
Preface

This book is a continuation Mathematical Olympiads 1995-1996: Olympiad
Problems from Around the World, published by the American Mathemat-
ics Competitions. It contains solutions to the problems from 25 national
and regional contests featured in the earlier pamphlet, together with se-
lected problems (without solutions) from national and regional contests
given during 1997.

This collection is intended as practice for the serious student who
wishes to improve his or her performance on the USAMO. Some of the
problems are comparable to the USAMO in that they came from na-
tional contests. Others are harder, as some countries first have a national
olympiad, and later one or more exams to select a team for the IMO. And
some problems come from regional international contests (“mini-IMOs”).

Different nations have different mathematical cultures, so you will find
some of these problems extremely hard and some rather easy. We have
tried to present a wide variety of problems, especially from those countries
that have often done well at the IMO.

Each contest has its own time limit. We have not furnished this in-
formation, because we have not always included complete contests. As a
rule of thumb, most contests allow a time limit ranging between one-half
to one full hour per problem.

Thanks to Walter Mientka for his continuing support of this project,
and to the students of the 1997 Mathematical Olympiad Summer Program
for their help in preparing solutions.

The problems in this publication are copyrighted. Requests for repro-
duction permissions should be directed to:

Dr. Walter Mientka
Secretary, IMO Advisory Broad
1740 Vine Street
Lincoln, NE 68588-0658, USA.
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1 1996 National Contests:
Problems and Solutions

1.1 Bulgaria

1. Prove that for all natural numbers n ≥ 3 there exist odd natural
numbers xn, yn such that 7x2

n + y2
n = 2n.

Solution: For n = 3 we have x3 = y3 = 1. Now suppose that
for a given natural number n we have odd natural numbers xn, yn
such that 7x2

n + y2
n = 2n; we shall exhibit a pair (X,Y ) such that

7X2 + Y 2 = 2n+1. In fact,

7
(
xn ± yn

2

)2

+
(

7xn ∓ yn
2

)2

= 2(7x2
n + y2

n) = 2n+1.

One of (xn+ yn)/2 and |xn− yn|/2 is odd (as their sum is the larger
of xn and yn, which is odd), giving the desired pair.

2. The circles k1 and k2 with respective centers O1 and O2 are exter-
nally tangent at the point C, while the circle k with center O is
externally tangent to k1 and k2. Let ` be the common tangent of k1

and k2 at the point C and let AB be the diameter of k perpendicular
to `. Assume that O and A lie on the same side of `. Show that the
lines AO2, BO1, ` have a common point.

Solution: Let r, r1, r2 be the respective radii of k, k1, k2. Also let
M and N be the intersections of AC and BC with k. Since AMB
is a right triangle, the triangle AMO is isosceles and

∠AMO = ∠OAM = ∠O1CM = ∠CMO1.

Therefore O,M,O1 are collinear and AM/MC = OM/MO1 = r/r1.
Similarly O,N,O2 are collinear and BN/NC = ON/NO2 = r/r2.

Let P be the intersection of ` with AB; the lines AN,BM,CP con-
cur at the orthocenter of ABC, so by Ceva’s theorem, AP/PB =
(AM/MC)(CN/NB) = r2/r1. Now let D1 and D2 be the intersec-
tions of ` with BO1 and AO2. Then CD1/D1P = O1C/PB =
r1/PB, and similarly CD2/D2P = r2/PA. Thus CD1/D1P =
CD2/D2P and D1 = D2, and so AO2, BO1, ` have a common point.
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3. Let a, b, c be real numbers and let M be the maximum of the function
y = |4x3 + ax2 + bx + c| in the interval [−1, 1]. Show that M ≥ 1
and find all cases where equality occurs.

Solution: For a = 0, b = −3, c = 0, we have M = 1, with the
maximum achieved at −1,−1/2, 1/2, 1. On the other hand, if M < 1
for some choice of a, b, c, then

(4x3 + ax2 + bx+ c)− (4x3 + 3x)

must be positive at −1, negative at −1/2, positive at 1/2, and
negative at 1, which is impossible for a quadratic function. Thus
M ≥ 1, and the same argument shows that equality only occurs for
(a, b, c) = (0,−3, 0). (Note: this is a particular case of the minimum
deviation property of Chebyshev polynomials.)

4. The real numbers a1, a2, . . . , an (n ≥ 3) form an arithmetic progres-
sion. There exists a permutation ai1 , ai2 , . . . , ain of a1, a2, . . . , an
which is a geometric progression. Find the numbers a1, a2, . . . , an if
they are all different and the largest of them is equal to 1996.

Solution: Let a1 < a2 < · · · < an = 1996 and let q be the ratio of
the geometric progression ai1 , . . . ain ; clearly q 6= 0,±1. By reversing
the geometric progression if needed, we may assume |q| > 1, and so
|ai1 | < |ai2 | < · · · < |ain |. Note that either all of the terms are
positive, or they alternate in sign; in the latter case, the terms of
either sign form a geometric progression by themselves.

There cannot be three positive terms, or else we would have a three-
term geometric progression a, b, c which is also an arithmetic pro-
gression, violating the AM-GM inequality. Similarly, there cannot
be three negative terms, so there are at most two terms of each sign
and n ≤ 4.

If n = 4, we have a1 < a2 < 0 < a3 < a4 and 2a2 = a1 + a3,
2a3 = a2 + a4. In this case, q < −1 and the geometric progression is
either a3, a2, a4, a1 or a2, a3, a1, a4. Suppose the former occurs (the
argument is similar in the latter case); then 2a3q = a3q

3 + a3 and
2a3 + a3q + a3q

2, giving q = 1, a contradiction.

We deduce n = 3 and consider two possibilities. If a1 < a2 <
0 < a3 = 1996, then 2a2 = a2q

2 + a2q, so q2 + q − 2 = 0 and
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q = −2, yielding (a1, a2, a3) = (−3992,−998, 1996). If a1 < 0 <
a2 < a3 = 1996, then 2a2 = a2q + a2q

2, so again q = −2, yielding
(a1, a2, a3) = (−998, 499, 1996).

5. A convex quadrilateral ABC is given for which ∠ABC + ∠BCD <
180◦. The common point of the lines AB and CD is E. Prove that
∠ABC = ∠ADC if and only if

AC2 = CD · CE −AB ·AE.

Solution: Let C1 be the circumcircle of ADE, and let F be its
second intersection with CA. In terms of directed lengths, we have
AC2 = CD · CE +AB ·AE if and only if

AB ·AE = AC2 − CD · CE = CA2 − CA ·AF = AC ·AF,

that is, if and only if B,C,E, F are concyclic. But this happens if
and only if ∠EBC = ∠EFC, and

∠EFC = ∠EFA = π − ∠ADE = ∠CDA

(in directed angles modulo π), so B,C,E, F are concyclic if and only
if ∠ABC = ∠ADC (as undirected angles), as desired.

6. Find all prime numbers p, q for which pq divides (5p − 2p)(5q − 2q).

Solution: If p|5p− 2p, then p|5− 2 by Fermat’s theorem, so p = 3.
Suppose p, q 6= 3; then p|5q − 2q and q|5p − 2p. Without loss of
generality, assume p > q, so that (p, q − 1) = 1. Then if a is an
integer such that 2a ≡ 5 (mod q), then the order of a mod q divides
p as well as q − 1, a contradiction.

Hence one of p, q is equal to 3. If q 6= 3, then q|53 − 23 = 9 · 13, so
q = 13, and similarly p ∈ {3, 13}. Thus the solutions are (p, q) =
(3, 3), (3, 13), (13, 3).

7. Find the side length of the smallest equilateral triangle in which
three discs of radii 2, 3, 4 can be placed without overlap.

Solution: A short computation shows that discs of radii 3 and 4
can be fit into two corners of an equilateral triangle of side 11

√
3 so
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as to just touch, and that a disc of radius 2 easily fits into the third
corner without overlap. On the other hand, if the discs of radii 3
and 4 fit into an equilateral triangle without overlap, there exists a
line separating them (e.g. a tangent to one perpendicular to their
line of centers) dividing the triangle into a triangle and a (possibly
degenerate) convex quadrilateral. Within each piece, the disc can be
moved into one of the corners of the original triangle. Thus the two
discs fit into the corners without overlap, so the side length of the
triangle must be at least 11

√
3.

8. The quadratic polynomials f and g with real coefficients are such
that if g(x) is an integer for some x > 0, then so is f(x). Prove that
there exist integers m,n such that f(x) = mg(x) + n for all x.

Solution: Let f(x) = ax2 + bx + c and g(x) = px2 + qx + r;
assume without loss of generality p > 0 and q = 0 (by the change
of variable x → x − q/(2p)). Let k be an integer such that k > s
and t =

√
(k − s)/p > q/(2p). Since g(t) = k is an integer, so is

f(t) = a(k − s)/p+ bt+ c, as is

f

(√
k + 1− s

p

)
− f

(√
k − s
p

)
=

b
√
p

1√
k + 1− s−

√
k − s

+
a

p
.

