $\mathrm{N} \rightarrow \infty$?

Theorem (K. '13).

We have

$$
\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right) \underset{\mathrm{N} \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{lll}
0 & \text { if } & \lambda \in(0,1) \\
& \text { if } & \lambda=1 \\
1 & \text { if } & \lambda>1 .
\end{array}\right.
$$

We consider $\mathrm{K}_{\mathrm{N}+2}$, a complete graph on $\mathrm{N}+2$ vertices, and start the dynamics with one I vertex, one R vertex and $\mathrm{N} S$ vertices.

Set

$$
E_{e x t}^{N}=\{\text { at a certain moment, there are no more } S \text { vertices }\} .
$$

Question. How does $\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right)$ behave as $\mathrm{N} \rightarrow \infty$?

Theorem (K. '13).

We have

$$
\mathbb{P}\left(\mathrm{E}_{e \times t}^{N}\right) \underset{\mathrm{N} \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{lll}
0 & \text { if } & \lambda \in(0,1) \\
\frac{1}{2} & \text { if } & \lambda=1 \\
1 & \text { if } & \lambda>1 .
\end{array}\right.
$$

Decoupling using Yule processes

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.
Total rate of $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\}$

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.
Total rate of $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\} \quad: \quad \lambda \cdot S_{t} \cdot \mathrm{I}_{\mathrm{t}}$.

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.
Total rate of $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\} \quad: \quad \lambda \cdot S_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{t}}$. Total rate $\{R, I\} \rightarrow\{R, R\} \quad:$

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.
Total rate of $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\} \quad: \quad \lambda \cdot S_{t} \cdot \mathrm{I}_{\mathrm{t}}$.
Total rate $\{R, I\} \rightarrow\{R, R\} \quad: \quad I_{t} \cdot R_{t}$.

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.

$$
\begin{array}{lll}
\text { Total rate of }\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\}
\end{array} \quad: \quad \lambda \cdot S_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{t}} .
$$

Hence, at time t, the probability that $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\}$ happens before $\{R, I\} \rightarrow\{R, R\}$ is

$$
\frac{\lambda S_{\mathrm{t}} \mathrm{I}_{\mathrm{t}}}{\lambda S_{\mathrm{t}} \mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}} R_{\mathrm{t}}}=\frac{\lambda S_{\mathrm{t}}}{\lambda S_{\mathrm{t}}+R_{\mathrm{t}}} .
$$

Transition rates

Let S_{t}, I_{t}, R_{t} be the population sizes at time t.

$$
\begin{array}{lll}
\text { Total rate of }\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\}
\end{array} \quad: \quad \lambda \cdot S_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{t}} .
$$

Hence, at time t, the probability that $\{\mathrm{S}, \mathrm{I}\} \rightarrow\{\mathrm{I}, \mathrm{I}\}$ happens before $\{R, I\} \rightarrow\{R, R\}$ is

$$
\frac{\lambda S_{\mathrm{t}} \mathrm{I}_{\mathrm{t}}}{\lambda S_{\mathrm{t}} \mathrm{I}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}} R_{\mathrm{t}}}=\frac{\lambda S_{\mathrm{t}}}{\lambda S_{\mathrm{t}}+R_{\mathrm{t}}} .
$$

\leadsto We are going to be able to decouple the evolutions of S and R.

Coupling and decoupling via two Yule processes

Yule processes

Definition (Yule process)

In a Yule process $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ of parameter λ, starting with one individual, each individual lives a random time distributed according to a $\operatorname{Exp}(\lambda)$ random variable, and at its death gives birth to two individuals

Yule processes

Definition (Yule process)

In a Yule process $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ of parameter λ, starting with one individual, each individual lives a random time distributed according to a $\operatorname{Exp}(\lambda)$ random variable, and at its death gives birth to two individuals, and $\mathrm{Y}(\mathrm{t})$ denotes the total number of individuals at time t.

Yule processes

Definition (Yule process)

In a Yule process $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ of parameter λ, starting with one individual, each individual lives a random time distributed according to a $\operatorname{Exp}(\lambda)$ random variable, and at its death gives birth to two individuals, and $\mathrm{Y}(\mathrm{t})$ denotes the total number of individuals at time t.
\diamond In particular, the intervals between each discontinuity are distributed according to independent $\operatorname{Exp}(\lambda), \operatorname{Exp}(2 \lambda), \operatorname{Exp}(3 \lambda), \ldots$ random variables.

