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Goal and motivation

Goal: give explicit criteria for Markov chains on the positive integers starting
from large values to have a functional scaling limit.

Motivations and applications:
1. extend a result of Haas & Miermont ’11 concerning non-increasing

Markov-chains,

2. recover a result of Caravenna & Chaumont ’08 concerning invariance
principles for random walks conditioned to remain positive,

3. study Markov chains with asymptotically zero drift,
4. obtain limit theorems for the number of fragments in a

fragmentation-coagulation process,
5. study separating cycles in large random maps (joint project with Jean

Bertoin & Nicolas Curien, which motivated this work)
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Goal

Let (p
i,j

; i > 1) be a sequence of non-negative real numbers such thatP
i>1

p

i,j

= 1 for every i > 1.

Let (X
n

(k); k > 0) be the discrete-time homogeneous Markov chain started at
state n such that the probability transition from state i to state j is p

i,j

for
i, j > 1.

y Goal: find explicit conditions on (p
n,k

) yielding the existence of a
sequence a

n

! 1 and a càdlàg process Y such that the convergence
✓
X

n

(ba
n

tc)
n

; t > 0

◆
(d)�!

n!1
(Y(t); t > 0)

holds in distribution (in the space of real-valued càdlàg functions D(R+,R) on
R+ equipped with the Skorokhod topology).
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Simple example

If p
1,2

= 1 and p

n,n±1

= ± 1

2

for n > 2:
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Figure: Linear interpolation of the process

⇣
Xn(bn2

tc)
n

; 0 6 t 6 3
⌘

for n = 50 and

n = 5000.

The scaling limit is reflected Brownian motion.
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Description of the limiting process

y It is well-known (Lamperti ’60) that self-similar processes arise as the
scaling limit of general stochastic processes.

y In the case of Markov chains, one naturally expects the Markov property to
be preserved after convergence: the scaling limit should belong to the class of
self-similar Markov processes on [0,1).
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Nonnegative self-similar Markov processes

Let (⇠(t))
t>0

be a Lévy process with characteristic exponent

�(�) = -
1

2

�

2

�

2 + ib�+

Z1

-1

�
e

i�x - 1- i�x |x|61

�
⇧(dx), � 2 R

i.e. E
⇥
e

i�⇠(t)
⇤
= e

t�(�) for t > 0, � 2 R.

Set
I1 =

Z1

0

e

�⇠(s)
ds 2 (0,1].

It is known that:
– I1 < 1 a.s. if ⇠ drifts to -1 (i.e. lim

t!1 ⇠(t) = -1 a.s.),

– I1 = 1 a.s. if ⇠ drifts to +1 or oscillates

.
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The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1). The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1).

The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1). The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1). The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1). The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

The Lamperti transform

Fix � > 0. For every t > 0, set

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(with the convention inf ; = 1). The Lamperti transform of ⇠ is defined by

Y(t) = e

⇠(⌧(t))
for 0 6 t < I1, Y(t) = 0 for t > I1.

The process Y hits 0 in finite time almost surely if, and only if, ⇠ drifts to -1.

By construction, the process Y is a self-similar Markov process of index 1/�

started at 1.

We will write that Y is a pSSMP(�)
1

(�,b,⇧).

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

Main notation

Let ⇧⇤
n

be the law of ln(X
n

(1)/n)

, which is the probability measure on R

⇧

⇤
n

(dx) =
X

k>1

p

n,k

· �
ln(k/n)(dx).

Let (a
n

)
n>0

be a sequence of positive real numbers with regular variation of
index � > 0, meaning that abxnc/an

! x

� as n ! 1 for every fixed x > 0.

Let ⇧ be a measure on R\{0} such that
Z1

-1
(1^ x

2) ⇧(dx) < 1.
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(A1). As n ! 1, vaguely on R\{0}, a
n

· ⇧⇤
n

(dx)
(v)�!

n!1
⇧(dx).
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(A1). As n ! 1, vaguely on R\{0}, a
n

· ⇧⇤
n

(dx)
(v)�!

n!1
⇧(dx).

This means that

a

n

· E

f

✓
X

n

(1)

n

◆�
�!
n!1

Z

R
f(ex) ⇧(dx)

for every continuous function f with compact support in [0,1]\{1}, i.e. a
jump of the process X

n

/n from 1 to x occurs with a small rate
1

an
exp �⇧(dx).
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(A1). As n ! 1, vaguely on R\{0}, a
n

· ⇧⇤
n

(dx)
(v)�!

n!1
⇧(dx).