This tends to a/p as k increases, so a/p must be an integer; moreover,
b must equal 0, or else the above expression will equal a/p plus a
small quantity for large k, which cannot be an integer. Now put
m = a/p and n = c−ms; then f(x) = mg(x) + n.

9. The sequence {an}∞n=1 is defined by

a1 = 1, an+1 =
an
n

+
n

an
, n ≥ 1.

Prove that for n ≥ 4, ba2
nc = n.

Solution: We will show by induction that
√
n ≤ an ≤ n/

√
n− 1

for n ≥ 1, which will imply the claim. These inequalities clearly
hold for n = 1, 2, 3. Now assume the inequality for some n. Let
fn(x) = x/n+ n/x. We first have for n ≥ 3,

an+1 = fn(an) ≥ fn
(

n√
n− 1

)
=

n√
n− 1

>
√
n+ 1.
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On the other hand, using that an > (n− 1)/
√
n− 2 (which we just

proved), we get for n ≥ 4,

an+1 = fn(an) < fn

(
n− 1√
n− 2

)
=

(n− 1)2 + n2(n− 2)
(n− 1)n

√
n− 2

<
√
n+ 2.

10. The quadrilateral ABCD is inscribed in a circle. The lines AB
and CD meet at E, while the diagonals AC and BD meet at F .
The circumcircles of the triangles AFD and BFC meet again at H.
Prove that ∠EHF = 90◦.

Solution: (We use directed angles modulo π.) Let O be the
circumcenter of ABCD; then

∠AHB = ∠AHF+∠FHB = ∠ADF+∠FCB = 2∠ADB = ∠AOB,

so O lies on the circumcircle of AHB, and similarly on the circum-
circle of CHD. The radical axes of the circumcircles of AHB,CHD
and ABCD concur; these lines are AB, CD and HO, so E,H,O are
collinear. Now note that

∠OHF = ∠OHC+∠CHF = ∠ODC+∠CBF =
π

2
−∠CAD+∠CBD,

so ∠EHF = ∠OHF = π/2 as desired. (Compare IMO 1985/5.)

11. A 7× 7 chessboard is given with its four corners deleted.

(a) What is the smallest number of squares which can be colored
black so that an uncolored 5-square (Greek) cross cannot be
found?

(b) Prove that an integer can be written in each square such that
the sum of the integers in each 5-square cross is negative while
the sum of the numbers in all squares of the board is positive.

Solution:

(a) The 7 squares

(2, 5), (3, 2), (3, 3), (4, 6), (5, 4), (6, 2), (6, 5)
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suffice, so we need only show that 6 or fewer will not suffice.
The crosses centered at

(2, 2), (2, 6), (3, 4), (5, 2), (5, 6), (6, 4)

are disjoint, so one square must be colored in each, hence 5
or fewer squares do not suffice. Suppose exactly 6 squares are
colored. Then none of the squares (1, 3), (1, 4), (7, 2) can be col-
ored; by a series of similar arguments, no square on the perime-
ter can be colored. Similarly, (4, 3) and (4, 5) are not covered,
and by a similar argument, neither is (3, 4) or (5, 4). Thus the
center square (4, 4) must be covered.
Now the crosses centered at

(2, 6), (3, 3), (5, 2), (5, 6), (6, 4)

are disjoint and none contains the center square, so each con-
tains one colored square. In particular, (2, 2) and (2, 4) are not
colored. Replacing (3, 3) with (2, 3) in the list shows that (3, 2)
and (3, 4) are not colored. Similar symmetric arguments now
show that no squares besides the center square can be covered,
a contradiction. Thus 7 squares are needed.

(b) Write −5 in the 7 squares listed above and 1 in the remaining
squares. Then clearly each cross has negative sum, but the total
of all of the numbers is 5(−7) + (45− 7) = 3.
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1.2 Canada

1. If α, β, γ are the roots of x3 − x− 1 = 0, compute

1− α
1 + α

+
1− β
1 + β

+
1− γ
1 + γ

.

Solution: The given quantity equals

2
(

1
α+ 1

+
1

β + 1
+

1
γ + 1

)
− 3.

Since P (x) = x3−x−1 has roots α, β, γ, the polynomial P (x−1) =
x3−3x2 +2x−1 has roots α+1, β+1, γ+1. By a standard formula,
the sum of the reciprocals of the roots of x3 + c2x

2 + c1x + c0 is
−c1/c0, so the given expression equals 2(2)− 3 = 1.

2. Find all real solutions to the following system of equations:

4x2

1 + 4x2
= y

4y2

1 + 4y2
= z

4z2

1 + 4z2
= x.

Solution: Define f(x) = 4x2/(1 + 4x2); the range of f is [0, 1),
so x, y, z must lie in that interval. If one of x, y, z is zero, then all
three are, so assume they are nonzero. Then f(x)/x = 4x/(1 +
4x2) is at least 1 by the AM-GM inequality, with equality for x =
1/2. Therefore x ≤ y ≤ z ≤ x, and so equality holds everywhere,
implying x = y = z = 1/2. Thus the solutions are (x, y, z) =
(0, 0, 0), (1/2, 1/2, 1/2).

3. Let f(n) be the number of permutations a1, . . . , an of the integers
1, . . . , n such that

(i) a1 = 1;

(ii) |ai − ai+1| ≤ 2, i = 1, . . . , n− 1.
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Determine whether f(1996) is divisible by 3.

Solution: Let g(n) be the number of permutations of the desired
form with an = n. Then either an−1 = n − 1 or an−1 = n − 2; in
the latter case we must have an−2 = n− 1 and an−3 = n− 3. Hence
g(n) = g(n−1)+g(n−3) for n ≥ 4. In particular, the values of g(n)
modulo 3 are g(1) = 1, 1, 1, 2, 0, 1, 0, 0, . . . repeating with period 8.

Now let h(n) = f(n)−g(n); h(n) counts permutations of the desired
form where n occurs in the middle, sandwiched between n−1 and n−
2. Removing n leaves an acceptable permutation, and any acceptable
permutation on n−1 symbols can be so produced except those ending
in n−4, n−2, n−3, n−1. Hence h(n) = h(n−1)+g(n−1)−g(n−4) =
h(n−1)+g(n−2); one checks that h(n) modulo 3 repeats with period
24.

Since 1996 ≡ 4 (mod 24), we have f(1996) ≡ f(4) = 4 (mod 3), so
f(1996) is not divisible by 3.

4. Let 4ABC be an isosceles triangle with AB = AC. Suppose that
the angle bisector of ∠B meets AC at D and that BC = BD+AD.
Determine ∠A.

Solution: Let α = ∠A, β = (π − α)/4 and assume AB = 1. Then
by the Law of Sines,

BC =
sinα
sin 2β

, BD =
sinα
sin 3β

, AD =
sinβ
sin 3β

.

Thus we are seeking a solution to the equation

sin(π − 4β) sin 3β = (sin(π − 4β) + sinβ) sin 2β.

Using the sum-to-product formula, we rewrite this as

cosβ − cos 7β = cos 2β − cos 6β + cosβ − cos 3β.

Cancelling cosβ, we have cos 3β − cos 7β = cos 2β − cos 6β, which
implies

sin 2β sin 5β = sin 2β sin 4β.

Now sin 5β = sin 4β, so 9β = π and β = π/9.
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5. Let r1, r2, . . . , rm be a given set of positive rational numbers whose
sum is 1. Define the function f by f(n) = n−

∑m
k=1brknc for each

positive integer n. Determine the minimum and maximum values of
f(n).

Solution: Of course brknc ≤ rkn, so f(n) ≥ 0, with equality for
n = 0, so 0 is the minimum value. On the other hand, we have
rkn− brknc < 1, so f(n) ≤ m− 1. Here equality holds for n = t− 1
if t is the least common denominator of the rk.
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1.3 China

1. Let H be the orthocenter of acute triangle ABC. The tangents from
A to the circle with diameter BC touch the circle at P and Q. Prove
that P,Q,H are collinear.

Solution: The line PQ is the polar of A with respect to the circle,
so it suffices to show that A lies on the pole of H. Let D and E
be the feet of the altitudes from A and B, respectively; these also
lie on the circle, and H = AD ∩ BE. The polar of the line AD
is the intersection of the tangents AA and DD, and the polar of
the line BE is the intersection of the tangents BB and EE. The
collinearity of these two intersections with C = AE∩BD follows from
applying Pascal’s theorem to the cyclic hexagons AABDDE and
ABBDEE. (An elementary solution with vectors is also possible
and not difficult.)

