

I. GOALS AND MOTIVATION

II. TRANSIENT CASE

- **III.** RECURRENT CASE
- IV. POSITIVE RECURRENT CASE

I. GOALS AND MOTIVATION

 \Rightarrow

II. TRANSIENT CASE

III. RECURRENT CASE

IV. Positive recurrent case

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

Motivations and applications:

1. extend a result of Haas & Miermont '11 concerning non-increasing Markov-chains,

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

- 1. extend a result of Haas & Miermont '11 concerning non-increasing Markov-chains,
- 2. recover a result of Caravenna & Chaumont '08 concerning invariance principles for random walks conditioned to remain positive,

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

- 1. extend a result of Haas & Miermont '11 concerning non-increasing Markov-chains,
- 2. recover a result of Caravenna & Chaumont '08 concerning invariance principles for random walks conditioned to remain positive,
- 3. study Markov chains with asymptotically zero drift,

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

- 1. extend a result of Haas & Miermont '11 concerning non-increasing Markov-chains,
- 2. recover a result of Caravenna & Chaumont '08 concerning invariance principles for random walks conditioned to remain positive,
- 3. study Markov chains with asymptotically zero drift,
- 4. obtain limit theorems for the number of fragments in a fragmentation-coagulation process,

Goal: give explicit criteria for Markov chains on the positive integers starting from large values to have a functional scaling limit.

- 1. extend a result of Haas & Miermont '11 concerning non-increasing Markov-chains,
- 2. recover a result of Caravenna & Chaumont '08 concerning invariance principles for random walks conditioned to remain positive,
- 3. study Markov chains with asymptotically zero drift,
- 4. obtain limit theorems for the number of fragments in a fragmentation-coagulation process,
- study separating cycles in large random maps (joint project with Jean Bertoin & Nicolas Curien, which motivated this work)

Let $(X_n(k); k \ge 0)$ be the discrete-time homogeneous Markov chain started at state n such that the probability transition from state i to state j is $p_{i,j}$ for $i, j \ge 1$.

Let $(X_n(k); k \ge 0)$ be the discrete-time homogeneous Markov chain started at state n such that the probability transition from state i to state j is $p_{i,j}$ for $i, j \ge 1$.

 $\stackrel{\checkmark}{\longrightarrow} \textbf{Goal:} find explicit conditions on (p_{n,k}) yielding the existence of a sequence a_n \rightarrow \infty$ and a càdlàg process Y such that the convergence

$$\left(\frac{X_{n}(\lfloor a_{n}t \rfloor)}{n}; t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (Y(t); t \ge 0)$$

holds in distribution

Let $(X_n(k); k \ge 0)$ be the discrete-time homogeneous Markov chain started at state n such that the probability transition from state i to state j is $p_{i,j}$ for $i, j \ge 1$.

 $\stackrel{\checkmark}{\longrightarrow} \textbf{Goal:} find explicit conditions on <math>(p_{n,k})$ yielding the existence of a sequence $a_n \to \infty$ and a càdlàg process Y such that the convergence

$$\left(\frac{X_{n}(\lfloor a_{n}t \rfloor)}{n}; t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (Y(t); t \ge 0)$$

holds in distribution (in the space of real-valued càdlàg functions $\mathbb{D}(\mathbb{R}_+, \mathbb{R})$ on \mathbb{R}_+ equipped with the Skorokhod topology).

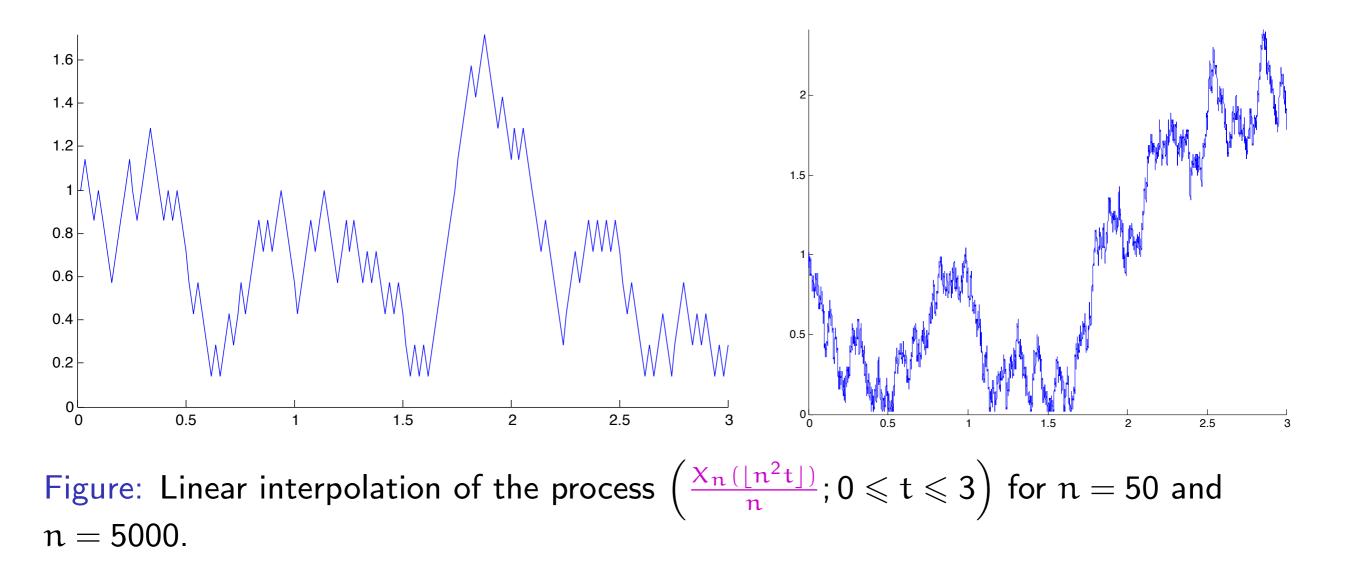
Simple example

If
$$p_{1,2} = 1$$
 and $p_{n,n\pm 1} = \pm \frac{1}{2}$ for $n \ge 2$:



Simple example

If
$$p_{1,2}=1$$
 and $p_{n,n\pm 1}=\pm rac{1}{2}$ for $n\geqslant 2$:



The scaling limit is reflected Brownian motion.

Description of the limiting process

 $\wedge \rightarrow$ It is well-known (Lamperti '60) that self-similar processes arise as the scaling limit of general stochastic processes.

Description of the limiting process

 $\wedge \rightarrow$ It is well-known (Lamperti '60) that self-similar processes arise as the scaling limit of general stochastic processes.

 \bigwedge In the case of Markov chains, one naturally expects the Markov property to be preserved after convergence: the scaling limit should belong to the class of self-similar Markov processes on $[0, \infty)$.