Coupling with two Dule processes

Let $(\mathcal{R}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter 1 , and $\left(\mathcal{S}_{\mathrm{N}}(\mathrm{t})\right)_{\mathrm{t} \geqslant 0}$ a Yule process of parameter λ, time-reversed at its N -th jump.

Coupling with two Dule processes

Let $(\mathcal{R}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter 1 , and $\left(\mathcal{S}_{\mathrm{N}}(\mathrm{t})\right)_{\mathrm{t} \geqslant 0}$ a Yule process of parameter λ, time-reversed at its N -th jump.

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries.

Coupling with two Dule processes

Let $(\mathcal{R}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter 1 , and $\left(\mathcal{S}_{\mathrm{N}}(\mathrm{t})\right)_{\mathrm{t} \geqslant 0}$ a Yule process of parameter λ, time-reversed at its N -th jump.

The prey-predator dynamics can be described by using \mathcal{R} and \mathcal{S}_{N}, which describe in what order the infections and recoveries happen!

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries.

Coupling with two Dule processes

Let $(\mathcal{R}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter 1 , and $\left(\mathcal{S}_{\mathrm{N}}(\mathrm{t})\right)_{\mathrm{t} \geqslant 0}$ a Yule process of parameter λ, time-reversed at its N -th jump.

The prey-predator dynamics can be described by using \mathcal{R} and \mathcal{S}_{N}, which describe in what order the infections and recoveries happen!

Figure: Ex. $N=7$, where red crosses represent infections and purple ones recoveries. \mathcal{T} is the time when a type of vertices (S or I) disappears.

Coupling with two Dule processes

Let $(\mathcal{R}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter 1 , and $\left(\mathcal{S}_{\mathrm{N}}(\mathrm{t})\right)_{\mathrm{t} \geqslant 0}$ a Yule process of parameter λ, time-reversed at its N -th jump.

The prey-predator dynamics can be described by using \mathcal{R} and \mathcal{S}_{N}, which describe in what order the infections and recoveries happen!

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries. \mathcal{T} is the time when a type of vertices (S or I) disappears.
\mathcal{T} is the smallest between:
衡 the first moment when there are more discontinuities of \mathcal{R} than discontinuities of S_{N} (I disappears first, ${ }^{c} E_{e x t}^{N}$)
the N-th discontinuity of S_{N} (S disappears first, $E_{\text {ext }}^{N}$)

IDENTIFICATION OF THE CRITICAL PARAMETER $\lambda=1$ Cos

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Figure: Example for $\mathrm{N}=7$, where the crosses represent discontinuities.

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Proposition

$S_{N}(N)$ has the same distribution as
$R(N)$ has the same distribution

Figure: Example for $\mathrm{N}=7$, where the crosses represent discontinuities.

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Proposition

$S_{N}(N)$ has the same distribution as $\operatorname{Exp}(\lambda N)+\operatorname{Exp}(\lambda(N-1))+\cdots+\operatorname{Exp}(\lambda)$. $R(N)$ has the same distribution

Figure: Example for $\mathrm{N}=7$, where the crosses represent discontinuities.

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Proposition

$S_{N}(N)$ has the same distribution as $\operatorname{Exp}(\lambda N)+\operatorname{Exp}(\lambda(N-1))+\cdots+\operatorname{Exp}(\lambda)$. $R(N)$ has the same distribution $\operatorname{Exp}(1)+\operatorname{Exp}(2)+\cdots+\operatorname{Exp}(N)$.

Figure: Example for $\mathrm{N}=7$, where the crosses represent discontinuities.

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Proposition

$S_{N}(N)$ has the same distribution as $\operatorname{Exp}(\lambda N)+\operatorname{Exp}(\lambda(N-1))+\cdots+\operatorname{Exp}(\lambda)$. $R(N)$ has the same distribution $\operatorname{Exp}(1)+\operatorname{Exp}(2)+\cdots+\operatorname{Exp}(N)$.

A typical situation for $\lambda>1$:

A typical situation for $\lambda<1$:

Notation.

