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Motivation

What does a “typical” random surface look like?
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y Idea: construct a (two-dimensional) random surface as a limit of random
discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a
surface homeomorphic to a sphere.

Figure: A large random triangulation (simulation by Nicolas Curien)
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The Brownian map

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n triangles.

View Tn as a compact metric space, by equipping
its vertices with the graph distance. Show that n−1/4 · Tn converges towards a
random compact metric space (the Brownian map), in distribution for the
Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge
to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque,
Bettinelli & Jacob & Miermont, Abraham)

, using various techniques (in
particular bijective codings by labelled trees).

(see Le Gall’s proceeding at ICM ’14 for more information and references)
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y Other motivations:

– links with two dimensional Liouville Quantum Gravity (David, Duplantier,
Garban, Kupianen, Maillard, Miller, Rhodes, Sheffield, Vargas, Zeitouni) c.f. the
talks of Jason Miller, Scott Sheffield and Vincent Vargas.

– study of random planar maps decorated with statistical physics models (Angel,
Berestycki, Borot, Bouttier, Guitter, Chen, Curien, Gwynne, K., Laslier, Mao,
Ray, Sheffield, Sun, Wilson), c.f. the talk by Gourab Ray.
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Outline

I. Boltzmann triangulations with a boundary

II. Peeling explorations

III. Cycles & growth-fragmentations
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Triangulations
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Definitions
A map is a finite connected graph properly embedded in the sphere (up to
orientation preserving continuous deformations).

A map is a triangulation
when all the faces are triangles. A map is rooted when an oriented edge is
distinguished.
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Definitions
A map is a finite connected graph properly embedded in the sphere (up to
orientation preserving continuous deformations). A map is a triangulation
when all the faces are triangles. A map is rooted when an oriented edge is
distinguished.

Figure: Two identical rooted triangulations.
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Triangulations with a boundary
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Definitions

A triangulation with a boundary is a map where all faces are triangles, except
possibly the one to the right of the root edge, called the external face.
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Another example of a triangulation with a boundary
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Definitions
A triangulation with a boundary is a map where all faces are triangles, except
possibly the one to the right of the root edge, called the external face.

A triangulation of the p-gon is a triangulation with a simple boundary of
length p.

A triangulation of the p-gon chosen at random proportionally to

(12
√
3)−#(internal vertices)

is called a (critical) Boltzmann triangulation of the p-gon.
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Cycles at heights
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The goal
Let T (p) be a random Boltzmann triangulation of the p-gon

, Br(T (p)) its ball of
radius r, and

L(p)(r) :=
(
L
(p)
1 (r),L

(p)
2 (r), . . .

)
.

be the lengths (or perimeters) of the cycles of Br(T (p)) ranked in decreasing
order.

t Br(t)

r

y Goal: obtain a functional invariance principle for (L(p)(r); r > 0). In this
spirit, a “breadth-first search” description of the Brownian map is given by Miller
& Sheffield ’15.
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I. Boltzmann triangulations with a boundary

II. Peeling explorations

III. Cycles & growth-fragmentations
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Geometry of random maps

Several techniques to study random maps:

– bijective techniques, following the work of Schaeffer ’98.

– peeling process, which is an algorithmic procedure that explores a map
step-by-step in a Markovian way (Watabiki ’95, Angel ’03).
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Branching peeling explorations
Intuitively speaking, the branching peeling process of a triangulation t is a
way to iteratively explore t starting from its boundary and by discovering at each
step a new triangle by peeling an edge determined by a peeling algorithm A.

And so on...
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I. Boltzmann triangulations with a boundary

II. Peeling explorations

III. Cycles & growth-fragmentations
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The goal

Let T (p) be a random Boltzmann triangulation of the p-gon, Br(T (p)) its ball of
radius r, and

L(p)(r) :=
(
L
(p)
1 (r),L

(p)
2 (r), . . .

)
.

be the lengths (or perimeters) of the cycles of Br(T (p)) ranked in decreasing
order.

t Br(t)

r

y Goal: obtain a functional invariance principle for (L(p)(r); r > 0).
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Following the locally largest cycle
y Idea: follow the locally largest cycle at each peeling step and consider its
length L̃(p)(r) after r peeling steps.

L̃(4)(0) = 4
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Scaling limit for the locally largest cycle

Recall that L̃(p)(r) the length of the locally largest cycle after r peeling steps.

y Key fact : (L̃(p)(r); r > 0) is a Markov chain on the nonnegative integers,
started at p, absorbed at 0 and with explicit transitions. In addition, the
triangulations filling-in the unexplored holes are Boltzmann triangulations.