Let $(\xi(t))_{t \ge 0}$ be a Lévy process with characteristic exponent

$$\Phi(\lambda) = -\frac{1}{2}\sigma^2\lambda^2 + ib\lambda + \int_{-\infty}^{\infty} \left(e^{i\lambda x} - 1 - i\lambda x\mathbb{1}_{|x|\leqslant 1}\right) \ \Pi(dx), \qquad \lambda \in \mathbb{R}$$

Let $(\xi(t))_{t \ge 0}$ be a Lévy process with characteristic exponent

$$\Phi(\lambda) = -\frac{1}{2}\sigma^2\lambda^2 + ib\lambda + \int_{-\infty}^{\infty} \left(e^{i\lambda x} - 1 - i\lambda x\mathbb{1}_{|x|\leqslant 1}\right) \ \Pi(dx), \qquad \lambda \in \mathbb{R}$$

i.e. $\mathbb{E}\left[e^{i\lambda\xi(t)}\right] = e^{t\Phi(\lambda)}$ for $t \ge 0, \lambda \in \mathbb{R}$.

Let $(\xi(t))_{t \ge 0}$ be a Lévy process with characteristic exponent

$$\Phi(\lambda) = -\frac{1}{2}\sigma^2\lambda^2 + ib\lambda + \int_{-\infty}^{\infty} \left(e^{i\lambda x} - 1 - i\lambda x\mathbb{1}_{|x|\leqslant 1}\right) \ \Pi(dx), \qquad \lambda \in \mathbb{R}$$

i.e. $\mathbb{E}\left[e^{i\lambda\xi(t)}\right] = e^{t\Phi(\lambda)}$ for $t \ge 0, \lambda \in \mathbb{R}$.

Set

$$\mathbf{I}_{\infty} = \int_{0}^{\infty} e^{\gamma \xi(s)} \, \mathrm{d}s \quad \in \quad (0, \infty].$$

Let $(\xi(t))_{t \ge 0}$ be a Lévy process with characteristic exponent

$$\Phi(\lambda) = -\frac{1}{2}\sigma^2\lambda^2 + ib\lambda + \int_{-\infty}^{\infty} \left(e^{i\lambda x} - 1 - i\lambda x\mathbb{1}_{|x| \leq 1}\right) \Pi(dx), \qquad \lambda \in \mathbb{R}$$

i.e.
$$\mathbb{E}\left[e^{i\lambda\xi(t)}\right] = e^{t\Phi(\lambda)}$$
 for $t \ge 0, \lambda \in \mathbb{R}$.

Set

$$\mathbf{I}_{\infty} = \int_{0}^{\infty} e^{\gamma \xi(s)} \, \mathrm{d}s \quad \in \quad (0, \infty].$$

It is known that:

-
$$I_{\infty} < \infty$$
 a.s. if ξ drifts to $-\infty$ (i.e. $\lim_{t \to \infty} \xi(t) = -\infty$ a.s.),

Let $(\xi(t))_{t \ge 0}$ be a Lévy process with characteristic exponent

$$\Phi(\lambda) = -\frac{1}{2}\sigma^2\lambda^2 + ib\lambda + \int_{-\infty}^{\infty} \left(e^{i\lambda x} - 1 - i\lambda x\mathbb{1}_{|x| \leq 1}\right) \Pi(dx), \qquad \lambda \in \mathbb{R}$$

i.e.
$$\mathbb{E}\left[e^{i\lambda\xi(t)}\right] = e^{t\Phi(\lambda)}$$
 for $t \ge 0, \lambda \in \mathbb{R}$.

Set

$$\mathbf{I}_{\infty} = \int_{0}^{\infty} e^{\gamma \xi(s)} \, \mathrm{d}s \quad \in \quad (0,\infty].$$

It is known that:

-
$$I_{\infty} < \infty$$
 a.s. if ξ drifts to $-\infty$ (i.e. $\lim_{t\to\infty} \xi(t) = -\infty$ a.s.),
- $I_{\infty} = \infty$ a.s. if ξ drifts to $+\infty$ or oscillates.

Fix $\gamma > 0$. For every $t \ge 0$, set

$$\tau(\mathbf{t}) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \boldsymbol{\xi}(s)} ds > t \right\}$$

Fix $\gamma > 0$. For every $t \ge 0$, set

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(with the convention $\inf \emptyset = \infty$).

Fix $\gamma > 0.$ For every $t \geqslant 0$, set

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(with the convention inf $\emptyset = \infty$). The Lamperti transform of ξ is defined by

$$\mathsf{Y}(\mathsf{t}) = e^{\xi(\tau(\mathsf{t}))} \quad \text{for} \quad 0 \leqslant \mathsf{t} < \mathrm{I}_{\infty}, \qquad \qquad \mathsf{Y}(\mathsf{t}) = 0 \quad \text{for} \quad \mathsf{t} \geqslant \mathrm{I}_{\infty}.$$

Fix $\gamma > 0.$ For every $t \geqslant 0$, set

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(with the convention $\inf \emptyset = \infty$). The Lamperti transform of ξ is defined by

$$\mathbf{Y}(t) = e^{\xi(\tau(t))} \quad \text{for} \quad 0 \leqslant t < \mathbf{I}_{\infty}, \qquad \qquad \mathbf{Y}(t) = 0 \quad \text{for} \quad t \geqslant \mathbf{I}_{\infty}.$$

The process Y hits 0 in finite time almost surely if, and only if, ξ drifts to $-\infty$.

Fix $\gamma > 0$. For every $t \ge 0$, set

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(with the convention inf $\emptyset = \infty$). The Lamperti transform of ξ is defined by

$$\mathbf{Y}(t) = e^{\xi(\tau(t))} \quad \text{for} \quad 0 \leqslant t < \mathbf{I}_{\infty}, \qquad \qquad \mathbf{Y}(t) = 0 \quad \text{for} \quad t \geqslant \mathbf{I}_{\infty}.$$

The process Y hits 0 in finite time almost surely if, and only if, ξ drifts to $-\infty$.

By construction, the process Y is a self-similar Markov process of index $1/\gamma$ started at 1.

Fix $\gamma > 0$. For every $t \ge 0$, set

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(with the convention inf $\emptyset = \infty$). The Lamperti transform of ξ is defined by

$$\mathbf{Y}(t) = e^{\xi(\tau(t))} \quad \text{for} \quad 0 \leqslant t < \mathbf{I}_{\infty}, \qquad \qquad \mathbf{Y}(t) = 0 \quad \text{for} \quad t \geqslant \mathbf{I}_{\infty}.$$

The process Y hits 0 in finite time almost surely if, and only if, ξ drifts to $-\infty$.

By construction, the process Y is a self-similar Markov process of index $1/\gamma$ started at 1.