(A2). The following two convergences holds:

a

n

·
Z
1

-1

x ⇧

⇤
n

(dx) �!
n!1

b,a

n

·
Z
1

-1

x

2

⇧

⇤
n

(dx) �!
n!1

�

2+

Z
1

-1

x

2

⇧(dx)

for some b 2 R and �

2 > 0.

Igor Kortchemski Scaling limits of Markov chains on the positive integers
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(A1). As n ! 1, vaguely on R\{0}, a
n

· ⇧⇤
n

(dx)
(v)�!

n!1
⇧(dx).

(A2). The following two convergences holds:

a

n

·
Z
1

-1

x ⇧

⇤
n

(dx) �!
n!1

b,a

n

·
Z
1

-1

x

2

⇧

⇤
n

(dx) �!
n!1

�

2+

Z
1

-1

x

2

⇧(dx)

for some b 2 R and �

2 > 0.

(Conditions very close to those giving convergence of infinitely divisible
distributions)
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Assume that (A1) and (A2) hold, and that ⇠ 6! -1. Then
✓
X

n

(ba
n

tc)
n

; t > 0

◆
(d)�!

n!1
(Y(t); t > 0)

holds in distribution in D(R+,R), where Y is a pSSMP(�)
1

(�,b,⇧).

Theorem (Bertoin & K. ’14 — transient case).
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Figure: Illustration of the transient case.
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Goals and motivation Transient case Recurrent case Positive recurrent case

Idea of the proof
y Embed X

n

in continuous time: let N
n

be an independent Poisson process
of parameter a

n

.

y Construct a continuous-time Markov process L

n

such that the following
equality in distribution holds

✓
1

n

X

n

(N
n

(t)); t > 0

◆
(d)
= (

exp(L
n

(⌧
n

(t))); t > 0

)
,

where ⌧

n

is a Lamperti-type time change of L
n

.

Strategy:

1) L

n

converges in distribution to ⇠ (characterization of functional convergence
of Feller processes by generators)

2) ⌧

n

converges in distribution towards ⌧ (the time changes do not explode).
Hence

✓
X

n

(ba
n

tc)
n

; t > 0

◆
(d)�!

n!1
(exp(⇠(⌧(t))); t > 0) = Y
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Goals and motivation Transient case Recurrent case Positive recurrent case

Difference with the approach of Haas & Miermont ’11

In the case where the Markov chain is non-increasing, Haas & Miermont:

– Establish tightness,

– Analyze weak limits of convergent subsequences via martingale problems.
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Goals and motivation Transient case Recurrent case Positive recurrent case

Details

The process L

n

is designed in the following way:

if n exp(L
n

) = j > 1, then it
waits a random time distributed as an exponential random variable of parameter
a

j

and then jumps to state k > 1 with probability p

j,k

.
If

⌧

n

(t) = inf

�
u > 0;

Z
u

0

a

n exp(Ln(s))

a

n

ds > t

�
,

then
✓
1

n

X

n

(N
n

(t)); t > 0

◆
(d)
= (

exp(L
n

(⌧
n

(t))); t > 0

), and

1) L

n

converges in distribution to ⇠ (characterization of functional convergence
of Feller processes by generators, no boundary issues)

2) ⌧

n

converges in distribution to

⌧(t) = inf

�
u > 0;

Z
u

0

e

�⇠(s)
ds > t

�

(the time changes do not explode since I1 = 1).
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I. Goals and motivation

II. Transient case

III. Recurrent case

IV. Positive recurrent case
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Goals and motivation Transient case Recurrent case Positive recurrent case

What happens when ⇠ drifts to -1, in which case I1 < 1 and Y is absorbed
in 0 ?
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Goals and motivation Transient case Recurrent case Positive recurrent case

y First step: understand the behavior of the Markov chain until it reaches a
“neighborhood” of 0.

Fix K > 1 such that the set {1, 2, . . . ,K} is accessible by X

n

for every n > 1

(meaning that inf{i > 0;X

n

(i) 6 K} < 1 with positive probability for every
n > 1).

Let X†
n

be the Markov chain X

n

stopped at its first visit to {1, 2, . . . ,K}, that is
X

†
n

(·) = X

n

(·^A

(K)
n

), where A

(K)
n

= inf{k > 1;X

n

(k) 6 K}.

y First step: study scaling limits of
 
X

†
n

(ba
n

tc)
n

; t > 0

!

.
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A3). There exists � > 0 such that

lim sup

n!1
a

n

·
Z1

1

e

�x

⇧

⇤
n

(dx) < 1.

Assume that (A1), (A2), (A3) hold and that the Lévy process ⇠ drifts
to -1. Then the convergence

 
X

†
n

(ba
n

tc)
n

; t > 0

!
(d)�!

n!1
(Y(t); t > 0)

holds in distribution in D(R+,R).