2. Find the smallest positive integer K such that every K-element sub-
set of {1, 2, . . . , 50} contains two distinct elements a, b such that a+b
divides ab.

Solution: The minimal value is k = 39. Suppose a, b ∈ S are such
that a+ b divides ab. Let c = gcd(a, b), and put a = ca1, b = cb1, so
that a1 and b1 are relatively prime. Then c(a1 + b1) divides c2a1b1,
so a1 + b1 divides ca1b1. Since a1 and b1 have no common factor,
neither do a1 and a1 + b1, or b1 and a1 + b1. In short, a1 + b1 divides
c.

Since S ⊆ {1, . . . , 50}, we have a+ b ≤ 99, so c(a1 + b1) ≤ 99, which
implies a1 + b1 ≤ 9; on the other hand, of course a1 + b1 ≥ 3. An
exhaustive search produces 23 pairs a, b satisfying the condition:

a1 + b1 = 3 (6, 3), (12, 6), (18, 9), (24, 12),
(30, 15), (36, 18), (42, 21), (48, 24)

a1 + b1 = 4 (12, 4), (24, 8), (36, 12), (48, 16)
a1 + b1 = 5 (20, 5), (40, 10), (15, 10), (30, 20), (45, 30)
a1 + b1 = 6 (30, 6)
a1 + b1 = 7 (42, 7), (35, 14), (28, 21)
a1 + b1 = 8 (40, 24)
a1 + b1 = 9 (45, 36)
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LetM = {6, 12, 15, 18, 20, 21, 24, 35, 40, 42, 45, 48} and T = {1, . . . , 50}−
M . Since each pair listed above contains an element of M , T does
not have the desired property. Hence we must take k ≥ |T |+1 = 39.

On the other hand, from the 23 pairs mentioned above we can select
12 pairs which are mutually disjoint:

(6, 3), (12, 4), (20, 5), (42, 7), (24, 8), (18, 9),
(40, 10), (35, 14), (30, 15), (48, 16), (28, 21), (45, 36).

Any 39-element subset must contain both elements of one of these
pairs. We conclude the desired minimal number is k = 39.

3. Let f : R→ R be a function such that for all x, y ∈ R,

f(x3 + y3) = (x+ y)(f(x)2 − f(x)f(y) + f(y)2). (1)

Prove that for all x ∈ R, f(1996x) = 1996f(x).

Solution: Setting x = y = 0 in the given equation, we have
f(0) = 0. Setting y = 0, we find f(x3) = xf(x)2, or equivalently,

f(x) = x1/3f(x1/3)2. (2)

In particular, x and f(x) always have the same sign, that is, f(x) ≥ 0
for x ≥ 0 and f(x) ≤ 0 for x ≤ 0.

Let S be the set

S = {a > 0 : f(ax) = af(x)∀x ∈ R}.

Clearly 1 ∈ S; we will show a1/3 ∈ S whenever a ∈ S. In fact,

axf(x)2 = af(x3) = f(ax3) = f((a1/3x)3) = a1/3f(a1/3x)2

and so
[a1/3f(x)]2 = f(a1/3x)2.

Since x and f(x) have the same sign, we conclude f(a1/3x) = a1/3f(x).

Now we show that a, b ∈ S implies a+ b ∈ S:

f((a+ b)x) = f((a1/3x1/3)3 + (b1/3x1/3)3)
= (a1/3 + b1/3)[f(a1/3x1/3)2 − f(a1/3x1/3)f(b1/3x1/3) + f(b1/3x1/3)2]
= (a1/3 + b1/3)(a2/3 − a1/3b1/3 + b2/3)x1/3f(x1/3)2

= (a+ b)f(x).
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By induction, we have n ∈ S for each positive integer n, so in par-
ticular, f(1996x) = 1996f(x) for all x ∈ R.

4. Eight singers participate in an art festival where m songs are per-
formed. Each song is performed by 4 singers, and each pair of singers
performs together in the same number of songs. Find the smallest
m for which this is possible.

Solution: Let r be the number of songs each pair of singers per-
forms together, so that

m

(
4
2

)
= r

(
8
2

)
and so m = 14r/3; in particular, m ≥ 14. However, m = 14 is indeed
possible, using the arrangement

{1, 2, 3, 4} {5, 6, 7, 8} {1, 2, 5, 6} {3, 4, 7, 8}
{3, 4, 5, 6} {1, 3, 5, 7} {2, 4, 6, 8} {1, 3, 6, 8}
{2, 4, 5, 7} {1, 4, 5, 8} {2, 3, 6, 7} {1, 4, 6, 7}
{1, 2, 7, 8} {2, 3, 5, 8}.

5. Suppose n ∈ N, x0 = 0, xi > 0 for i = 1, 2, . . . , n, and
∑n
i=1 xi = 1.

Prove that

1 ≤
n∑
i=1

xi√
1 + x0 + · · ·+ xi−1 ·

√
xi + · · ·+ xn

<
π

2
.

Solution: The left inequality follows from the fact that√
1 + x0 + x1 + · · ·+ xi−1

√
x1 + · · ·+ xn ≤

1
2

(1+x0+· · ·+xn) = 1,

so that the middle quantity is at least
∑
xi = 1. For the right

inequality, let

θi = arcsin(x0 + · · ·+ xi) (i = 0, . . . , n)

so that √
1 + x0 + x1 + · · ·+ xi−1

√
xi + · · ·+ xn = cos θi−1

14



and the desired inequality is

n∑
i=1

sin θi − sin θi−1

cos θi−1
<
π

2
.

Now note that

sin θi − sin θi−1 = 2 cos
θi + θi−1

2
sin

θi − θi−1

2
< cosθi−1(θi − θi−1),

using the facts that θi−1 < θi and that sinx < x for x > 0, so that

n∑
i=1

sin θi − sin θi−1

cos θi−1
<

n∑
i=1

θi − θi−1 = θn − θ0 <
π

2
,

as claimed.

6. In triangle ABC, ∠C = 90◦, ∠A = 30◦ and BC = 1. Find the
minimum of the length of the longest side of a triangle inscribed in
ABC (that is, one such that each side of ABC contains a different
vertex of the triangle).

Solution: We first find the minimum side length of an equilateral
triangle inscribed in ABC. Let D be a point on BC and put x =
BD. Then take points E,F on CA,AB, respectively, such that
CE =

√
3x/2 and BF = 1 − x/2. A calculation using the Law of

Cosines shows that

DF 2 = DE2 = EF 2 =
7
4
x2 − 2x+ 1 =

7
4

(
x− 4

7

)2

+
3
7
.

Hence the triangle DEF is equilateral, and its minimum possible
side length is

√
3/7.

We now argue that the minimum possible longest side must occur for
some equilateral triangle. Starting with an arbitrary triangle, first
suppose it is not isosceles. Then we can slide one of the endpoints
of the longest side so as to decrease its length; we do so until there
are two longest sides, say DE and EF . We now fix D, move E so
as to decrease DE and move F at the same time so as to decrease
EF ; we do so until all three sides become equal in length. (It is fine

15



if the vertices move onto the extensions of the sides, since the bound
above applies in that case as well.)

Hence the mininum is indeed
√

3/7, as desired.
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1.4 Czech and Slovak Republics

1. Prove that if a sequence {G(n)}∞n=0 of integers satisfies

G(0) = 0,
G(n) = n−G(G(n)) (n = 1, 2, 3, . . .),

then

(a) G(k) ≥ G(k − 1) for any positive integer k;

(b) no integer k exists such that G(k − 1) = G(k) = G(k + 1).

Solution:

(a) We show by induction that G(n)−G(n− 1) ∈ {0, 1} for all n.
If this holds up to n, then

G(n+ 1)−G(n) = 1 +G(G(n− 1))−G(G(n)).

If G(n − 1) = G(n), then G(n + 1) − G(n) = 1; otherwise,
G(n − 1) and G(n) are consecutive integers not greater than
n, so G(G(n)) − G(G(n − 1)) ∈ {0, 1}, again completing the
induction.

(b) Suppose that G(k − 1) = G(k) = G(k + 1) + A for some k,A.
Then

A = G(k + 1) = k + 1−G(G(k)) = k + 1−G(A)

and similarly A = k − G(A) (replacing k + 1 with k above), a
contradiction.

Note: It can be shown that G(n) = bnwc for w = (
√

5− 1)/2.

2. Let ABC be an acute triangle with altitudes AP,BQ,CR. Show
that for any point P in the interior of the triangle PQR, there exists
a tetrahedron ABCD such that P is the point of the face ABC at
the greatest distance (measured along the surface of the tetrahedron)
from D.

17



Solution: We first note that if S is the circumcircle of an acute
triangle KLM , then for any point X 6= S inside the triangle, we
have

min{XK,XL,XM} < SK = SL = SM,

since the discs centered at K,L,M whose bounding circles pass
through S cover the entire triangle.