We will write that Y is a $pSSMP_1^{(\gamma)}(\sigma, b, \Pi)$.

Let Π_n^* be the law of $\ln(X_n(1)/n)$

Let Π_n^* be the law of $\ln(X_n(1)/n)$, which is the probability measure on \mathbb{R}

$$\Pi_{\mathbf{n}}^{*}(\mathbf{d}\mathbf{x}) = \sum_{k \ge 1} p_{\mathbf{n},k} \cdot \delta_{\ln(k/n)}(\mathbf{d}\mathbf{x}).$$

Let Π_n^* be the law of $\ln(X_n(1)/n)$, which is the probability measure on \mathbb{R}

$$\Pi_{n}^{*}(dx) = \sum_{k \ge 1} p_{n,k} \cdot \delta_{\ln(k/n)}(dx).$$

Let $(\alpha_n)_{n\geqslant 0}$ be a sequence of positive real numbers with regular variation of index $\gamma>0$

Let Π_n^* be the law of $\ln(X_n(1)/n)$, which is the probability measure on \mathbb{R}

$$\Pi_{n}^{*}(dx) = \sum_{k \ge 1} p_{n,k} \cdot \delta_{\ln(k/n)}(dx).$$

Let $(a_n)_{n \ge 0}$ be a sequence of positive real numbers with regular variation of index $\gamma > 0$, meaning that $a_{\lfloor xn \rfloor}/a_n \to x^{\gamma}$ as $n \to \infty$ for every fixed x > 0.

Let Π_n^* be the law of $\ln(X_n(1)/n)$, which is the probability measure on \mathbb{R}

$$\Pi_{n}^{*}(dx) = \sum_{k \ge 1} p_{n,k} \cdot \delta_{\ln(k/n)}(dx).$$

Let $(a_n)_{n \ge 0}$ be a sequence of positive real numbers with regular variation of index $\gamma > 0$, meaning that $a_{\lfloor xn \rfloor}/a_n \to x^{\gamma}$ as $n \to \infty$ for every fixed x > 0.

Let Π be a measure on $\mathbb{R} \setminus \{0\}$ such that

$$\int_{-\infty}^{\infty} (1 \wedge x^2) \ \Pi(\mathrm{d} x) < \infty.$$

I. GOALS AND MOTIVATION

II. TRANSIENT CASE

III. RECURRENT CASE

- **IV.** Positive recurrent case
- **V.** Applications

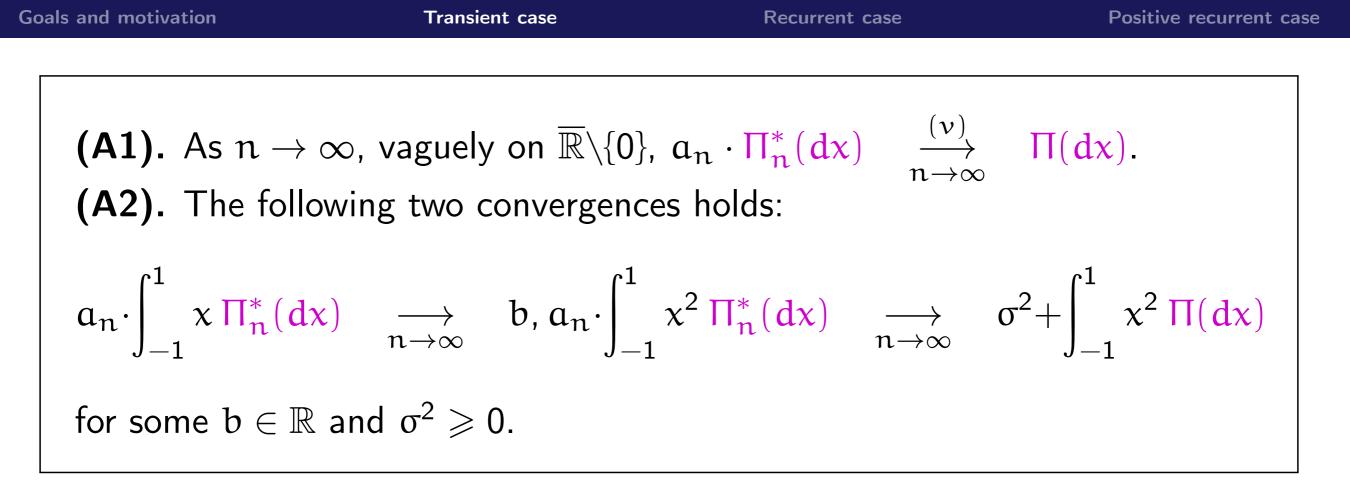
(A1). As
$$n \to \infty$$
, vaguely on $\overline{\mathbb{R}} \setminus \{0\}$, $a_n \cdot \prod_n^* (dx) \xrightarrow[n \to \infty]{} \Pi(dx)$.

(A1). As $n \to \infty$, vaguely on $\overline{\mathbb{R}} \setminus \{0\}$, $a_n \cdot \prod_n^* (dx) \xrightarrow[n \to \infty]{} \Pi(dx)$. This means that

$$a_{n} \cdot \mathbb{E}\left[f\left(\frac{X_{n}(1)}{n}\right)\right] \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} f(e^{x}) \Pi(dx)$$

for every continuous function f with compact support in $[0,\infty]\setminus\{1\}$, i.e. a jump of the process X_n/n from 1 to x occurs with a small rate $\frac{1}{\alpha_n}\exp\circ\Pi(dx).$

$$\begin{array}{ll} \textbf{(A1). As } n \to \infty, \text{ vaguely on } \overline{\mathbb{R}} \setminus \{0\}, \ a_n \cdot \Pi_n^*(dx) & \stackrel{(\nu)}{\longrightarrow} & \Pi(dx). \\ \textbf{(A2). The following two convergences holds:} \\ a_n \cdot \int_{-1}^1 x \, \Pi_n^*(dx) & \underset{n \to \infty}{\longrightarrow} & b, \ a_n \cdot \int_{-1}^1 x^2 \, \Pi_n^*(dx) & \underset{n \to \infty}{\longrightarrow} & \sigma^2 + \int_{-1}^1 x^2 \, \Pi(dx) \\ \textbf{for some } b \in \mathbb{R} \text{ and } \sigma^2 \geqslant 0. \end{array}$$



(Conditions very close to those giving convergence of infinitely divisible distributions)

(A1). As
$$n \to \infty$$
, vaguely on $\mathbb{R} \setminus \{0\}$, $a_n \cdot \prod_n^* (dx) \xrightarrow[n \to \infty]{} \Pi(dx)$.
(A2). The following two convergences holds:
 $a_n \cdot \int_{-1}^1 x \prod_n^* (dx) \xrightarrow[n \to \infty]{} b, a_n \cdot \int_{-1}^1 x^2 \prod_n^* (dx) \xrightarrow[n \to \infty]{} \sigma^2 + \int_{-1}^1 x^2 \Pi(dx)$
for some $b \in \mathbb{R}$ and $\sigma^2 \ge 0$.