Denote by $S_{N}(1), S_{N}(2), \ldots, S_{N}(N)$ the discontinuities S_{N} and by $R(1), \ldots, R(N)$ the discontinuities of $\mathcal{R}(t)$.

Proposition

$S_{N}(N)$ has the same distribution as $\operatorname{Exp}(\lambda N)+\operatorname{Exp}(\lambda(N-1))+\cdots+\operatorname{Exp}(\lambda)$. $R(N)$ has the same distribution $\operatorname{Exp}(1)+\operatorname{Exp}(2)+\cdots+\operatorname{Exp}(N)$.

A typical situation for $\lambda>1$:

Hence

$$
\mathbb{P}\left(\mathrm{E}_{e x t}^{N}\right) \underset{\mathrm{N} \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{ccc}
0 & \text { if } & \lambda \in(0,1) \\
\frac{1}{2} & \text { if } & \lambda=1 \\
1 & \text { if } & \lambda>1 .
\end{array}\right.
$$

Study of the final state of the system CMOM

Definition

Denote by $S^{(N)}, I^{(N)}, R^{(N)}$ the number of S, I, R vertices at the first time \mathcal{T} when a type (S or I) of vertices disappears.

Definition

Denote by $S^{(N)}, I^{(N)}, R^{(N)}$ the number of S, I, R vertices at the first time \mathcal{T} when a type (S or I) of vertices disappears.

$$
\mathrm{S}^{(\mathrm{N})}=2, \mathrm{I}^{(\mathrm{N})}=0, \mathrm{R}^{(\mathrm{N})}=7
$$

$S^{(N)}=0, I^{(N)}=3, R^{(N)}=6$

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries.

Definition

Denote by $S^{(N)}, I^{(N)}, R^{(N)}$ the number of S, I, R vertices at the first time \mathcal{T} when a type (S or I) of vertices disappears.

$$
\mathrm{S}^{(\mathrm{N})}=2, \mathrm{I}^{(\mathrm{N})}=0, \mathrm{R}^{(\mathrm{N})}=7
$$

$S^{(N)}=0, I^{(N)}=3, R^{(N)}=6$

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries.

Question. What can be said of the asymptotic behavior of $S^{(N)}, I^{(N)}, R^{(N)}$ as $\mathrm{N} \rightarrow \infty$?

Definition

Denote by $S^{(N)}, I^{(N)}, R^{(N)}$ the number of S, I, R vertices at the first time \mathcal{T} when a type (S or I) of vertices disappears.

$$
S^{(N)}=2, I^{(N)}=0, R^{(N)}=7
$$

$S^{(N)}=0, I^{(N)}=3, R^{(N)}=6$

Figure: Ex. $\mathrm{N}=7$, where red crosses represent infections and purple ones recoveries.

Question. What can be said of the asymptotic behavior of $S^{(N)}, I^{(N)}, R^{(N)}$ as $N \rightarrow \infty$?

This should be related to the asymptotic behavior of Yule processes.

gule processes and terminal value

Proposition

Let $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter λ.

1) We have the convergence

$$
e^{-\lambda t} Y_{t} \underset{t \rightarrow \infty}{\xrightarrow{\text { a.s. }}} \mathcal{E},
$$

where \mathcal{E} is a $\operatorname{Exp}(1)$ random variable, called terminal value of Y .

Sule processes and terminal value

Proposition

Let $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter λ.

1) We have the convergence

$$
e^{-\lambda t} Y_{t} \underset{t \rightarrow \infty}{\xrightarrow{\text { a.s. }}} \mathcal{E},
$$

where \mathcal{E} is a $\operatorname{Exp}(1)$ random variable, called terminal value of Y .
2) For $t \geqslant 0$ and $k \geqslant 1$, we have $\mathbb{P}\left(Y_{t}=k\right)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{k-1}$.

Yule processes and terminal value

Proposition

Let $(\mathrm{Y}(\mathrm{t}))_{\mathrm{t} \geqslant 0}$ be a Yule process of parameter λ.