Fix a point V in the interior of the triangle PQR; we first assume
the desired tetrahedron exists and determine some of its properties.
Rotate the faces ABD,BCD,CAD around their common edges with
face ABC into the plane ABC, so that the images D1, D2, D3 of D
lie outside of triangle ABC. We shall choose D so that triangle
D1D2D3 is acute, contains triangle ABC and has circumcenter V ;
this suffices by the above observation.

In other words, we need a point D such that AV is the perpendicu-
lar bisector of D1D3, BV that of D1D2, and CV that of D2D3. We
thus need ∠D1D2D3 = π − ∠BV C and so on. Since V lies inside
PQR, the angle BV C is acute, and so ∠D1D2D3 is fixed and acute.
We may then construct an arbitrary triangle D′1D

′
2D
′
3 similar to

the unknown triangle D1D2D3, let V ′ be its circumcenter, and con-
struct points A′, B′, C ′ on the rays from V through the midpoints of
D′3D

′
1, D

′
1D
′
2, D

′
2D
′
3, respectively, so that triangles A′B′C ′ and ABC

are similar. We can also ensure that the entire triangle A′B′C ′ lies
inside D′1D

′
2D
′
3. Then folding up the hexagon A′D′1B

′D′2C
′D′3 along

the edges of triangle A′B′C ′ produces a tetrahedron similar to the
required tetrahedron.

3. Given six three-element subsets of a finite set X, show that it is
possible to color the elements of X in two colors such that none of
the given subsets is all in one color.

Solution: Let A1, . . . , A6 be the subsets; we induct on the number
n of elements of X, and there is no loss of generality in assuming
n ≥ 6. If n = 6, since

(
6
3

)
= 20 > 2 · 6, we can find a three-element

subset Y of X not equal to any of A1, . . . , A6 or their complements;
coloring the elements of Y in one color and the other elements in the
other color meets the desired condition.
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Now suppose n > 6. There must be two elements u, v of X such
that {u, v} is not a subset of any Ai, since there are at least

(
7
2

)
= 21

pairs, and at most 6×3 = 18 lie in an Ai. Replace all occurrences of
u and v by a new element w, and color the resulting elements using
the induction hypothesis. Now color the original set by giving u and
v the same color given to w.

4. An acute angle XCY and points A and B on the rays CX and
CY , respectively, are given such that |CX| < |CA| = |CB| < |CY |.
Show how to construct a line meeting the ray CX and the segments
AB,BC at the points K,L,M , respectively, such that

KA · Y B = XA ·MB = LA · LB 6= 0.

Solution: Suppose K,L,M have already been constructed. The
triangles ALK and BY L are similar because ∠LAK = ∠Y BL and
KA/LA = LB/Y B. Hence ∠ALK = ∠BY L. Similarly, from the
similar triangles ALX and BML we get ∠AXL = ∠MLB. We
also have ∠MLB = ∠ALK since M,L,K are collinear; we conclude
∠LY B = ∠AXL. Now

∠XLY = ∠XLB+∠BLY = ∠XAL+∠AXL+∠ABM−∠LY B = 2∠ABC.

We now construct the desired line as follows: draw the arc of points
L such that ∠XLY = 2∠ABC, and let L be its intersection with
AB. Then construct M on BC such that ∠BLM = ∠AXL, and let
K be the intersection of LM with CA.

5. For which integers k does there exist a function f : N→ Z such that

(a) f(1995) = 1996, and

(b) f(xy) = f(x) + f(y) + kf(gcd(x, y)) for all x, y ∈ N?

Solution: Such f exists for k = 0 and k = −1. First take x = y in
(b) to get f(x2) = (k + 2)f(x). Applying this twice, we get

f(x4) = (k + 2)f(x2) = (k + 2)2f(x).
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On the other hand,

f(x4) = f(x) + f(x3) + kf(x) = (k + 1)f(x) + f(x3)
= (k + 1)f(x) + f(x) + f(x2) + kf(x) = (2k + 2)f(x) + f(x2)
= (3k + 4)f(x).

Setting x = 1995 so that f(x) 6= 0, we deduce (k + 2)2 = 3k + 4,
which has roots k = 0,−1. For k = 0, an example is given by

f(pe11 · · · penn ) = e1g(p1) + · · ·+ eng(pn),

where g(5) = 1996 and g(p) = 0 for all primes p 6= 5. For k = 1, an
example is given by

f(pe11 · · · penn ) = g(p1) + · · ·+ g(pn).

6. A triangle ABC and points K,L,M on the sides AB,BC,CA, re-
spectively, are given such that

AK

AB
=
BL

BC
=
CM

CA
=

1
3
.

Show that if the circumcircles of the triangles AKM,BLK,CML
are congruent, then so are the incircles of these triangles.

Solution: We will show thatABC is equilateral, so thatAKM,BLK,CML
are congruent and hence have the same inradius. Let R be the com-
mon circumradius; then

KL = 2R sinA, LM = 2R sinB, MK = 2R sinC,

so the triangles KLM and ABC are similar. Now we compare areas:

[AKM ] = [BLK] = [CLM ] =
2
9

[ABC],

so [KLM ] = 1
3 [ABC] and the coefficient of similarity between KLM

and ABC must be
√

1/3. By the law of cosines applied to ABC and
AKM ,

a2 = b2 + c2 − 2bc cosA
1
3
a2 =

(
2p
3

)2

+
( c

3

)2

− 2
2b
3
c

3
cosA.
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From these we deduce a2 = 2b2 − c2, and similarly b2 = 2c2 − a2,
c2 = 2a2 − b2. Combining these gives a2 = b2 = c2, so ABC is
equilateral, as desired.

21



1.5 France

1. Let ABC be a triangle and construct squares ABED,BCGF,ACHI
externally on the sides ofABC. Show that the pointsD,E, F,G,H, I
are concyclic if and only if ABC is equilateral or isosceles right.

Solution: Suppose D,E, F,G,H, I are concyclic; the perpendic-
ular bisectors of DE,FG,HI coincide with those of AB,BC,CA,
respectively, so the center of the circle must be the circumcenter O
of ABC. By equating the distances OD and OF , we find

(cosB + 2 sinB)2 + sin2B = (cosC + 2 sinC)2 = sin2 C.

Expanding this and cancelling like terms, we determine

sin2B + sinB cosB = sin2 C + sinC cosC.

Now note that

2(sin2 θ + sin θ cos θ) = 1− cos 2θ + sin θ = 1 +
√

2 sin(2θ − π/4).

Thus we either have B = C or 2B−π/4+2C−π/4 = π, or B+C =
3π/4. In particular, two of the angles must be equal, say A and B,
and we either have A = B = C, so the triangle is equilaterla, or
B + (π − 2B) = 3π/4, in which case A = B = π/4 and the triangle
is isosceles right.

2. Let a, b be positive integers with a odd. Define the sequence {un}
as follows: u0 = b, and for n ∈ N,

un+1 =
{

1
2un if un is even

un + a otherwise.

(a) Show that un ≤ a for some n ∈ N.

(b) Show that the sequence {un} is periodic from some point on-
wards.

Solution:

(a) Suppose un > a. If un is even, un+1 = un/2 < un; if un is odd,
un+2 = (un + a)/2 < un. Hence for each term greater than
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a, there is a smaller subsequent term. These form a decreas-
ing subsequence which must eventually terminate, which only
occurs once un ≤ a.

(b) If um ≤ a, then for all n ≥ m, either un ≤ a, or un is even
and un ≤ 2a, by induction on n. In particular, un ≤ 2a for all
m ≥ n, and so some value of un eventually repeats, leading to
a periodic sequence.

choose

3. (a) Find the minimum value of xx for x a positive real number.

(b) If x and y are positive real numbers, show that xy + yx > 1.

Solution:

(a) Since xx = ex log x and ex is an increasing function of x , it
suffices to determine the minimum of x log x. This is easily done
by setting its derivative 1+log x to zero, yielding x = 1/e. The
second derivative 1/x is positive for x > 0, so the function is
everywhere convex, and the unique extremum is indeed a global
minimum. Hence xx has minimum value e−1/e.

(b) If x ≥ 1, then xy ≥ 1 for y > 0, so we may assume 0 < x, y < 1.
Without loss of generality, assume x ≤ y; now note that the
function f(x) = xy + yx has derivative f ′(x) = xy log x+ yx−1.
Since yx ≥ xx ≥ xy for x ≤ y and 1/x ≥ − log x, we see that
f ′(x) > 0 for 0 ≤ x ≤ y and so the minimum of f occurs with
x = 0, in which case f(x) = 1; since x > 0, we have strict
inequality.