Theorem (Bertoin & K. '14 — transient case).

Assume that (A1) and (A2) hold, and that $\xi \not\rightarrow -\infty$. Then

$$\left(\frac{X_{n}(\lfloor a_{n}t \rfloor)}{n}; t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (Y(t); t \ge 0)$$

holds in distribution in $\mathbb{D}(\mathbb{R}_+,\mathbb{R})$, where Y is a $pSSMP_1^{(\gamma)}(\sigma, b, \Pi)$.

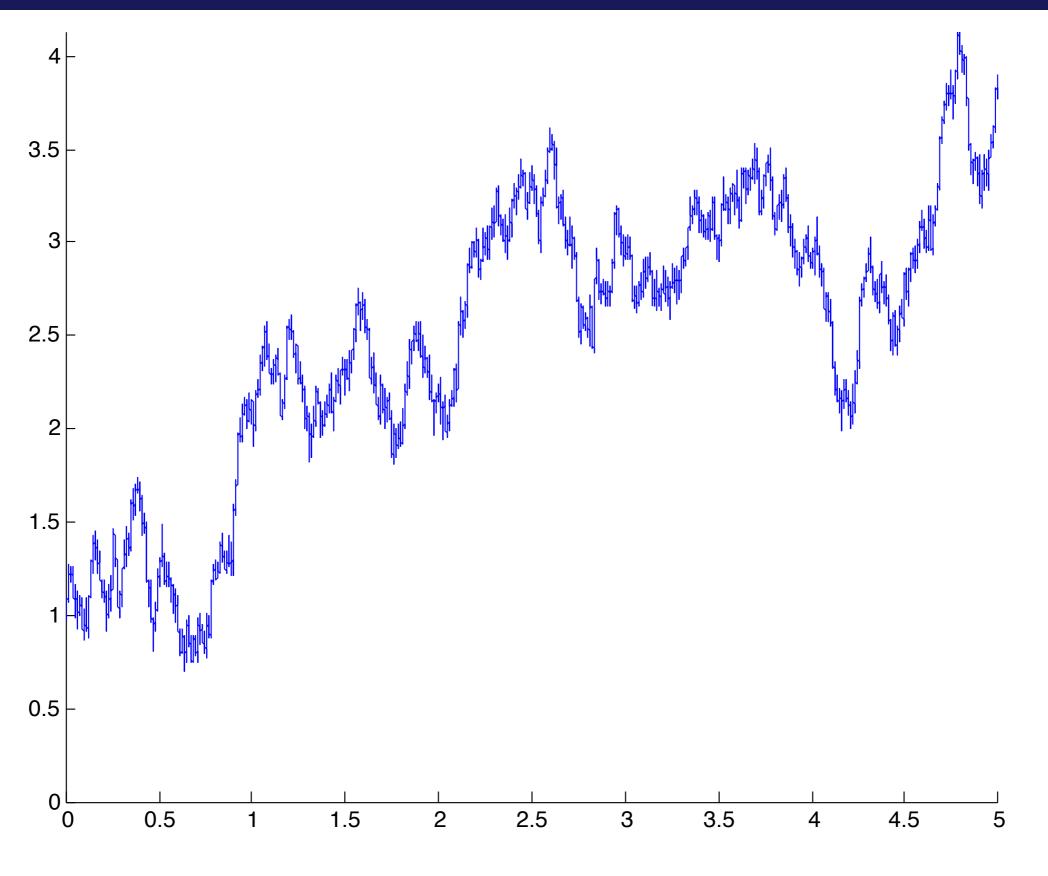


Figure: Illustration of the transient case.

 \bigwedge Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter \mathfrak{a}_n .

 $\checkmark \rightarrow$ Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter $\alpha_n.$

 $\bigwedge \to$ Construct a continuous-time Markov process L_n such that the following equality in distribution holds

$$\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \quad \stackrel{(d)}{=} \quad (\exp(L_n(\tau_n(t)));t \ge 0),$$

 \bigwedge Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter \mathfrak{a}_n .

 $\bigwedge \to$ Construct a continuous-time Markov process L_n such that the following equality in distribution holds

$$\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \quad \stackrel{(d)}{=} \quad (\exp(L_n(\tau_n(t)));t \ge 0),$$

where τ_n is a Lamperti-type time change of L_n .

 $\checkmark \rightarrow$ Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter $a_n.$

 $\bigwedge \to$ Construct a continuous-time Markov process L_n such that the following equality in distribution holds

$$\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \quad \stackrel{(d)}{=} \quad (\exp(L_n(\tau_n(t)));t \ge 0),$$

where τ_n is a Lamperti-type time change of L_n .

Strategy:

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators)

 $\checkmark \rightarrow$ Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter $a_n.$

 $\bigwedge \to$ Construct a continuous-time Markov process L_n such that the following equality in distribution holds

$$\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \quad \stackrel{(d)}{=} \quad (\exp(L_n(\tau_n(t)));t \ge 0),$$

where τ_n is a Lamperti-type time change of L_n .

Strategy:

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators)

2) τ_n converges in distribution towards τ (the time changes do not explode).

 $\checkmark \rightarrow$ Embed X_n in continuous time: let \mathcal{N}_n be an independent Poisson process of parameter $a_n.$

 $\bigwedge \to$ Construct a continuous-time Markov process L_n such that the following equality in distribution holds

$$\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \quad \stackrel{(d)}{=} \quad (\exp(L_n(\tau_n(t)));t \ge 0),$$

where τ_n is a Lamperti-type time change of L_n .

Strategy:

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators)

2) τ_n converges in distribution towards τ (the time changes do not explode). Hence

$$\left(\frac{X_{n}(\lfloor a_{n}t \rfloor)}{n}; t \ge 0\right) \quad \xrightarrow[n \to \infty]{} (exp(\xi(\tau(t))); t \ge 0) \quad = \quad Y$$

In the case where the Markov chain is non-increasing, Haas & Miermont:

In the case where the Markov chain is non-increasing, Haas & Miermont:

- Establish tightness,

In the case where the Markov chain is non-increasing, Haas & Miermont:

- Establish tightness,
- Analyze weak limits of convergent subsequences via martingale problems.

