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Test your intuition! Complete graphs Infinite trees

What is this about?

On a graph, we are interested in the following prey-predator model (introduced
by Bordenave ’12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate � > 0, each prey propagates to every vacant neighbour,
- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

Model of two competing species, or model of first-passage percolation
with destruction.

Other possible analogies:
vacant vertex ()
prey ()
predator ()
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On a graph, we are interested in the following prey-predator model (introduced
by Bordenave ’12) :
- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate � > 0, each prey propagates to every vacant neighbour,
- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

Model of two competing species, or model of first-passage percolation
with destruction.

Other possible analogies:
vacant vertex () normal individual
prey () individual trying to spread a rumor (spreader)
predator () individual trying to scotch the rumor (stifler)

Igor Kortchemski Preys & Predators 1 / 5



Test your intuition! Complete graphs Infinite trees

What is this about?

On a graph, we are interested in the following prey-predator model (introduced
by Bordenave ’12) :
- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate � > 0, each prey propagates to every vacant neighbour,
- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

Model of two competing species, or model of first-passage percolation
with destruction.

Other possible analogies:
vacant vertex () Susceptible (S) individual
prey () Infected (I) individual
predator () Recovered (R) individual
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Test your intuition! Complete graphs Infinite trees

Here, {I, S} �! {I, I}, {R, I}
1! {R,R}.

Other type of models studied in the literature:

– SIR model (Kermack—McKendrick ’27), where {I, S}
�! {I, I}, I

1! R

– Daley–Kendall (’65) rumour propagation model, where
{I, S}

1! {I, I}, {R, I}
1! {R,R}, {I, I}

1! {R,R}.

– Maki–Thompson (’73) directed rumour propagation model, where
(I, S)

1! (I, I), (R, I)
1! (R,R), (I, I)

1! (I,R).

– Williams Bjerknes (’71) tumor growth model (or biased voter model),
where (I, S)

�! (I, I), (S, I)
1! (S, S).

– Kordzakhia (’05), where {I, S}
�! {I, I}, {R, I}

1! {R,R}, {R, S}
1! {R,R}.
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Test your intuition! Complete graphs Infinite trees

Seen on Gil Kalai’s blog

You have a box with n red balls and n blue balls.

You take out each time a ball
at random. If the ball was red, you put it back in the box and take out a blue
ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. How many balls
will be left (as a function of n)?

1) Roughly ✏n for some ✏ > 0.
2) Roughly

p
n.

3) Roughly logn.
4) Roughly a constant.
5) Some other behavior.

Other formulation (O.K. Corral problem, Williams & McIlroy, 1998) . There are
two groups of n gunmen that shoot at each other. Once a gunman is hit he
stops shooting, and leaves the place happily and peacefully. How many gunmen
will be left after all gunmen in one team have left?
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Test your intuition! Complete graphs Infinite trees

Figure: Excerpt of the film “Gunfight at the O.K. Corral” (1957)
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Test your intuition! Complete graphs Infinite trees

Vu sur le blog de Gil Kalai

You have a box with n red balls and n blue balls. You take out each time a ball
at random. If the ball was red, you put it back in the box and take out a blue
ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep as before until left only with balls of the same color. How many balls
will be left (as a function of n)?

1) Roughly ✏n for some ✏ > 0.
2) Roughly

p
n.

3) Roughly logn.
4) Roughly a constant.
5) Some other behavior.

Other formulation (O.K. Corral problem, Williams & McIlroy, 1998) . There are
two groups of n gunmen that shoot at each other. Once a gunman is hit he
stops shooting, and leaves the place happily and peacefully. How many gunmen
will be left after all gunmen in one team have left?
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Test your intuition! Complete graphs Infinite trees

Kingman & Volkov’s solution (1/3)

If urn A has m balls and urn B has n balls, the probability that a ball is
removed from A is n

m+n

.

But

n

m+ n

=
1/m

1/m+ 1/n

= P (Exp(1/m) < Exp(1/n)) .
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Test your intuition! Complete graphs Infinite trees

Kingman & Volkov’s solution (2/3)

Let (X
i

, Y

i

)
i>1 be independent random variables such that X

i

are Y

i

exponential random variables with mean i.