4. Let n be a positive integer. We say a positive integer k satisfies the
condition Cn if there exist 2k distinct positive integers a1, b1, . . .,
ak, bk such that the sums a1 + b1, . . . , ak + bk are all distinct and less
than n.

(a) Show that if k satisfies the condition Cn, then k ≤ (2n− 3)/5.

(b) Show that 5 satisfies the condition C14.

(c) Suppose (2n−3)/5 is an integer. Show that (2n−3)/5 satisfies
the condition Cn.
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(a) If k satisfies the condition Cn, then

1 + 2 + · · ·+ 2k ≤ (n− 1) + (n− 2) + · · ·+ (n− k),

or k(2k + 1) ≤ k(2n − k − 1)/2, or 4k + 2 ≤ 2n − k − 1, or
5k ≤ 2n− 3.

(b) We obtain the sums 9, 10, 11, 12, 13 as follows:

9 = 7 + 2, 10 = 6 + 4, 11 = 10 + 1, 12 = 9 + 3, 13 = 8 + 5.

(c) Imitating the above example, we pair 2k with 1, 2k− 1 with 3,
and so on, up to 2k− (k− 1)/2 with k (where k = (2n− 3)/5),
giving the sums 2k + 1, . . . , n− 1. Now we pair 2k − (k + 1)/2
with 2, 2k− (k+ 3)/2 with 4, and so on, up to k+ 1 with k−1,
giving the sums from (5k + 1)/2 to 2k.
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1.6 Germany

1. Starting at (1, 1), a stone is moved in the coordinate plane according
to the following rules:

(i) From any point (a, b), the stone can move to (2a, b) or (a, 2b).

(ii) From any point (a, b), the stone can move to (a− b, b) if a > b,
or to (a, b− a) if a < b.

For which positive integers x, y can the stone be moved to (x, y)?

Solution: It is necessary and sufficient that gcd(x, y) = 2s for some
nonnegative integer s. We show necessity by noting that gcd(p, q) =
gcd(p, q − p), so an odd common divisor can never be introduced,
and noting that initially gcd(1, 1) = 1.

As for sufficiency, suppose gcd(x, y) = 2s. Of those pairs (p, q) from
which (x, y) can be reached, choose one to minimize p+ q. Neither p
nor q can be even, else one of (p/2, q) or (p, q/2) is an admissible pair.
If p > q, then (p, q) is reachable from ((p+ q)/2, q), a contradiction;
similarly p < q is impossible. Hence p = q, but gcd(p, q) is a power
of 2 and neither p nor q is even. We conclude p = q = 1, and so
(x, y) is indeed reachable.

2. Suppose S is a union of finitely many disjoint subintervals of [0, 1]
such that no two points in S have distance 1/10. Show that the total
length of the intervals comprising S is at most 1/2.

Solution: Cut the given segment into 5 segments of length 1/5.
Let AB be one of these segments and M its midpoint. Translate
each point of AM by the vector ~MB. No colored point can have a
colored image, so all of the colored intervals of AB can be placed in
MB without overlap, and their total length therefore does not exceed
1/10. Applying this reasoning to each of the 5 segments gives the
desired result.

3. Each diagonal of a convex pentagon is parallel to one side of the
pentagon. Prove that the ratio of the length of a diagonal to that of
its corresponding side is the same for all five diagonals, and compute
this ratio.
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Solution: Let CE and BD intersect in S, and choose T on AB
with CT ‖ BD. Clearly S lies inside the pentagon and T lies outside.
Put d = AB, c = AE, and s = SC/AB; then the similar triangles
SCD and ABE give SC = sd and SD = sc. The parallelograms
ABSE, ATCE, BTCS give SE = d, TC = c, BT = sd. From the
similar triangles ESD and ATC we get SD/TC = SE/TA, and so
sc/c = d/(d+sd). We conclude s is the positive root of s(1+s) = 1,
which is s = (

√
5− 1)/2.

Finally, we determine EC = d(1+s) and the ratio EC/AB = 1+s =
(1 +

√
5)/2, and the value is clearly the same for the other pairs.

4. Prove that every integer k > 1 has a multiple less than k4 whose
decimal expansion has at most four distinct digits.

Solution: Let n be the integer such that 2n−1 ≤ k < 2n. For
n ≤ 6 the result is immediate, so assume n > 6.

Let S be the set of nonnegative integers less than 10n whose decimal
digits are all 0s or 1s. Since |S| = 2n > k, we can find two elements
a < b of S which are congruent modulo k, and b − a only has the
digits 8, 9, 0, 1 in its decimal representation. On the other hand,

b− a ≤ b ≤ 1 + 10 + · · ·+ 10n−1 < 10n < 16n−1 ≤ k4,

hence b− a is the desired multiple.
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1.7 Greece

1. In a triangle ABC the points D,E,Z,H,Θ are the midpoints of the
segments BC,AD,BD,ED,EZ, respectively. If I is the point of
intersection of BE and AC, and K is the point of intersection of
HΘ and AC, prove that

(a) AK = 3CK;

(b) HK = 3HΘ;

(c) BE = 3EI;

(d) the area of ABC is 32 times that of EΘH.

Solution: Introduce oblique coordinates with B = (0, 0), C =
(24, 0), A = (0, 24). We then compute D = (12, 0), E = (6, 12),
Z = (6, 0), H = (9, 6), Θ = (6, 6), I = (8, 16), K = (18, 6), from
which the relations AK = 3CK, HK = 3HΘ, BE = 3EI are
evident. As for EΘH, it has base ΘH whose length is half that of
ZD, and ZD is 1/4 as long as BC, so ΘH = 1/8BC. The altitude
from E to ΘH is 1/4 the altitude from A to BC, so we conclude the
area of EΘH is 1/32 times that of ABC.

2. Let ABC be an acute triangle, AD,BE,CZ its altitudes and H its
orthocenter. Let AI,AΘ be the internal and external bisectors of
angle A. Let M,N be the midpoints of BC,AH, respectively. Prove
that

(a) MN is perpendicular to EZ;

(b) if MN cuts the segments AI,AΘ at the points K,L, then KL =
AH.

Solution:

(a) The circle with diameter AH passes through Z and E, and
so ZN = ZE. On the other hand, MN is a diameter of the
nine-point circle of ABC, and Z and E lie on that circle, so
ZN = ZE implies that ZE ⊥MN .

(b) As determined in (a), MN is the perpendicular bisector of seg-
ment ZE. The angle bisector AI of ∠EAZ passes through
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the midpoint of the minor arc EZ, which clearly lies on MN ;
therefore this midpoint is K. By similar reasoning, L is the
midpoint of the major arc EZ. Thus KL is also a diameter of
circle EAZ, so KL = MN .

3. Given 81 natural numbers whose prime divisors belong to the set
{2, 3, 5}, prove there exist 4 numbers whose product is the fourth
power of an integer.

Solution: It suffices to take 25 such numbers. To each number,
associate the triple (x2, x3, x5) recording the parity of the exponents
of 2, 3, and 5 in its prime factorization. Two numbers have the same
triple if and only if their product is a perfect square. As long as there
are 9 numbers left, we can select two whose product is a square; in
so doing, we obtain 9 such pairs. Repeating the process with the
square roots of the products of the pairs, we obtain four numbers
whose product is a fourth power. (See IMO 1985/4.)

4. Determine the number of functions f : {1, 2, . . . , n} → {1995, 1996}
which satsify the condition that f(1) + f(2) + · · ·+ f(1996) is odd.

Solution: We can send 1, 2, . . . , n− 1 anywhere, and the value of
f(n) will then be uniquely determined. Hence there are 2n−1 such
functions.
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1.8 Iran

1. Prove the following inequality for positive real numbers x, y, z:

(xy + yz + zx)
(

1
(x+ y)2

+
1

(y + z)2
+

1
(z + x)2

)
≥ 9

4
.

Solution: After clearing denominators, the given inequality be-
comes∑

sym
4x5y − x4y2 − 3x3y3 + x4yz − 2x3y2z + x2y2z2 ≥ 0,

where the symmetric sum runs over all six permutations of x, y, z. (In
particular, this means the coefficient of x3y3 in the final expression
is -6, and that of x2y2z2 is 6.)

Recall Schur’s inequality:

x(x− y)(x− z) + y(y − z)(y − x) + z(z − x)(z − y) ≥ 0.

Multiplying by 2xyz and collecting symmetric terms, we get∑
sym

x4yz − 2x3y2z + x2y2z2 ≥ 0.

On the other hand,∑
sym

(x5y − x4y2) + 3(x5y − x3y3) ≥ 0

by two applications of AM-GM; combining the last two displayed
inequalities gives the desired result.