The process L_n is designed in the following way:

Goals and motivation	Transient case	Recurrent case	Positive recurrent case
Details			

$$\tau_{n}(t) = \inf \left\{ u \ge 0; \int_{0}^{u} \frac{a_{n} \exp(L_{n}(s))}{a_{n}} ds > t \right\},$$

then $\left(\frac{1}{n} X_{n}(\mathcal{N}_{n}(t)); t \ge 0\right) \stackrel{(d)}{=} (\exp(L_{n}(\tau_{n}(t))); t \ge 0)$

$$\begin{aligned} \tau_n(t) &= \inf\left\{u \geqslant 0; \int_0^u \frac{a_{n\exp(L_n(s))}}{a_n} \, ds > t\right\},\\ \text{then } \left(\frac{1}{n} X_n(\mathcal{N}_n(t)); t \geqslant 0\right) \stackrel{(d)}{=} (\exp(L_n(\tau_n(t))); t \geqslant 0), \text{ and}\\ 1) \ L_n \text{ converges in distribution to } \xi \end{aligned}$$

$$\tau_{n}(t) = \inf \left\{ u \ge 0; \int_{0}^{u} \frac{a_{n \exp(L_{n}(s))}}{a_{n}} ds > t \right\},$$

then $\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \stackrel{(d)}{=} (\exp(L_n(\tau_n(t)));t \ge 0)$, and

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators, no boundary issues)

$$\tau_{n}(t) = \inf \left\{ u \ge 0; \int_{0}^{u} \frac{a_{n \exp(L_{n}(s))}}{a_{n}} ds > t \right\},$$

then $\left(\frac{1}{n}X_n(\mathcal{N}_n(t)); t \ge 0\right) \stackrel{(d)}{=} (\exp(L_n(\tau_n(t))); t \ge 0)$, and

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators, no boundary issues)

2) τ_n converges in distribution to

$$\tau(\mathbf{t}) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

$$\tau_{n}(t) = \inf \left\{ u \ge 0; \int_{0}^{u} \frac{a_{n \exp(L_{n}(s))}}{a_{n}} ds > t \right\},$$

then $\left(\frac{1}{n}X_n(\mathcal{N}_n(t));t \ge 0\right) \stackrel{(d)}{=} (\exp(L_n(\tau_n(t)));t \ge 0)$, and

1) L_n converges in distribution to ξ (characterization of functional convergence of Feller processes by generators, no boundary issues)

2) τ_n converges in distribution to

$$\tau(t) = \inf \left\{ u \ge 0; \int_0^u e^{\gamma \xi(s)} ds > t \right\}$$

(the time changes do not explode since $I_{\infty} = \infty$).

I. GOALS AND MOTIVATION

II. TRANSIENT CASE

III. RECURRENT CASE

IV. Positive recurrent case

Igor Kortchemski Scaling limits of Markov chains on the positive integers

Goals and motivation	Transient case	Recurrent case	Positive recurrent case

What happens when ξ drifts to $-\infty,$ in which case $I_\infty < \infty$ and Y is absorbed in 0 ?

Fix $K \ge 1$ such that the set $\{1, 2, ..., K\}$ is accessible by X_n for every $n \ge 1$

Fix $K \ge 1$ such that the set $\{1, 2, ..., K\}$ is accessible by X_n for every $n \ge 1$ (meaning that $\inf\{i \ge 0; X_n(i) \le K\} < \infty$ with positive probability for every $n \ge 1$).

Fix $K \ge 1$ such that the set $\{1, 2, ..., K\}$ is accessible by X_n for every $n \ge 1$ (meaning that $\inf\{i \ge 0; X_n(i) \le K\} < \infty$ with positive probability for every $n \ge 1$).

Let X_n^{\dagger} be the Markov chain X_n stopped at its first visit to $\{1, 2, ..., K\}$

Fix $K \ge 1$ such that the set $\{1, 2, ..., K\}$ is accessible by X_n for every $n \ge 1$ (meaning that $\inf\{i \ge 0; X_n(i) \le K\} < \infty$ with positive probability for every $n \ge 1$).

Let X_n^{\dagger} be the Markov chain X_n stopped at its first visit to $\{1, 2, ..., K\}$, that is $X_n^{\dagger}(\cdot) = X_n(\cdot \wedge A_n^{(K)})$, where $A_n^{(K)} = \inf\{k \ge 1; X_n(k) \le K\}$.

Fix $K \ge 1$ such that the set $\{1, 2, ..., K\}$ is accessible by X_n for every $n \ge 1$ (meaning that $\inf\{i \ge 0; X_n(i) \le K\} < \infty$ with positive probability for every $n \ge 1$).

Let X_n^{\dagger} be the Markov chain X_n stopped at its first visit to $\{1, 2, ..., K\}$, that is $X_n^{\dagger}(\cdot) = X_n(\cdot \wedge A_n^{(K)})$, where $A_n^{(K)} = \inf\{k \ge 1; X_n(k) \le K\}$.

 \checkmark First step: study scaling limits of

$$\left(\frac{X_{n}^{\dagger}(\lfloor a_{n}t \rfloor)}{n}; t \ge 0\right)$$

	Goals	and	motivation
--	-------	-----	------------

(A3). There exists $\beta > 0$ such that

$$\limsup_{n\to\infty} a_n \cdot \int_1^\infty e^{\beta x} \ \Pi_n^*(dx) < \infty.$$

Goals and motivation	Transient case	Recurrent case	Positive recurrent cas
$(\Lambda 2)$ There ex	$rac{R} > 0$ such that		
(AS). There ex	ists $\beta > 0$ such that		
	$\limsup_{n\to\infty} a_n \cdot \int_1^\infty e^{i\theta_n} d\theta_n$	$e^{\beta x} \prod_{n=1}^{\infty} (dx) < \infty.$	
Theorem (B	ertoin & K. '14 — Re	ecurrent case).	
	(A1) , (A2) , (A3) ho the convergence	ld and that the Lévy p	rocess ξ drifts
	$\left(X_{n}^{\dagger}(a_{n}t)\right)$	(d)	

$$\left(\frac{\lambda_{n}(\lfloor a_{n}\tau \rfloor)}{n};t \ge 0\right) \quad \stackrel{(d)}{\xrightarrow[n \to \infty]{}} \quad (\mathbf{Y}(t);t \ge 0)$$

holds in distribution in $\mathbb{D}(\mathbb{R}_+, \mathbb{R})$.

Goals and motivation	Transient case	Recurrent case	Positive recurrent cas
(A3). There e>	sists $\beta > 0$ such that		
	$\limsup_{n\to\infty} \mathfrak{a}_n \cdot \int_1^\infty \mathfrak{a}_n$	$e^{\beta x} \prod_{n=1}^{\infty} (dx) < \infty.$	
Theorem (B	ertoin & K. '14 — Re	ecurrent case).	
	(A1), (A2), (A3) ho the convergence	ld and that the Lévy p	rocess <mark>ξ</mark> drifts
	$\left(\frac{X_n^{\dagger}(\lfloor a_n t \rfloor)}{n}; t \ge 0\right)$	$\xrightarrow[n \to \infty]{(d)} (Y(t); t \ge 0)$	

holds in distribution in $\mathbb{D}(\mathbb{R}_+, \mathbb{R})$.