Consider a piece of wood represented by the interval [-n,n] and made of 2n
pieces such that

length([i- 1, i]) = X

i

, length([-i,-i+ 1]) = Y

i

(1 6 i 6 n).

Light both ends, and stop the fire when the origin is reached. Let R(n) be the
number of remaining pieces. Then R(n) has the same law as the number of
remaining balls in the urn/gunman problem.
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Test your intuition! Complete graphs Infinite trees

Kingman & Volkov’s solution (3/3)
In order to estimate the number R(n) of remaining pieces, first estimate the
remaining length L(n):

L(n) =

�����

nX

i=1

X

i

-
nX

i=1

Y

i

����� .

Then

Var

 
nX

i=1

X

i

-
nX

i=1

Y

i

!

=
nX

j=1

2j

2 ' n

3
.

Hence
L(n) ' n

3/2
.

Set S
k

= X1 + · · ·+ X

k

. We have E [
S

k

] ' k

2, so S

k

' k

2. But, if the left
part burns first, S

R(n) ' L(n). Hence

R(n)2 ' n

3/2

so that R(n) ' n

3/4.
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Test your intuition! Complete graphs Infinite trees

This “decoupling” idea is called the Athreya–Karlin embedding, and is useful to
study more general Pólya urn schemes.
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I. Test your intuition!

II. Prey & predators on a complete graph

III. Preys & predators on an infinite tree
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Test your intuition! Complete graphs Infinite trees

We consider K
N+2, a complete graph on N+ 2 vertices, and start the dynamics

with one I vertex, one R vertex and N S vertices.

Set
E

N

ext

= {at a certain moment, there are no more S vertices}.

Question. How does P
�
E

N

ext

�
behave as N ! 1 ?

We have

P(EN

ext

) �!
N!1

8
><

>:

0 if � 2

(0, 1)
1
2

if � =

1

1 if � >

1

.

Theorem (K. ’13).
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Test your intuition! Complete graphs Infinite trees

Decoupling using Yule processes
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Test your intuition! Complete graphs Infinite trees

Transition rates

Let S
t

, I

t

,R

t

be the population sizes at time t.

Total rate of {S, I} ! {I, I} :

� · S
t

· I
t

.

Total rate {R, I} ! {R,R} : I

t

· R
t

.

Hence, at time t, the probability that {S, I} ! {I, I} happens before
{R, I} ! {R,R} is

�S

t

I

t

�S

t

I

t

+ I

t

R

t

=
�S

t

�S

t

+ R

t

.

y We are going to be able to decouple the evolutions of S and R.
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Test your intuition! Complete graphs Infinite trees

Coupling and decoupling via two Yule processes
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Test your intuition! Complete graphs Infinite trees

Yule processes

Definition (Yule process)

In a Yule process (Y(t))
t>0 of parameter �, starting with one individual, each

individual lives a random time distributed according to a Exp(�) random
variable, and at its death gives birth to two individuals

, and Y(t) denotes the
total number of individuals at time t.

y In particular, the intervals between each discontinuity are distributed
according to independent Exp(�),Exp(2�),Exp(3�), . . . random variables.

Igor Kortchemski Preys & Predators 17 /

p
17



Test your intuition! Complete graphs Infinite trees

Yule processes

Definition (Yule process)

In a Yule process (Y(t))
t>0 of parameter �, starting with one individual, each

individual lives a random time distributed according to a Exp(�) random
variable, and at its death gives birth to two individuals, and Y(t) denotes the
total number of individuals at time t.

y In particular, the intervals between each discontinuity are distributed
according to independent Exp(�),Exp(2�),Exp(3�), . . . random variables.

Igor Kortchemski Preys & Predators 17 /

p
17



Test your intuition! Complete graphs Infinite trees

Yule processes

Definition (Yule process)

In a Yule process (Y(t))
t>0 of parameter �, starting with one individual, each

individual lives a random time distributed according to a Exp(�) random
variable, and at its death gives birth to two individuals, and Y(t) denotes the
total number of individuals at time t.

y In particular, the intervals between each discontinuity are distributed
according to independent Exp(�),Exp(2�),Exp(3�), . . . random variables.