1) We have the convergence

$$
e^{-\lambda t} Y_{t} \underset{t \rightarrow \infty}{\xrightarrow{\text { a.s. }}} \mathcal{E},
$$

where \mathcal{E} is a $\operatorname{Exp}(1)$ random variable, called terminal value of Y .
2) For $t \geqslant 0$ and $k \geqslant 1$, we have $\mathbb{P}\left(Y_{t}=k\right)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{k-1}$.

Corollary
if τ_{N} denotes the N-th jump time of Y, then

$$
\lambda \tau_{N}-\ln (N) \underset{N \rightarrow \infty}{\text { a.s. }}-\ln (\varepsilon)
$$

Number of susceptible individuals remaining

Theorem (K. '13).
(i) $\operatorname{Fix} \lambda \in(0,1)$.
(ii) $\operatorname{Fix} \lambda=1$.
(iii) $\operatorname{Fix} \lambda>1$.

Number of susceptible individuals remaining

Theorem (K. '13).
(i) $\operatorname{Fix} \lambda \in(0,1)$.
(ii) Fix $\lambda=1$.
(iii) Fix $\lambda>1$. Then $S^{(N)}$ converges in probability towards

Number of susceptible individuals remaining

Theorem (K. '13).
(i) $\operatorname{Fix} \lambda \in(0,1)$.
(ii) $\operatorname{Fix} \lambda=1$.
(iii) Fix $\lambda>1$. Then $S^{(N)}$ converges in probability towards 0 as $N \rightarrow \infty$.

Number of susceptible individuals remaining

Theorem (K. '13).

(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{S^{(N)}}{N^{1-\lambda}} \xrightarrow[N \rightarrow \infty]{(\mathrm{d})} \operatorname{Exp}(1)^{\lambda} .
$$

(ii) $\operatorname{Fix} \lambda=1$.
(iii) Fix $\lambda>1$. Then $S^{(N)}$ converges in probability towards 0 as $\mathrm{N} \rightarrow \infty$.

Number of susceptible individuals remaining

Theorem (K. '13).

(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{S^{(N)}}{N^{1-\lambda}} \xrightarrow[N_{\rightarrow \infty}]{\xrightarrow{(d)}} \operatorname{Exp}(1)^{\lambda} .
$$

(ii) Fix $\lambda=1$. Then for every $i \geqslant 0$,

$$
\mathbb{P}\left(S^{(N)}=i\right) \underset{N \rightarrow \infty}{\longrightarrow} 1 / 2^{i+1} .
$$

(iii) Fix $\lambda>1$. Then $S^{(N)}$ converges in probability towards 0 as $N \rightarrow \infty$.

Idea of the proof: case $\lambda=1$

On the event ${ }^{c} E_{e x t}^{N}$,

Idea of the proof: case $\lambda=1$

On the event ${ }^{c} E_{e x t}^{N}$,

Let $\bar{\varepsilon}$ be the terminal value of the Yule process associated with \mathcal{S}_{N}, and ε is the terminal value of \mathcal{R}.

Idea of the proof: case $\lambda=1$

On the event ${ }^{c} E_{e x t}^{N}$,

Let $\bar{\varepsilon}$ be the terminal value of the Yule process associated with \mathcal{S}_{N}, and ε is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \ln (N)-\ln (\bar{\varepsilon}), R(N) \simeq \ln (N)-\ln (\varepsilon)$

Idea of the proof: case $\lambda=1$

On the event ${ }^{c} E_{e x t}^{N}$,

Let $\bar{\varepsilon}$ be the terminal value of the Yule process associated with \mathcal{S}_{N}, and ε is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \ln (N)-\ln (\bar{\varepsilon}), R(N) \simeq \ln (N)-\ln (\varepsilon)$, with $\varepsilon / \bar{\varepsilon}>1$.

Idea of the proof: case $\lambda=1$

On the event ${ }^{c} E_{e x t}^{N}$,

Let $\bar{\varepsilon}$ be the terminal value of the Yule process associated with \mathcal{S}_{N}, and ε is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \ln (N)-\ln (\bar{\varepsilon}), R(N) \simeq \ln (N)-\ln (\mathcal{E})$, with $\varepsilon / \bar{\varepsilon}>1$.
Thus, $S^{(N)} \simeq$ value of a Yule process of parameter λ at time $\ln (\mathcal{E} / \overline{\mathcal{E}})$, conditionnally on $\mathcal{E} / \bar{\varepsilon}>1$.