2. Prove that for every pair m, k of natural numbers, m has a unique
representation in the form

m =
(
ak
k

)
+
(
ak−1

k − 1

)
+ · · ·+

(
at
t

)
,

where
ak > ak−1 > · · · > at ≥ t ≥ 1.
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Solution: We first show uniqueness. Suppose m is represented
by two sequences ak, . . . , at and bk, . . . , bt. Find the first position in
which they differ; without loss of generality, assume this position is
k and that ak > bk. Then

m ≤
(
bk
k

)
+
(
bk − 1
k − 1

)
+ · · ·+

(
bk − k + 1

1

)
<

(
bk + 1
k

)
≤ m,

a contradiction.

To show existence, apply the greedy algorithm: find the largest ak
such that

(
ak
k

)
≤ m, and apply the same algorithm with m and k

replaced by m −
(
ak
k

)
and k − 1. We need only make sure that the

sequence obtained is indeed decreasing, but this follows because by
assumption, m <

(
ak+1
m

)
, and so m−

(
ak
k

)
<
(
ak
k−1

)
.

3. In triangle ABC, we have ∠A = 60◦. Let O,H, I, I ′ be the circum-
center, orthocenter, incenter, and excenter opposite A, respectively,
of ABC. Let B′ and C ′ be points on the segments AC and AB such
that AB = AB′ and AC = AC ′. Prove that:

(a) The eight points B,C,H,O, I, I ′, B′, C ′ are concyclic.

(b) If OH intersects AB and AC at E and F , respectively, the
perimeter of triangle AEF equals AB +AC.

(c) OH = |AB −AC|.

Solution:

(a) The circle through B,C,H consists of all points P such that
∠BPC = ∠BHC = 180◦ − ∠CAB = 120◦ (as directed an-
gles mod 180◦). Thus O lies on this circle, as does I because
∠BIC = 90◦ + 1

2∠A = 30◦. Note that the circle with diam-
eter II ′ passes through B and C (since internal and external
angle bisectors are perpendicular). Hence I ′ also lies on the cir-
cle, whose center lies on the internal angle bisector of A. This
means reflecting B and C across this bisector gives two more
points B′, C ′ on the circle.

(b) Let R be the circumradius of triangle ABC. The reflection
across AI maps B and C to B′ and C ′, and preserves I. By
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(a), the circle BCHO is then preserved, and hence H maps to
O. In other words, AHO is isosceles with AH = AO = R and
∠HAO = |β − γ|, writing β for ∠B and γ for ∠C.
In particular, the altitude of AHO has length R cosβ − γ and
so the equilateral triangle AEF has perimeter
√

3R cos(β−γ) = 2R sin(β+γ) cos(β−γ) = 2R(sinβ+sin γ) = AB+AC.

(c) We use a, b, c to denote the lengths of BC,CA,AB. By a stan-
dard computation using vectors, we find OH2 = 9R2−(a2+b2+
c2), but since a = 2R sin 60◦, we have OH2 = 2a2− b2− c2. By
the Law of Cosines, a2 = b2 + c2− bc, so OH2 = b2 + c2−2bc =
(b− c)2, and so OH = |b− c|.

4. Let ABC be a scalene triangle. The medians from A,B,C meet
the circumcircle again at L,M,N , respectively. If LM = LN , prove
that 2BC2 = AB2 +AC2.

Solution: Let G be the centroid of triangle ABC; then trian-
gles NLG and AGL are similar, so LN/AC = LG/CG. Similarly
LM/AB = GL/BG. Thus if LM = LN , then AB/AC = BG/CG.
Using Stewart’s theorem to compute the lengths of the medians, we
have

AB2

AC2
=

2AB2 + 2BC2 −AC2

2AC2 + 2BC2 −AB2

which reduces to (AC2−AB2)(2BC2−AB2−AC2) = 0. Since the
triangle is scalene, we conclude 2BC2 = AB2 +AC2.

5. The top and bottom edges of a chessboard are identified together,
as are the left and right edges, yielding a torus. Find the maximum
number of knights which can be placed so that no two attack each
other.

Solution: The maximum is 32 knights; if the chessboard is al-
ternately colored black and white in the usual fashion, an optimal
arrangement puts a knight on each black square. To see that this
cannot be improved, suppose that k knights are placed. Each knight
attacks 8 squares, but no unoccupied square can be attacked by more
than 8 knights. Therefore 8k ≤ 8(64− k), whence k ≤ 32.
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6. Find all nonnegative real numbers a1 ≤ a2 ≤ . . . ≤ an satisfying

n∑
i=1

ai = 96,
n∑
i=1

a2
i = 144,

n∑
i=1

a3
i = 216.

Solution: Adding or removing zeroes has no effect, so we may
assume the ai are positive. By Cauchy-Schwarz,

(a1 + · · ·+ an)(a3
1 + · · ·+ a3

n) ≥ (a2
1 + · · ·+ a2

n).

Since 96 · 216 = 1442, we have equality, so the sequences a1, · · · , an
and a3

1, · · · , a3
n are proportional, so that a1 = · · · = an = a. Now

na = 96, na2 = 144 so that a = 3/2, n = 32.

7. Points D and E lie on sides AB and AC of triangle ABC such
that DE||BC. Let P be an arbitrary point inside ABC. The lines
PB and PC intersect DE at F and G, respectively. If O1 is the
circumcenter of PDG and O2 is the circumcenter of PFE, show
that AP ⊥ O1O2.

Solution: (Note: angles are directed modulo π.) Let M be the
second intersection of AB with the circumcircle of DPG, and let
N be the second intersection of N with the circumcircle of EPF .
Now ∠DMP = ∠DGP by cyclicity, and ∠DGP = ∠BCP by par-
allelism, so ∠DMP = ∠BCP and the points B,C, P,M are con-
cyclic. Analogously, B,C, P,N are concyclic. Therefore the points
B,C,M,N are concyclic, so ∠DMN = ∠BCN . Again by parallels,
∠BCN = ∠DEN , so the points D,E,M,N are concyclic.

We now apply the radical axis theorem to the circumcircles of DGP ,
EPF , and DEMN to conclude that DM ∩ EN = A lies on the
radical axis of the circles PDG and PEF , so AP ⊥ O1O2 as desired.

8. Let P (x) be a polynomial with rational coefficients such that
P−1(Q) ⊆ Q. Show that P is linear.

Solution: By a suitable variable substitution and constant factor,
we may assume P (x) is monic and has integer coefficients; let P (0) =
c0. If p is a sufficiently large prime, the equation P (x) = p + c0
has a single real root, which by assumption is rational and which we
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may also assume is positive (since P has positive leading coefficient).
However, by the rational root theorem, the only rational roots of
P (x) − p − c0 can be ±1 and ±p. Since the root must be positive
and cannot be 1 for large p, we have P (p)− p− c0 = 0 for infinitely
many p, so P (x) = x+ c0 is linear.

9. For S = {x1, x2, . . . , xn} a set of n real numbers, all at least 1, we
count the number of reals of the form

n∑
i=1

εixi, εi ∈ {0, 1}

lying in an open interval I of length 1. Find the maximum value of
this count over all I and S.

Solution: The maximum is
(

n
bn/2c

)
, achieved by taking xi = 1 +

i/(n + 1). To see that this cannot be improved, note that for any
permutation σ of {1, . . . , n}, at most one of the sets {σ(1), . . . , σ(i)}
for i = 1, . . . , n has sum lying in I. Thus if T is the set of subsets
whose sum lies in I, we have

∑
t∈T

t!(n− t)! ≤ n!⇔
∑
t∈T

(
n

t

)−1

≤ 1.

In particular, we have |T | ≤
(

n
bn/2c

)
.
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1.9 Ireland

1. For each positive integer n, find the greatest common divisor of n!+1
and (n+ 1)!.

Solution: If n+ 1 is composite, then each prime divisor of (n+ 1)!
is a prime less than n, which also divides n! and so does not divide
n! + 1. Hence f(n) = 1. If n + 1 is prime, the same argument
shows that f(n) is a power of n + 1, and in fact n + 1|n! + 1 by
Wilson’s theorem. However, (n + 1)2 does not divide (n + 1)!, and
thus f(n) = n+ 1.

2. For each positive integer n, let S(n) be the sum of the digits in the
decimal expansion of n. Prove that for all n,

S(2n) ≤ 2S(n) ≤ 10S(2n)

and show that there exists n such that S(n) = 1996S(3n).

Solution: It is clear that S(a+ b) ≤ S(a) + S(b), with equality if
and only if there are no carries in the addition of a and b. Therefore
S(2n) ≤ 2S(n). Similarly S(2n) ≤ 5S(10n) = 5S(n). An example
with S(n) = 1996S(3n) is 133 · · · 35 (with 5968 threes).

3. Let f : [0, 1]→ R be a function such that

(i) f(1) = 1,

(ii) f(x) ≥ 0 for all x ∈ [0, 1],

(iii) if x, y and x+ y all lie in [0, 1], then f(x+ y) ≥ f(x) + f(y).