Igor Kortchemski Preys & Predators 17 /

p
17



Test your intuition! Complete graphs Infinite trees

Coupling with two Yule processes
Let (R(t))

t>0 be a Yule process of parameter 1, and (S
N

(t))
t>0 a Yule process

of parameter �, time-reversed at its N-th jump.

The prey-predator dynamics can be described by using R and S
N

, which
describe in what order the infections and recoveries happen!

Figure: Ex. N = 7, where red crosses represent infections and purple ones recoveries.

T is the time when a type of vertices (S or I) disappears.
T is the smallest between:

the first moment when there are more discontinuities of R than
discontinuities of S

N

(I disappears first, c

E

N

ext

)
the N-th discontinuity of S

N

(S disappears first, EN

ext

)
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Test your intuition! Complete graphs Infinite trees

Identification of the critical parameter � = 1
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Test your intuition! Complete graphs Infinite trees

Notation.

Denote by S

N

(1), S
N

(2), . . . ,S
N

(N) the discontinuities S
N

and by
R(1), . . . ,R(N) the discontinuities of R(t).

Proposition

S

N

(N) has the same distribution as

Exp(�N) + Exp(�(N- 1)) + · · ·+ Exp(�).

R(N) has the same distribution

Exp(1) + Exp(2) + · · ·+ Exp(N).

Hence

P(EN

ext

) �!
N!1

8
><

>:

0 if � 2 (0, 1)
1
2 if � = 1

1 if � > 1.
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Test your intuition! Complete graphs Infinite trees

Study of the final state of the system
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Test your intuition! Complete graphs Infinite trees

Definition

Denote by S

(N)
, I

(N)
,R

(N) the number of S, I,R vertices at the first time T
when a type (S or I) of vertices disappears.

Figure: Ex. N = 7, where red crosses represent infections and purple ones recoveries.

Question. What can be said of the asymptotic behavior of S(N)
, I

(N)
,R

(N) as
N ! 1 ?

This should be related to the asymptotic behavior of Yule processes.
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Test your intuition! Complete graphs Infinite trees

Yule processes and terminal value

Proposition

Let (Y(t))
t>0 be a Yule process of parameter �.

1) We have the convergence

e

-�t

Y

t

a.s.�!
t!1

E,

where E is a Exp(1) random variable, called terminal value of Y.

2) For t > 0 and k > 1, we have P(Y
t

= k) = e

-�t(1- e

-�t)k-1.

Corollary

if ⌧
N

denotes the N-th jump time of Y, then

�⌧

N

- ln(N)
a.s.�!

N!1
- ln(E)
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Test your intuition! Complete graphs Infinite trees

Number of susceptible individuals remaining

(i) Fix � 2 (0, 1).

Then

S

(N)

N

1-�

(d)�!
N!1

Exp(1)�.

(ii) Fix � = 1.

Then for every i > 0,

P
⇣
S

(N) = i

⌘
�!
N!1

1/2

i+1
.

(iii) Fix � > 1.

Then S

(N) converges in probability towards 0 as
N ! 1.

Theorem (K. ’13).
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Test your intuition! Complete graphs Infinite trees

Idea of the proof: case � = 1

On the event c

E

N

ext

,

S
N

R
T

S

N

(N)

R (N)

ln(E/E)

Let E be the terminal value of the Yule process associated with S
N

, and E is the
terminal value of R.

We have S

N

(N) ' ln(N)- ln(E), R(N) ' ln(N)- ln(E), with E/E > 1.

Thus, S(N) ' value of a Yule process of parameter � at time ln(E/E),
conditionnally on E/E > 1.
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Test your intuition! Complete graphs Infinite trees

Idea of proof: case � 2 (0, 1)

S
N

R
T

S

N

(N)

R (N)

- ln(N)
1

�

1

Recall that E is the terminal value of the Yule process associated with S
N

, and
E is the terminal value of R.