(established by Haas & Miermont '11 in the non-increasing case)

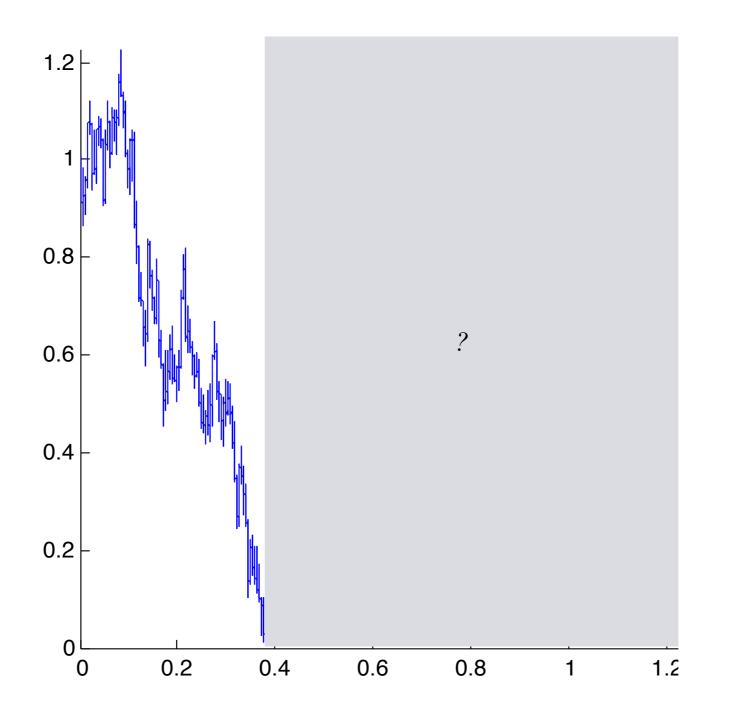


Figure: Illustration of the recurrent case.

Proof of the recurrent case

 \wedge How does the process behave when reaching low values (when the time change explodes) ?

Proof of the recurrent case

 \wedge How does the process behave when reaching low values (when the time change explodes) ?

 $\wedge \rightarrow$ One has to check that the Markov chain will likely be absorbed before reaching "high" values (of order n) when started from "low" values (of order ϵn).

Idea: use Foster-Lyapounov techniques

If X is irreducible, it is recurrent if and only if

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

for every $K \geqslant 1$, the set $\{i \geqslant 1; f(i) \leqslant K\}$ is finite

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

```
for every K \ge 1, the set \{i \ge 1; f(i) \le K\} is finite
```

and

there exists a finite set $S_0 \subset \mathbb{N}$ s.t. for every $i \not\in S_0, \quad \sum_{j \geqslant 1} p_{i,j} f(j) \leqslant f(i).$

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

```
for every K \ge 1, the set \{i \ge 1; f(i) \le K\} is finite
```

and

 $\mathrm{there\ exists\ a\ finite\ set\ } S_0 \subset \mathbb{N} \mathrm{\ s.t.\ for\ every\ } i \not\in S_0, \quad \sum_{j \geqslant 1} p_{i,j} f(j) \leqslant f(i).$

∧→ Foster–Lyapounov functions allow to construct nonnegative supermartingales

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

```
for every K \ge 1, the set \{i \ge 1; f(i) \le K\} is finite
```

and

there exists a finite set $S_0 \subset \mathbb{N}$ s.t. for every $i \not\in S_0, \quad \sum_{j \geqslant 1} p_{i,j} f(j) \leqslant f(i).$

✓ Foster-Lyapounov functions allow to construct nonnegative supermartingales, and the criterion may be interpereted as a stochastic drift condition in analogy with Lyapounov's stability criteria for ordinary differential equations.

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

```
for every K \ge 1, the set \{i \ge 1; f(i) \le K\} is finite
```

and

there exists a finite set $S_0 \subset \mathbb{N}$ s.t. for every $i \not\in S_0, \quad \sum_{j \geqslant 1} p_{i,j} f(j) \leqslant f(i).$

✓ Foster-Lyapounov functions allow to construct nonnegative supermartingales, and the criterion may be interpereted as a stochastic drift condition in analogy with Lyapounov's stability criteria for ordinary differential equations.

∧→ In our case, we take $f(x) = x^{\beta_0}$.

If X is irreducible, it is recurrent if and only if there exists a function $f:\mathbb{N}\to\mathbb{R}_+$ s.t.

```
for every K \geqslant 1 , the set \{i \geqslant 1; f(i) \leqslant K\} is finite
```

and

there exists a finite set $S_0 \subset \mathbb{N}$ s.t. for every $i \not\in S_0, \quad \sum_{j \geqslant 1} p_{i,j} f(j) \leqslant f(i).$

✓ Foster-Lyapounov functions allow to construct nonnegative supermartingales, and the criterion may be interpereted as a stochastic drift condition in analogy with Lyapounov's stability criteria for ordinary differential equations.

$$\longrightarrow$$
 In our case, we take $f(x) = x^{\beta_0}$.

 $\stackrel{\checkmark}{\longrightarrow} \text{ In particular, if (A1), (A2), (A3) hold and } \xi \to -\infty \text{ almost surely,} \\ A_i^{(K)} < \infty \text{ for every } i \ge 1.$

Foster–Lyapounov techniques also allow to estimate the absorption time $A_n^{(K)} = \inf\{k \ge 1; X_n(k) \le K\}$:

Foster–Lyapounov techniques also allow to estimate the absorption time $A_n^{(K)} = \inf\{k \ge 1; X_n(k) \le K\}$:

Theorem (Bertoin & K. '14 — Convergence of absorption time). Assume that **(A1)**, **(A2)**, **(A3)** hold and that the Lévy process ξ drifts to $-\infty$. Then $\frac{A_n^{(K)}}{a_n} \quad \xrightarrow[n \to \infty]{} \int_0^\infty e^{\gamma \xi(s)} ds.$

Foster–Lyapounov techniques also allow to estimate the absorption time $A_n^{(K)} = \inf\{k \ge 1; X_n(k) \le K\}$:

Theorem (Bertoin & K. '14 — Convergence of absorption time). Assume that **(A1)**, **(A2)**, **(A3)** hold and that the Lévy process ξ drifts to $-\infty$. Then $\frac{A_n^{(K)}}{a_n} \quad \stackrel{(d)}{\longrightarrow} \quad \int_0^\infty e^{\gamma \xi(s)} ds.$

(established by Haas & Miermont '11 in the non-increasing case)