Prove that f(x) ≤ 2x for all x ∈ K.

Solution: If y > x, then f(y) ≥ f(x)+f(y−x), so f is increasing.
We note that f(2−k) ≤ 2−k by induction on k (with base case k = 0),
as 2f(2−k) ≤ f(2−(k−1)). Thus for x > 0, let k be the positive integer
such that 2−k < x < 2−(k−1); then f(x) ≤ f(2−(k−1)) ≤ 2−(k−1) <
2x. Since f(0) + f(1) ≤ f(1), we have f(0) = 0 and so f(x) ≤ 2x in
all cases.
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4. Let F be the midpoint of side BC of triangle ABC. Construct
isosceles right triangles ABD and ACE externally on sides AB and
AC with the right angles at D and E, respectively. Show that DEF
is an isosceles right triangle.

Solution: Identifying A,B,C with numbers on the complex plane,
we have F = (B + C)/2, D = B + (A − B)r, E = A + (C − A)r,
where r = (1 + i)/2. Then E − F = A(1 − i)/2 − B/2 + Ci/2 and
D− F = A(1 + i)/2−Bi/2−C/2; in particular, D− F = i(E − F )
and so DEF is an isosceles right triangle.

5. Show, with proof, how to dissect a square into at most five pieces in
such a way that the pieces can be reassembled to form three squares
no two of which have the same area.

Solution: We dissect a 7× 7 square into a 2× 2 square A, a 3× 3
square B, and three pieces C,D,E which form a 6 × 6 square, as
shown below.

C C C C C A A
C C C C C A A
C C C C C D D
C C C C C D D
C C C C B B B
C C C C B B B
E E E E B B B

6. Let Fn denote the Fibonacci sequence, so that F0 = F1 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 0. Prove that

(i) The statement “Fn+k − Fn is divisible by 10 for all positive
integers n” is true if k = 60 and false for any positive integer
k < 60;

(ii) The statement “Fn+t − Fn is divisible by 100 for all positive
integers n” is true if t = 300 and false for any positive integer
t < 300.

Solution: A direct computation shows that the Fibonacci sequence
has period 3 modulo 2 and 20 modulo 5 (compute terms until the
initial terms 0, 1 repeat, at which time the entire sequence repeats),
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yielding (a). As for (b), one computes that the period mod 4 is 6.
The period mod 25 turns out to be 100, which is awfully many terms
to compute by hand, but knowing that the period must be a multiple
of 20 helps, and verifying the recurrence Fn+8 = tFn+4 +Fn, where t
is an integer congruent to 2 modulo 5, shows that the period divides
100; finally, an explicit computation shows that the period is not 20.

7. Prove that for all positive integers n,

21/2 · 41/4 · · · (2n)1/2n < 4.

Solution: It suffices to show
∑∞
n=1 n/2

n = 2:

∞∑
n=1

n

2n
=
∞∑
n=1

∞∑
k=n

1
2k

=
∞∑
n=1

1
2n−1

= 2.

8. Let p be a prime number and a, n positive integers. Prove that if

2p + 3p = an,

then n = 1.

Solution: If p = 2, we have 22 + 32 = 13 and n = 1. If p > 2, then
p is odd, so 5 divides 2p + 3p and so 5 divides a. Now if n > 1, then
25 divides an and 5 divides

2p + 3p

2 + 3
= 2p−1 − 2p−2 · 3 + · · ·+ 3p−1 ≡ p2p−1 (mod 5),

a contradiction if p 6= 5. Finally, if p = 5, then 25 + 35 = 753 is not
a perfect power, so n = 1 again.

9. Let ABC be an acute triangle and let D,E, F be the feet of the
altitudes from A,B,C, respectively. Let P,Q,R be the feet of the
perpendiculars from A,B,C to EF,FD,DE, respectively. Prove
that the lines AP,BQ,CR are concurrent.

Solution: It is a routine exercise to show that each of AP,BQ,CR
passes through the circumcenter of ABC, so they all concur.
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10. On a 5×9 rectangular chessboard, the following game is played. Ini-
tially, a number of discs are randomly placed on some of the squares,
no square containing more than one disc. A turn consists of moving
all of the discs subject to the following rules:

(i) each disc may be moved one square up, down, left, or right;

(ii) if a disc moves up or down on one turn, it must move left or
right on the next turn, and vice versa;

(iii) at the end of each turn, no square can contain two or more
discs.

The game stops if it becomes impossible to complete another turn.
Prove that if initially 33 discs are placed on the board, the game
must eventually stop. Prove also that it is possible to place 32 discs
on the board so that the game can continue forever.

Solution: If 32 discs are placed in an 8× 4 rectangle, they can all
move up, left, down, right, up, etc. To show that a game with 33
discs must stop, label the board as shown:

1 2 1 2 1 2 1 2 1
2 3 2 3 2 3 2 3 2
1 2 1 2 1 2 1 2 1
2 3 2 3 2 3 2 3 2
1 2 1 2 1 2 1 2 1

Note that a disc on 1 goes to a 3 after two moves, a disc on 2 goes to
a 1 or 3 immediately, and a disc on 3 goes to a 2 immediately. Thus
if k discs start on 1 and k > 8, the game stops because there are not
enough 3s to accommodate these discs. Thus we assume k ≤ 8, in
which case there are at most 16 squares on 1 or 3 at the start, and
so at least 17 on 2. Of these 17, at most 8 can move onto 3 after
one move, so at least 9 end up on 1; these discs will not all be able
to move onto 3 two moves later, so the game will stop.
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1.10 Italy

1. Among triangles with one side of a given length ` and with given
area S, determine all of those for which the product of the lengths
of the three altitudes is maximum.

Solution: Let A,B be two fixed points with AB = `, and vary
C along a line parallel to AB at distance 2S/`. The product of the
altitudes of ABC is 8S3 divided by the lengths of the three sides, so
it suffices to minimize AC · BC, or equivalently to maximize sinC.
Let D be the intersection of the perpendicular bisector of AB with
the line through C. If ∠D is not acute, the optimal triangles are
clearly those with a right angle at C.

Suppose ∠D is acute and C 6= D, and assume C is on the same
side of the perpendicular bisector of AB as B: we show ∠D ≥ ∠C,
and so the optimal triangle is ABD. The triangles DAC and DBC
have equal base and height, so equal altitude. However, AC > BC
since ∠CAB > ∠CBA, so sin∠DAC < sin∠DBC, and since the
former is acute, we have ∠DAC < ∠DBC. Adding ∠CAB+∠ABD
to both sides, we get ∠DAB + ∠DBA < ∠CAB + ∠CBA, and so
∠ADB > ∠ACB, as claimed.

2. Prove that the equation a2 + b2 = c2 + 3 has infinitely many integer
solutions {a, b, c}.

Solution: Let a be any odd number, let b = (a2 − 5)/2 and
c = (a2 − 1)/2. Then

c2 − b2 = (c+ b)(c− b) = a2 − 3.

3. Let A and B be opposite vertices of a cube of edge length 1. Find
the radius of the sphere with center interior to the cube, tangent to
the three faces meeting at A and tangent to the three edges meeting
at B.

Solution: Introduce coordinates so that A = (0, 0, 0), B = (1, 1, 1)
and the edges are parallel to the coordinate axes. If r is the radius
of the sphere, then (r, r, r) is its center, and (r, 1, 1) is the point of
tangency of one of the edges at B. Therefore r2 = 2(1− r)2, giving
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r2 − 4r + 2 = 0 and so r = 2 −
√

2 (the other root puts the center
outside of the cube).

4. Given an alphabet with three letters a, b, c, find the number of words
of n letters which contain an even number of a’s.

Solution: If there are 2k occurences of a, these can occur in
(
n
2k

)
places, and the remaining positions can be filled in 2n−2k ways. So
the answer is

∑
k

(
n
2k

)
2n−2k. To compute this, note that

(1 + x)n + (1− x)n = 2
∑
k

(
n

2k

)
x2k,

so the answer is

1
2

2n[(1 + 1/2)n + (1− 1/2)n] =
1
2

(3n + 1).

5. Let C be a circle and A a point exterior to C. For each point P on
C, construct the square APQR, where the vertices A,P,Q,R occur
in counterclockwise order. Find the locus of Q as P runs over C.

Solution: Take the circle to be the unit circle in the complex
plane. Then (Q− P )i = A− P , so Q = A+ (1− i)P . We conclude
the locus of Q is the circle centered at A whose radius is the norm
of 1− i, namely

√
2.

6. Whas is the minimum number of squares that one needs to draw on
a white sheet in order to obtain a complete grid with n squares on
a side?

Solution: It suffices to draw 2n−1 squares: in terms of coordinates,
we draw a square with opposite corners (0, 0) and (i, i) for 1 ≤ i ≤ n
and a square with opposite corners (i, i) and (n, n) for 1 ≤ i ≤ n−1.