We have S

N

(N) ' 1
�

(ln(N)- ln(E)), R(N) ' ln(N)- ln(E).

Thus, S(N) ' value of a Yule process of parameter � at time (1/�- 1) ln(N).
Which is of order e�(1/�-1) ln(N) = N

1-�.
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Test your intuition! Complete graphs Infinite trees

Number of recovered individuals remaining

(i) Fix � 2 (0, 1).

Then

N- R

(N)

N

1-�

(d)�!
N!1

Exp(1)�.

(ii) Fix � = 1.

Then

R

(N)

N

(d)�!
N!1

1

2

�1 +
1

(1+ x)2 [0,1](x)dx,

(iii) Fix � > 1. Then

R

(N)

N

1/�

(d)�!
N!1

Exp(Exp(1)1/�).

Theorem (K. ’13).
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Test your intuition! Complete graphs Infinite trees

Calculations involving Yule processes
Key idea: Kendall’s representaton of Yule processes.

Theorem (Kendall ’66)

Let (P
t

)
t>0 be a Poisson process of parameter 1 starting from 0, and E be an

exponential random variable of parameter 1. Then

t 7! PE(e�t-1) + 1

is a Yule process of parameter � with terminal value E.
This allows to calculate explicitly the limiting laws in the previous theorems, and
to justify the approximation:
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Figure: Illustration of the coupling of Yule processes with Poisson processes
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Test your intuition! Complete graphs Infinite trees

I. Test your intuition!

II. Preys & predators on a complete graph

III. Preys & predators on an infinite tree
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Test your intuition! Complete graphs Infinite trees

Prey-predators on trees
Let T be a rooted tree

, and b
T be the tree obtained by adding a parent to the

root of T . Start the prey-predator process with one predator at the root of bT
and a prey at the root of T .

What is the probability p

T

(�) that the preys survive indefinitely?
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Test your intuition! Complete graphs Infinite trees

Prey-predators on Galton–Watson trees
Let ⌫ be a probability measure on Z+. Set d :=

P
i>0 i⌫(i) and assume that

d > 1. Let T be a Galton–Watson tree with offspring distribution ⌫.

Theorem (Kordzakhia ’05)

If T is an infinite d-ary tree, and

�

c

:= 2d- 1- 2

p
d(d- 1),

then pT(�) = 0 for � < �

c

and pT(�) > 0 for � > �

c

.

Theorem (Bordenave ’12)

Almost surely, we have pT(�) = 0 for � 6 �

c

and pT(�) > 0 for � > �

c

.
Denote by Z the total number of Infected individuals.
Theorem (Bordenave ’12)

If � < �

c

, we have (under an integrability assumption on ⌫)

sup{u > 1;E [
Z

u]
< 1} =

(1- �+
p
�

2 - 2�(2d- 1) + 1)2

4(d- 1)�
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Test your intuition! Complete graphs Infinite trees

Tail of the number of Infected individuals

(i) Assume that � = �

c

. Then

P(Z > n) ⇠
n!1

 

1+

r
d

d- 1

!

· 1

n(ln(n))2
.

(ii) Assume that � 2 (0, �
c

). Then

P(Z > n) ⇠
n!1

C(�,d) · n- (1-�+
p

�2-2�(2d-1)+1)2

4(d-1)�
.

Theorem (K. ’13).

For � = �

c

, we have E [
Z

]
< 1, but E [

Z ln(Z)] = 1.y Idea: explicit coupling with a branching random walk killed at the origin,
and use results of Aïdékon, Hu & Zindy.
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Test your intuition! Complete graphs Infinite trees

Coupling with a branching random walk

Let V be the branching random walk produced with the point process

L =
UX

i=1

�{E-Expi(�)},

starting from 0, where U is a r.v distributed as ⌫, where E is an independent
Exp(1) r.v and (Exp

i

(�))
i>1 are independent i.i.d. Exp(�).

Kill V at 0, by only considering {u 2 T;V(v) > 0, 8v 2 J;,uK}.

The number Z of infected individuals has the same distribution as

#{u 2 T;V(v) > 0, 8v 2 J;,uK}.

Proposition.
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