I. GOALS AND MOTIVATION

II. TRANSIENT CASE

III. RECURRENT CASE

IV. POSITIVE RECURRENT CASE

Let Ψ be the Laplace exponent of ξ :

$$\Psi(\lambda) = \Phi(-i\lambda) = \frac{1}{2}\sigma^2\lambda^2 + b\lambda + \int_{-\infty}^{\infty} \left(e^{\lambda x} - 1 - \lambda x \mathbb{1}_{|x| \leq 1}\right) \ \Pi(dx),$$

Let Ψ be the Laplace exponent of ξ :

$$\Psi(\lambda) = \Phi(-i\lambda) = \frac{1}{2}\sigma^2\lambda^2 + b\lambda + \int_{-\infty}^{\infty} \left(e^{\lambda x} - 1 - \lambda x \mathbb{1}_{|x| \leqslant 1}\right) \ \Pi(dx),$$

so that

$$\mathbb{E}\left[e^{\lambda\xi(t)}\right] = e^{t\Psi(\lambda)}.$$

Goals and motivation		Transient case	Recurrent case	Positive recurrent case	
	(A4). There exists ($\beta_0 > \gamma$ s.t.			
	$\limsup_{n\to\infty} \mathfrak{a}_n \cdot \int_{\mathbb{R}}$	$\int_{1}^{\infty} e^{\beta_0 x} \Pi_n^*(dx) < \infty$	and	$\Psi(\beta_0) < 0.$	

(A4). There exists
$$\beta_0 > \gamma$$
 s.t.

$$\lim_{n \to \infty} \sup a_n \cdot \int_1^\infty e^{\beta_0 x} \prod_n^* (dx) < \infty \quad \text{and} \quad \Psi(\beta_0) < 0.$$

(A5). For every
$$n \ge 1$$
, we have $\mathbb{E}\left[X_n(1)^{\beta_0}\right] = \sum_{k \ge 1} k^{\beta_0} \cdot p_{n,k} < \infty$.

Goals and motivationTransient caseRecurrent casePositive recurrent case(A4). There exists
$$\beta_0 > \gamma$$
 s.t. $\limsup_{n \to \infty} a_n \cdot \int_1^\infty e^{\beta_0 x} \prod_n^* (dx) < \infty$ and $\Psi(\beta_0) < 0.$

(A5). For every
$$n \ge 1$$
, we have $\mathbb{E}\left[X_n(1)^{\beta_0}\right] = \sum_{k \ge 1} k^{\beta_0} \cdot p_{n,k} < \infty$.

$$\begin{array}{l} \textbf{Theorem (Bertoin \& K. '14 - Positive recurrent case).} \\ \text{Assume that (A1), (A2), (A4), and (A5) hold. Then the convergence} \\ \left(\frac{X_n(\lfloor a_n t \rfloor)}{n}; t \geqslant 0 \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\overset{(d)}{\overset{}}}} \quad (Y(t); t \geqslant 0) \\ \text{holds in distribution in } \mathbb{D}(\mathbb{R}_+, \mathbb{R}). \end{array}$$

(A5). For every
$$n \ge 1$$
, we have $\mathbb{E}\left[X_n(1)^{\beta_0}\right] = \sum_{k \ge 1} k^{\beta_0} \cdot p_{n,k} < \infty$.

$$\begin{array}{l} \textbf{Theorem (Bertoin \& K. '14 - Positive recurrent case).} \\ \text{Assume that (A1), (A2), (A4), and (A5) hold. Then the convergence} \\ \left(\frac{X_n(\lfloor a_n t \rfloor)}{n}; t \geqslant 0 \right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (Y(t); t \geqslant 0) \\ \text{holds in distribution in } \mathbb{D}(\mathbb{R}_+, \mathbb{R}). \end{array}$$

(established by Haas & Miermont '11 in the non-increasing case)

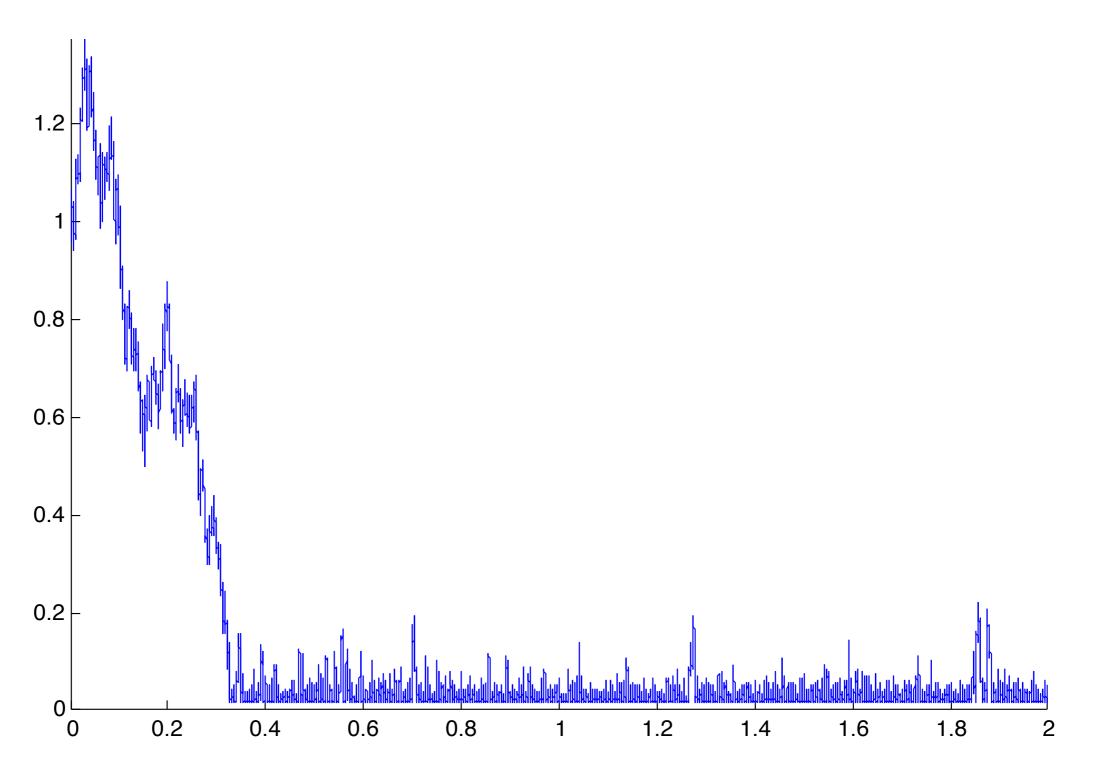


Figure: Illustration of the positive recurrent case.