Idea of proof: case $\lambda \in(0,1)$

Idea of proof: case $\lambda \in(0,1)$

Recall that $\overline{\mathcal{E}}$ is the terminal value of the Yule process associated with S_{N}, and \mathcal{E} is the terminal value of \mathcal{R}.

Idea of proof: case $\lambda \in(0,1)$

Recall that $\bar{\varepsilon}$ is the terminal value of the Yule process associated with S_{N}, and \mathcal{E} is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \frac{1}{\lambda}(\ln (N)-\ln (\bar{\varepsilon})), R(N) \simeq \ln (N)-\ln (\mathcal{E})$.

Idea of proof: case $\lambda \in(0,1)$

Recall that $\bar{\varepsilon}$ is the terminal value of the Yule process associated with S_{N}, and \mathcal{E} is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \frac{1}{\lambda}(\ln (N)-\ln (\bar{\varepsilon})), R(N) \simeq \ln (N)-\ln (\mathcal{E})$.
Thus, $S^{(N)} \simeq$ value of a Yule process of parameter λ at time $(1 / \lambda-1) \ln (N)$.

Idea of proof: case $\lambda \in(0,1)$

Recall that $\bar{\varepsilon}$ is the terminal value of the Yule process associated with S_{N}, and \mathcal{E} is the terminal value of \mathcal{R}.

We have $S_{N}(N) \simeq \frac{1}{\lambda}(\ln (N)-\ln (\bar{\varepsilon})), R(N) \simeq \ln (N)-\ln (\mathcal{E})$.
Thus, $S^{(N)} \simeq$ value of a Yule process of parameter λ at time $(1 / \lambda-1) \ln (N)$. Which is of order $e^{\lambda(1 / \lambda-1) \ln (N)}=N^{1-\lambda}$.

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix $\lambda \in(0,1)$.
(ii) Fix $\lambda=1$.
(iii) Fix $\lambda>1$. Then

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{N-R^{(N)}}{N^{1-\lambda}} \underset{N \rightarrow \infty}{(d)} \quad \operatorname{Exp}(1)^{\lambda} .
$$

(ii) Fix $\lambda=1$.
(iii) Fix $\lambda>1$. Then

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{N-R^{(N)}}{N^{1-\lambda}} \underset{N \rightarrow \infty}{(d)} \quad \operatorname{Exp}(1)^{\lambda} .
$$

(ii) $\operatorname{Fix} \lambda=1$. Then

$$
\frac{R^{(N)}}{N} \underset{N \rightarrow \infty}{(\mathrm{~d})} \quad \frac{1}{2} \delta_{1}+
$$

(iii) Fix $\lambda>1$. Then

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{N-R^{(N)}}{N^{1-\lambda}} \underset{N \rightarrow \infty}{(d)} \quad \operatorname{Exp}(1)^{\lambda} .
$$

(ii) $\operatorname{Fix} \lambda=1$. Then

$$
\frac{\mathrm{R}^{(\mathrm{N})}}{\mathrm{N}} \underset{\mathrm{~N} \rightarrow \infty}{\stackrel{(\mathrm{~d})}{\rightarrow}} \quad \frac{1}{2} \delta_{1}+\frac{1}{(1+x)^{2}} \mathbb{1}_{[0,1]}(x) \mathrm{d} x,
$$

(iii) Fix $\lambda>1$. Then

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix $\lambda \in(0,1)$. Then

$$
\frac{N-R^{(N)}}{N^{1-\lambda}} \underset{N \rightarrow \infty}{(d)} \operatorname{Exp}(1)^{\lambda}
$$

(ii) Fix $\lambda=1$. Then

$$
\frac{R^{(N)}}{N} \underset{N \rightarrow \infty}{(d)} \quad \frac{1}{2} \delta_{1}+\frac{1}{(1+x)^{2}} \mathbb{1}_{[0,1]}(x) d x,
$$

(iii) Fix $\lambda>1$. Then

$$
\frac{R^{(N)}}{N^{1 / \lambda}} \underset{N \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \operatorname{Exp}\left(\operatorname{Exp}(1)^{1 / \lambda}\right) .
$$

Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.