If L(p)(r) the length of the locally largest cycle at height r, with the help of
Bertoin & K. ’14 and Curien & Le Gall ’14, we get that:

We have(
1

p
L(p) (b

√
p · tc) ; t > 0

)
(d)−→
p→∞

(
X

(
3

2
√
π
· t
)
; t > 0

)
,

Proposition (Bertoin, Curien & K. ’15).

where X is a càdlàg self-similar process with X(0) = 1 and absorbed at 0.
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The self-similar process X
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The self-similar process X

Let ξ be the spectrally negative Lévy process with Laplace exponent

Ψ(q) = −
8

3
q+

∫1
1/2

(xq − 1+ q(1− x))
(
x(1− x)

)−5/2
dx,

so that E[exp(qξ(t))] = exp(tΨ(q)) for every t > 0 and q > 0.

Then set

τ(t) = inf

{
u > 0;

∫u
0

εξ(s)/2ds > t

}
, t > 0

with the convention that inf ∅ =∞, i.e. τ(t) =∞ whenever t >
∫∞
0 ε

ξ(s)/2ds.

Finally, set
X(t) = exp (ξ(τ(t))) , t > 0

(with the convention exp (ξ(∞)) = 0), which is a self-similar Markov process
(Lamperti transformation).
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Defining the growth-fragmentation
We use X to define a self-similar growth-fragmentation process with binary
dislocations.

We view X(t) as the size of a typical particle or cell at age t, and:

– Start at time 0 from a single cell with size 1, and suppose that its size evolves
according to X. We interpret each (negative) jump of X as a division event for
the cell, in the sense that whenever ∆X(t) = X(t) − X(t−) = −y < 0, the cell
divides at time t into a mother cell and a daughter.

y After the splitting event, the mother cell has size X(t) and the daughter
cell has size y and the evolution of the daughter cell is then governed by the law
of the same self-similar Markov process X (starting of course from y), and is
independent of the processes of all the other daughter particles.

And so on for the granddaughters, then great-granddaughters, ...

By Bertoin ’15, for every t > 0, the family of the sizes of cells which are present
in the system at time t is cube-summable, and can therefore be ranked in
non-increasing order. This yields a random variable with values in `↓3 which we
denote by X(t) = (X1(t),X2(t), . . .).
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Description of the growth-fragmentation
We can think of X as a self-similar compensated fragmentation, in the sense
that it describes the evolution of particles that grow and divide independently
one of the other as time passes:

y X fulfills the branching property, and is self-similar with index −1/2, in the
sense that for every c > 0, the rescaled process (cX(c−1/2t), t > 0) has the
same law as X started from the sequence (c, 0, 0, . . .).

y The dislocations occurring in X are binary, i.e. they correspond to replacing
some mass m in the system by two smaller masses m1 and m2 with
m1 +m2 = m. Informally, in X, each mass m > 0 splits into a pair of smaller
masses (xm, (1− x)m) at rate m−1/2ν(dx), where

ν(dx) = (x(1− x))−5/2dx.

y We have
∫
(1− x)2ν(dx) <∞, but

∫
(1− x)ν(dx) =∞ which underlines

the necessity of compensating the dislocations.
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y The dislocations occurring in X are binary, i.e. they correspond to replacing
some mass m in the system by two smaller masses m1 and m2 with
m1 +m2 = m.

Informally, in X, each mass m > 0 splits into a pair of smaller
masses (xm, (1− x)m) at rate m−1/2ν(dx), where

ν(dx) = (x(1− x))−5/2dx.

y We have
∫
(1− x)2ν(dx) <∞, but

∫
(1− x)ν(dx) =∞ which underlines

the necessity of compensating the dislocations.
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Cycles and growth-fragmentations
Recall that L(p)(r) =

(
L
(p)
1 (r),L

(p)
2 (r), . . .

)
are the lengths of the cycles of

Br(T
(p)) ranked in decreasing order.

We have(
1

p
· L(p)

(
r
√
p
)
; r > 0

)
(d)−−−→
p→∞

(
X

(
3

2
√
π
· r
)
; r > 0

)
,

where X = (X(t); t > 0) is a self-similar growth-fragmentation process
with index −1/2 associated with ξ. The convergence holds in distribution
in the space of càdlàg process taking values in `↓3 equipped with the
Skorokhod topology.

Theorem (Bertoin, Curien, K. ’15).

Recall that

Ψ(q) = −
8

3
q+

∫1
1/2

(xq − 1+ q(1− x))
(
x(1− x)

)−5/2
dx.
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Cycles and growth-fragmentations

Figure: An artistic representation of the cycle lengths of a Boltzmann triangulation
with a large boundary obtained by slicing it at all heights: horizontal line segments
correspond to the lengths of the cycles of the ball of radius r of the triangulation as r
increases. Here the longest cycles are the darkest ones.
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