Foster-Lyapounov is back

\bigwedge First step: show that

$$\frac{\mathbb{E}\left[A_{n}^{(\mathsf{K})}\right]}{\mathfrak{a}_{n}} \xrightarrow[n \to \infty]{} \mathbb{E}\left[\int_{0}^{\infty} e^{\gamma \xi(s)} \mathrm{d}s\right] = \frac{1}{|\Psi(\gamma)|}.$$

\bigwedge First step: show that

$$\frac{\mathbb{E}\left[A_{n}^{(\mathsf{K})}\right]}{a_{n}} \xrightarrow[n \to \infty]{} \mathbb{E}\left[\int_{0}^{\infty} e^{\gamma \xi(s)} ds\right] = \frac{1}{|\Psi(\gamma)|}.$$

(N.B. This does not necessarily hold in the recurrent but not positive recurrent case).

\checkmark First step: show that

$$\frac{\mathbb{E}\left[A_{n}^{(\mathsf{K})}\right]}{\mathfrak{a}_{n}} \xrightarrow[n \to \infty]{} \mathbb{E}\left[\int_{0}^{\infty} e^{\gamma \boldsymbol{\xi}(s)} \mathrm{d}s\right] = \frac{1}{|\Psi(\gamma)|}.$$

(N.B. This does not necessarily hold in the recurrent but not positive recurrent case).

∧→ Second step: show that that this implies that the maximum of a_n excursions starting from {1, 2, ..., K} cannot be of order n.

QUESTIONS

Question.

Is it true that the "recurrent" case remains valid if (A3) is replaced with the condition $\inf\{i \ge 1; X_n(i) \le K\} < \infty$ almost surely for every $n \ge 1$?

Question.

Is it true that the "recurrent" case remains valid if (A3) is replaced with the condition $\inf\{i \ge 1; X_n(i) \le K\} < \infty$ almost surely for every $n \ge 1$?

Question.

Is it true that the "positive recurrent" case remains valid if **(A4)** is replaced with the condition that $\mathbb{E}[\inf\{i \ge 1; X_n(i) \le K\}] < \infty$ for every $n \ge 1$?

Question.

Is it true that the "recurrent" case remains valid if (A3) is replaced with the condition $\inf\{i \ge 1; X_n(i) \le K\} < \infty$ almost surely for every $n \ge 1$?

Question.

Is it true that the "positive recurrent" case remains valid if **(A4)** is replaced with the condition that $\mathbb{E}[\inf\{i \ge 1; X_n(i) \le K\}] < \infty$ for every $n \ge 1$?

Question.

Assume that (A1), (A2) (A3) hold, and that there exists an integer $1 \leq n \leq K$ such that $\mathbb{E}[\inf\{i \ge 1; X_n(i) \le K\}] = \infty$.

Question.

Is it true that the "recurrent" case remains valid if (A3) is replaced with the condition $\inf\{i \ge 1; X_n(i) \le K\} < \infty$ almost surely for every $n \ge 1$?

Question.

Is it true that the "positive recurrent" case remains valid if **(A4)** is replaced with the condition that $\mathbb{E}[\inf\{i \ge 1; X_n(i) \le K\}] < \infty$ for every $n \ge 1$?

Question.

Assume that **(A1)**, **(A2) (A3)** hold, and that there exists an integer $1 \le n \le K$ such that $\mathbb{E}[\inf\{i \ge 1; X_n(i) \le K\}] = \infty$. Under what conditions on the probability distributions $X_1(1), X_2(1), \ldots, X_K(1)$ does the Markov chain X_n have a continuous scaling limit (in which case 0 is a continuously reflecting boundary)? A discontinuous càdlàg scaling limit (in which case 0 is a discontinuously reflecting boundary)?

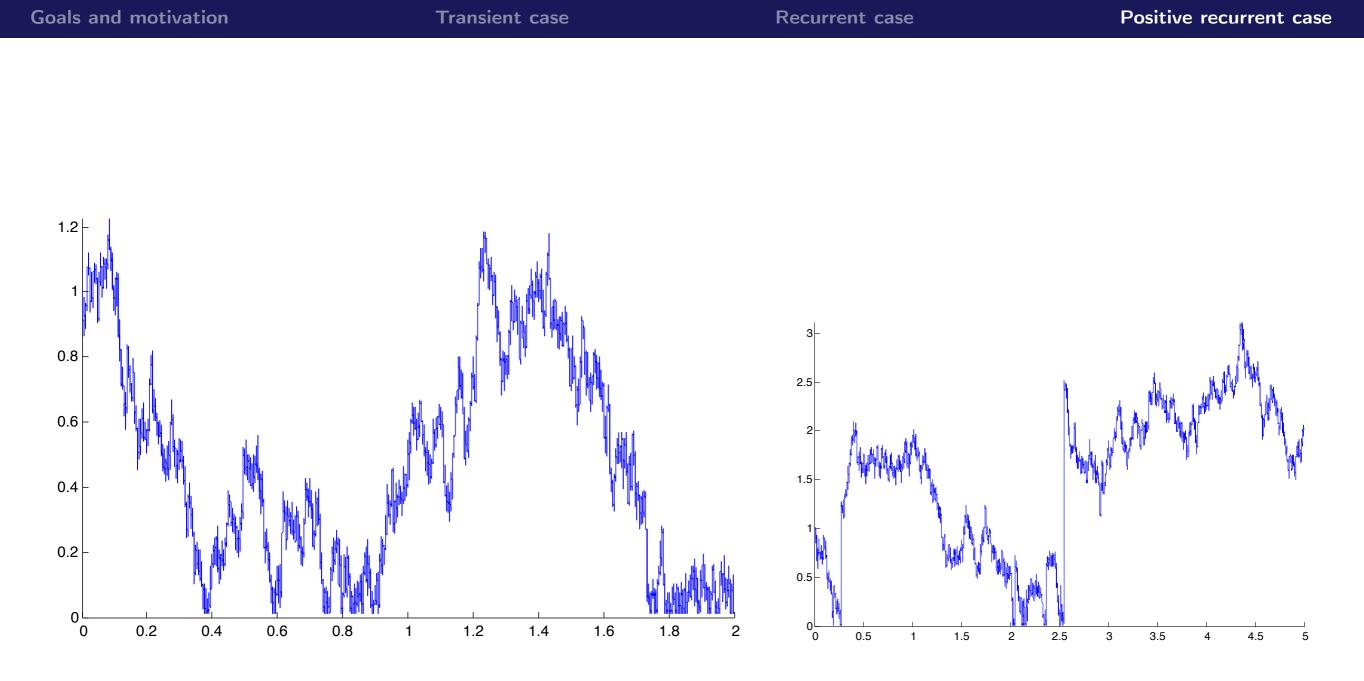


Figure: Illustration of the null recurrent case with different behavior near the boundary.