Calculations involving Siule processes

Key idea: Kendall's representaton of Yule processes.
Theorem (Kendall '66)
Let $\left(\mathcal{P}_{\mathfrak{t}}\right)_{t \geqslant 0}$ be a Poisson process of parameter 1 starting from 0 , and \mathcal{E} be an exponential random variable of parameter 1 . Then

$$
\mathrm{t} \mapsto \mathcal{P}_{\mathcal{E}\left(e^{\lambda t}-1\right)}+1
$$

is a Yule process of parameter λ with terminal value \mathcal{E}.

Calculations involving Sule processes

Key idea: Kendall's representaton of Yule processes.
Theorem (Kendall '66)
Let $\left(\mathcal{P}_{\mathrm{t}}\right)_{\mathrm{t} \geqslant 0}$ be a Poisson process of parameter 1 starting from 0 , and \mathcal{E} be an exponential random variable of parameter 1 . Then

$$
\mathrm{t} \mapsto \mathcal{P}_{\mathcal{E}\left(e^{\lambda t}-1\right)}+1
$$

is a Yule process of parameter λ with terminal value \mathcal{E}.

Figure: Illustration of the coupling of Yule processes with Poisson processes

Calculations involving Siule processes

Key idea: Kendall's representaton of Yule processes.
Theorem (Kendall '66)
Let $\left(\mathcal{P}_{\mathfrak{t}}\right)_{t \geqslant 0}$ be a Poisson process of parameter 1 starting from 0 , and \mathcal{E} be an exponential random variable of parameter 1 . Then

$$
\mathrm{t} \mapsto \mathcal{P}_{\mathcal{E}\left(e^{\lambda t}-1\right)}+1
$$

is a Yule process of parameter λ with terminal value \mathcal{E}.
This allows to calculate explicitly the limiting laws in the previous theorems

Calculations involving Siule processes

Key idea: Kendall's representaton of Yule processes.
Theorem (Kendall '66)
Let $\left(\mathcal{P}_{\mathfrak{t}}\right)_{t \geqslant 0}$ be a Poisson process of parameter 1 starting from 0 , and \mathcal{E} be an exponential random variable of parameter 1 . Then

$$
\mathrm{t} \mapsto \mathcal{P}_{\mathcal{E}\left(e^{\lambda t}-1\right)}+1
$$

is a Yule process of parameter λ with terminal value \mathcal{E}.
This allows to calculate explicitly the limiting laws in the previous theorems, and to justify the approximation:

A typical situation for $\lambda>1$:
A typical situation for $\lambda<1$:

I. Test your intuition!
II. Preys \& predators on a complete graph

III. Preys \& Predators on an infinite tree
 \qquad

Prey-predators on trees

Let T be a rooted tree

Prey-predators on trees

Let T be a rooted tree, and $\widehat{\mathrm{T}}$ be the tree obtained by adding a parent to the root of T .

Prey-predators on trees

Let T be a rooted tree, and $\widehat{\mathrm{T}}$ be the tree obtained by adding a parent to the root of T. Start the prey-predator process with one predator at the root of \widehat{T} and a prey at the root of T.

Prey-predators on trees

Let T be a rooted tree, and $\widehat{\mathrm{T}}$ be the tree obtained by adding a parent to the root of T. Start the prey-predator process with one predator at the root of \widehat{T} and a prey at the root of T .

What is the probability $p_{T}(\lambda)$ that the preys survive indefinitely?

Prey-predators on Galton-Watson trees

Let v be a probability measure on \mathbb{Z}_{+}. Set $d:=\sum_{i \geqslant 0} i v(i)$ and assume that $\mathrm{d}>1$. Let \mathcal{T} be a Galton-Watson tree with offspring distribution v.

Prey-predators on Galton-Watson trees

Let v be a probability measure on \mathbb{Z}_{+}. Set $d:=\sum_{i \geqslant 0} i v(i)$ and assume that $\mathrm{d}>1$. Let \mathcal{T} be a Galton-Watson tree with offspring distribution v.
Theorem (Kordzakhia '05)
If \mathcal{T} is an infinite d -ary tree, and

$$
\lambda_{c}:=2 \mathrm{~d}-1-2 \sqrt{\mathrm{~d}(\mathrm{~d}-1)},
$$

then $p_{\mathcal{T}}(\lambda)=0$ for $\lambda<\lambda_{\mathcal{c}}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$.