Theorem (Bertoin & K. ’14 — Recurrent case).

(established by Haas & Miermont ’11 in the non-increasing case)
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(established by Haas & Miermont ’11 in the non-increasing case)
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Figure: Illustration of the recurrent case.
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Goals and motivation Transient case Recurrent case Positive recurrent case

Proof of the recurrent case

y How does the process behave when reaching low values (when the time
change explodes) ?

y One has to check that the Markov chain will likely be absorbed before
reaching “high” values (of order n) when started from “low” values (of order ✏n).
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Goals and motivation Transient case Recurrent case Positive recurrent case

Idea: use Foster-Lyapounov techniques
If X is irreducible, it is recurrent if and only if

there exists a function f : N ! R+

s.t.
for every K > 1, the set {i > 1; f(i) 6 K} is finite

and

there exists a finite set S

0

⇢ N s.t. for every i 62 S

0

,

X

j>1

p

i,j

f(j) 6 f(i).

y Foster–Lyapounov functions allow to construct nonnegative
supermartingales, and the criterion may be interpereted as a stochastic drift
condition in analogy with Lyapounov’s stability criteria for ordinary differential
equations.

y In our case, we take f(x) = x

�

0 .

y In particular, if (A1), (A2), (A3) hold and ⇠ ! -1 almost surely,
A

(K)
i

< 1 for every i > 1.
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Goals and motivation Transient case Recurrent case Positive recurrent case

When starting from “low” values (of order ✏n), these Foster–Lyapounov
techniques allows to show that indeed the Markov chain will likely be absorbed
before reaching “high” values (of order n).

Foster–Lyapounov techniques also allow to estimate the absorption time
A

(K)
n

= inf{k > 1;X

n

(k) 6 K}:

Assume that (A1), (A2), (A3) hold and that the Lévy process ⇠ drifts
to -1. Then

A

(K)
n

a

n

(d)�!
n!1

Z1

0

e

�⇠(s)
ds.

Theorem (Bertoin & K. ’14 — Convergence of absorption time).

(established by Haas & Miermont ’11 in the non-increasing case)
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Goals and motivation Transient case Recurrent case Positive recurrent case

Let  be the Laplace exponent of ⇠:

 (�) = �(-i�) =
1

2

�

2

�

2 + b�+

Z1

-1

�
e

�x - 1- �x |x|61

�
⇧(dx),

so that
E
h
e

�⇠(t)
i
= e

t (�)
.
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A4). There exists �
0

> � s.t.

lim sup

n!1
a

n

·
Z1

1

e

�

0

x

⇧

⇤
n

(dx) < 1 and  (�
0

) < 0.

(A5). For every n > 1, we have E
⇥
X

n

(1)�0

⇤
=

X

k>1

k

�

0 · p
n,k

< 1.

Assume that (A1), (A2), (A4), and (A5) hold. Then the convergence
✓
X

n

(ba
n

tc)
n

; t > 0

◆
(d)�!

n!1
(Y(t); t > 0)

holds in distribution in D(R+,R).

Theorem (Bertoin & K. ’14 — Positive recurrent case).

(established by Haas & Miermont ’11 in the non-increasing case)
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Figure: Illustration of the positive recurrent case.
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Goals and motivation Transient case Recurrent case Positive recurrent case

Foster-Lyapounov is back

y First step: show that

E
h
A

(K)
n

i

a

n

�!
n!1

E
Z1

0

e

�⇠(s)
ds

�
=

1

| (�)|
.

(N.B. This does not necessarily hold in the recurrent but not positive recurrent
case).

y Second step: show that that this implies that the maximum of a
n

excursions starting from {1, 2, . . . ,K} cannot be of order n.
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Questions

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation Transient case Recurrent case Positive recurrent case

Is it true that the “recurrent” case remains valid if (A3) is replaced with
the condition inf{i > 1;X

n

(i) 6 K} < 1 almost surely for every n > 1?

Question.

Is it true that the “positive recurrent” case remains valid if (A4) is replaced
with the condition that E [

inf{i > 1;X

n

(i) 6 K}] < 1 for every n > 1?

Question.

Assume that (A1) , (A2) (A3) hold, and that there exists an integer 1 6
n 6 K such that E [

inf{i > 1;X

n

(i) 6 K}] = 1.

Under what conditions
on the probability distributions X

1

(1),X
2

(1), . . . , X
K

(1) does the Markov
chain X

n

have a continuous scaling limit (in which case 0 is a continuously
reflecting boundary)? A discontinuous càdlàg scaling limit (in which case
0 is a discontinuously reflecting boundary)?

Question.
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Figure: Illustration of the null recurrent case with different behavior near the boundary.
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