Prey-predators on Galton-Watson trees

Let v be a probability measure on \mathbb{Z}_{+}. Set $d:=\sum_{i \geqslant 0} i v(i)$ and assume that $\mathrm{d}>1$. Let \mathfrak{T} be a Galton-Watson tree with offspring distribution v.
Theorem (Kordzakhia '05)
If \mathcal{T} is an infinite d-ary tree, and

$$
\lambda_{c}:=2 d-1-2 \sqrt{d(d-1)},
$$

then $p_{\mathcal{T}}(\lambda)=0$ for $\lambda<\lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$.
Theorem (Bordenave '12)
Almost surely, we have $p_{\mathcal{T}}(\lambda)=0$ for $\lambda \leqslant \lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$.

Prey-predators on Galton-Watson trees

Let v be a probability measure on \mathbb{Z}_{+}. Set $d:=\sum_{i \geqslant 0} i v(i)$ and assume that $\mathrm{d}>1$. Let \mathfrak{T} be a Galton-Watson tree with offspring distribution v.
Theorem (Kordzakhia '05)
If \mathcal{T} is an infinite d-ary tree, and

$$
\lambda_{c}:=2 d-1-2 \sqrt{d(d-1)},
$$

then $p_{\mathcal{T}}(\lambda)=0$ for $\lambda<\lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$.
Theorem (Bordenave '12)
Almost surely, we have $p_{\mathcal{T}}(\lambda)=0$ for $\lambda \leqslant \lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$. Denote by Z the total number of Infected individuals.

Prey-predators on Galton-Watson trees

Let v be a probability measure on \mathbb{Z}_{+}. Set $\mathrm{d}:=\sum_{i \geqslant 0} i v(i)$ and assume that $\mathrm{d}>1$. Let \mathfrak{T} be a Galton-Watson tree with offspring distribution v.
Theorem (Kordzakhia '05)
If \mathcal{T} is an infinite d-ary tree, and

$$
\lambda_{c}:=2 d-1-2 \sqrt{d(d-1)},
$$

then $p_{\mathcal{T}}(\lambda)=0$ for $\lambda<\lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$.
Theorem (Bordenave '12)
Almost surely, we have $p_{\mathcal{T}}(\lambda)=0$ for $\lambda \leqslant \lambda_{c}$ and $p_{\mathcal{T}}(\lambda)>0$ for $\lambda>\lambda_{c}$. Denote by Z the total number of Infected individuals.
Theorem (Bordenave '12)
If $\lambda<\lambda_{c}$, we have (under an integrability assumption on v)

$$
\sup \left\{u \geqslant 1 ; \mathbb{E}\left[Z^{u}\right]<\infty\right\}=\frac{\left(1-\lambda+\sqrt{\lambda^{2}-2 \lambda(2 d-1)+1}\right)^{2}}{4(d-1) \lambda}
$$

Tail of the number of Infected individuals

Theorem (K. '13).
(i) Assume that $\lambda=\lambda_{c}$. Then

$$
\mathbb{P}(Z>n) \quad \underset{n \rightarrow \infty}{\sim}
$$

(ii) Assume that $\lambda \in\left(0, \lambda_{c}\right)$. Then

$$
\mathbb{P}(Z>n) \quad \underset{n \rightarrow \infty}{\sim}
$$

Tail of the number of Infected individuals

Theorem (K. '13).

(i) Assume that $\lambda=\lambda_{c}$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim}\left(1+\sqrt{\frac{d}{d-1}}\right) \cdot \frac{1}{n(\ln (n))^{2}} .
$$

(ii) Assume that $\lambda \in\left(0, \lambda_{c}\right)$. Then

$$
\mathbb{P}(Z>n) \quad \underset{n \rightarrow \infty}{\sim}
$$

Tail of the number of Infected individuals

Theorem (K. '13).

(i) Assume that $\lambda=\lambda_{c}$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim}\left(1+\sqrt{\frac{d}{d-1}}\right) \cdot \frac{1}{n(\ln (n))^{2}} .
$$

(ii) Assume that $\lambda \in\left(0, \lambda_{c}\right)$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim} C(\lambda, d) \cdot n^{-\frac{\left(1-\lambda+\sqrt{\lambda^{2}-2 \lambda(2 d-1)+1}\right)^{2}}{4(d-1) \lambda}} .
$$

Tail of the number of Infected individuals

Theorem (K. '13).

(i) Assume that $\lambda=\lambda_{c}$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim}\left(1+\sqrt{\frac{d}{d-1}}\right) \cdot \frac{1}{n(\ln (n))^{2}} .
$$

(ii) Assume that $\lambda \in\left(0, \lambda_{c}\right)$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim} C(\lambda, d) \cdot n^{-\frac{\left(1-\lambda+\sqrt{\lambda^{2}-2 \lambda(2 d-1)+1}\right)^{2}}{4(d-1) \lambda}} .
$$

For $\lambda=\lambda_{c}$, we have $\mathbb{E}[Z]<\infty$, but $\mathbb{E}[Z \ln (Z)]=\infty$.

Tail of the number of Infected individuals

Theorem (K. '13).

(i) Assume that $\lambda=\lambda_{c}$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim}\left(1+\sqrt{\frac{d}{d-1}}\right) \cdot \frac{1}{n(\ln (n))^{2}} .
$$

(ii) Assume that $\lambda \in\left(0, \lambda_{c}\right)$. Then

$$
\mathbb{P}(Z>n) \underset{n \rightarrow \infty}{\sim} C(\lambda, d) \cdot n^{-\frac{\left(1-\lambda+\sqrt{\lambda^{2}-2 \lambda(2 d-1)+1}\right)^{2}}{4(d-1) \lambda}} .
$$

For $\lambda=\lambda_{c}$, we have $\mathbb{E}[Z]<\infty$, but $\mathbb{E}[Z \ln (Z)]=\infty$.
\leadsto Idea: explicit coupling with a branching random walk killed at the origin, and use results of Aïdékon, Hu \& Zindy.

Coupling with a branching random walk

Let V be the branching random walk produced with the point process

$$
\mathcal{L}=\sum_{i=1}^{u} \delta_{\left\{\varepsilon-\operatorname{Exp}_{i}(\lambda)\right\}},
$$

starting from 0 , where U is a r.v distributed as v, where \mathcal{E} is an independent $\operatorname{Exp}(1)$ r.v and $\left(\operatorname{Exp}_{i}(\lambda)\right)_{i \geqslant 1}$ are independent i.i.d. $\operatorname{Exp}(\lambda)$.

Coupling with a branching random walk

Let V be the branching random walk produced with the point process

$$
\mathcal{L}=\sum_{i=1}^{u} \delta_{\left\{\varepsilon-\operatorname{Exp}_{i}(\lambda)\right\}},
$$

starting from 0 , where U is a r.v distributed as v, where \mathcal{E} is an independent $\operatorname{Exp}(1)$ r.v and $\left(\operatorname{Exp}_{\mathfrak{i}}(\lambda)\right)_{i \geqslant 1}$ are independent i.i.d. $\operatorname{Exp}(\lambda)$.

Kill V at 0 , by only considering $\{u \in \mathcal{T} ; \mathrm{V}(v) \geqslant 0, \forall v \in \llbracket \emptyset, u \rrbracket\}$.

Coupling with a branching random walk

Let V be the branching random walk produced with the point process

$$
\mathcal{L}=\sum_{i=1}^{u} \delta_{\left\{\varepsilon-\operatorname{Exp}_{i}(\lambda)\right\}},
$$

starting from 0 , where U is a r.v distributed as v, where \mathcal{E} is an independent $\operatorname{Exp}(1)$ r.v and $\left(\operatorname{Exp}_{i}(\lambda)\right)_{i \geqslant 1}$ are independent i.i.d. $\operatorname{Exp}(\lambda)$.

Kill V at 0 , by only considering $\{u \in \mathcal{T} ; \mathrm{V}(v) \geqslant 0, \forall v \in \llbracket \emptyset, u \rrbracket\}$.

Proposition.

The number Z of infected individuals has the same distribution as

$$
\#\{u \in \mathcal{T} ; \boldsymbol{V}(v) \geqslant 0, \forall v \in \llbracket \emptyset, u \rrbracket\} .
$$