To show this many squares are necessary, note that the segments
from (0, i) to (1, i) and from (n−1, i) to (n, i) for 0 < i < n all must
lie on different squares, so surely 2n−2 squares are needed. If it were
possible to obtain the complete grid with 2n−2 squares, each of these
segments would lie on one of the squares, and the same would hold
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for the segments from (i, 0) to (i, 1) and from (i, n− 1) to (i, n) for
0 < i < n. Each of the aforementioned horizontal segments shares a
square with only two of the vertical segments, so the only possible
arrangements are the one we gave above without the square with
corners (0, 0) and (n, n), and the 90◦ rotation of this arrangement,
both of which are insufficient. Hence 2n− 1 squares are necessary.

40



1.11 Japan

1. Consider a triangulation of the plane, i.e. a covering of the plane
with triangles such that no two triangles have overlapping interiors,
and no vertex lies in the interior of an edge of another triangle.
Let A,B,C be three vertices of the triangulation and let θ be the
smallest angle of the triangle 4ABC. Suppose no vertices of the
triangulation lie inside the circumcircle of 4ABC. Prove there is a
triangle σ in the triangulation such that σ ∩ 4ABC 6= ∅ and every
angle of σ is greater than θ.

Solution: We may assume θ = ∠A. The case where ABC belongs
to the triangulation is easy, so assume this is not the case. If BC
is an edge of the triangulation, one of the two triangles bounded
by BC has common interior points with ABC, and this triangle
satisfies the desired condition. Otherwise, there is a triangle BEF
in the triangulation whose interior intersects BC. Since EF crosses
BC at an interior point, ∠BEF < ∠BAF < ∠BAC, so triangle
BEF satisfies the desired condition.

2. Let m and n be positive integers with gcd(m,n) = 1. Compute
gcd(5m + 7m, 5n + 7n).

Solution: Let sn = 5n + 7n. If n ≥ 2m, note that

sn = smsn−m − 5m7msn−2m,

so gcd(sm, sn) = gcd(sm, sn−2m).. Similarly, if m < n < 2m, we
have gcd(sm, sn) = gcd(sm, s2m−n). Thus by the Euclidean al-
gorithm, we conclude that if m + n is even, then gcd(sm, sn) =
gcd(s1, s1) = 12, and ifm+n is odd, then gcd(sm, sn) = gcd(s0, s1) =
2.

3. Let x > 1 be a real number which is not an integer. For n =
1, 2, 3, . . ., let an = bxn+1c − xbxnc. Prove that the sequence {an}
is not periodic.

Solution: Assume, on the contrary, that there exists p > 0 such
that ap+n = an for every n. Since bxnc → ∞ as n → ∞, we have
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bxn+pc − bxnc > 0 for some n; then setting an+p = an and solving
for x, we get

x =
bxn+p+1c − bxn+1c
bxn+pc − bxnc

and so x is rational.

Put y = xp and

bm =
p−1∑
k=0

xp−k−1amp+k = bxmp+pc − xpbxmrc = bym+1c − ybymc.

Since ap+n = ap, we have bm+1 = bm, and y is also a rational
number which is not an integer. Now put cm = bym+1 − ymc; then
cm+1 = ycm = ymc1. This means cm cannot be an integer for large
m, a contradiction.

4. Let θ be the maximum of the six angles between the edges of a
regular tetrahedron and a given plane. Find the minimum value of
θ over all positions of the plane.

Solution: Assume the edges of the tetrahedron Γ = ABCD have
length 1. If we place the tetrahedron so that AC and BC are parallel
to the horizontal plane H, we obtain θ = 45◦, and we shall show this
is the minimum angle.

Let a, b, c, d be the projections of A,B,C,D to the horizontal plane
H, and `1, . . . , `6 the projections of the edges L1, . . . , L6. Since the
angle between Li and H has cosine `, it suffices to consider the
shortest `i.

If a, b, c, d form a convex quadrilateral with largest angle at a, then
one of ab or ad is at most 1/

√
2 since bd ≤ 1. Otherwise, it is easily

shown that one of the `i originating from the vertex inside the convex
hull has length at most 1/

√
3.

5. Let q be a real number with (1 +
√

5)/2 < q < 2. For a number n
with binary representation

n = 2k + ak−1 · 2k−1 + · · ·+ a1 · 2 + a0

with ai ∈ {0, 1}, we define pn as follows:

pn = qk + ak−1q
k−1 + · · ·+ a1q + a0.
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Prove that there exist infinitely many positive integers k for which
there does not exist a positive integer l such that p2k < pl < p2k+1.

Solution: Define the sequence an as follows:

a2m =
m∑
k=0

22k, a2m+1 =
m∑
k=0

22k+1.

We will show that k = an satisfies the given condition by induction
on n. The cases n = 0, 1 follow by noting

1 < q < q + 1 < q2 < q2 + 1 < q2 + q < q2 + q + 1

and pl ≥ qp ≥ q3 > q2 + q = p6 for l ≥ 8.

Now suppose n ≥ 2, assume the induction hypothesis, and suppose
by way of contradiction that there exists l such that p2an < pl <
p2an+1. The argument falls into six cases, which we summarize in a
table. The first column gives the conditions of the case, the second
gives a lower bound for p2an , the third is always equal to pl, and the
fourth gives an upper bound for p2an+1; from these a contradiction
to the induction hypothesis will become evident.

n even, l = 2r + 1 qp2an−1 + 1 qpr + 1 qp2an−1+1 + 1
n even, l = 4r q2p2an−2 q2pr q2p2an−1+1

n even, l = 4r + 2 q2p2an−2 + q q2pr + q q2p2an−2+1 + q
n odd, l = 2r qp2an−1 qpr qp2an−1+1

n even, l = 4r + 1 q2p2an−2 + 1 q2pr + 1 q2p2an−2+1 + 1
n even, l = 4r + 3 q2p2an−2 + q + 1 q2pr + q + 1 q2p2an−2+1 + q + 1.
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1.12 Poland

1. Find all pairs (n, r), with n a positive integer and r a real number,
for which the polynomial (x+ 1)n − r is divisible by 2x2 + 2x+ 1.

Solution: Let t = (−1 + i)/2 be one of the roots of 2x2 + 2x+ 1;
then (x + 1)n − r is divisible by 2x2 + 2x + 1 for r real if and only
if (t + 1)n = r. Since the argument of t + 1 is π/4, this is possible
if and only if n = 4m, in which case (t + 1)4m = (−4)m. Hence
(4m, (−4)m) are the only solutions.

2. Let ABC be a triangle and P a point inside it such that ∠PBC =
∠PCA < ∠PAB. The line PB cuts the circumcircle of ABC at B
and E, and the line CE cuts the circumcircle of APE at E and F .
Show that the ratio of the area of the quadrilateral APEF to the
area of the triangle ABP does not depend on the choice of P .

Solution: Note that ∠AEP = ∠AEB = ∠ACB = ∠CBP , so the
lines AE and CP are parallel. Thus [APE] = [ACE] and [APEF ] =
[ACF ]. Now note that ∠AFC = π−∠EPA = ∠APB and ∠ACF =
∠ACE = ∠ABE. Therefore triangles ACF and ABP are similar
and [ACF ]/[AB] = (AC/AB)2 independent of the choice of P .

3. Let n ≥ 2 be a fixed natural number and let a1, a2, . . . , an be posi-
tive numbers whose sum is 1. Prove that for any positive numbers
x1, x2, . . . , xn whose sum is 1,

2
∑
i<j

xixj ≤
n− 2
n− 1

+
n∑
i=1

aix
2
i

1− ai
,

and determine when equality holds.

Solution: The left side is 1−
∑
i x

2
i , so we can rewrite the desired

result as
1

n− 1
≤

n∑
i=1

x2
i

1− ai
.

By Cauchy-Schwarz,(
n∑
i=1

x2
i

1− ai

)(
n∑
i=1

(1− ai)

)
≥

(
n∑
i=1

xi

)2

= 1.
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Since
∑
i(1− ai) = n− 1, we have the desired result.

4. Let ABCD be a tetrahedron with ∠BAC = ∠ACD and ∠ABD =
∠BDC. Show that edges AB and CD have the same length.

Solution: Assume AB 6= CD. Draw the plane through AC bi-
secting the dihedral angle formed by the planes ABC and ACD,
then draw a line ` in that plane perpendicular to AC through the
midpoint O of AC. Now let B′ and D′ be the images of B and D,
respectively, under the half-turn around the line `; by assumption,
B′ 6= D and D′ 6= B. Since ∠BAC = ∠ACD, B′ lies on CD and
D′ lies on AB. Now note that the quadrilateral BB′D′D has to-
tal angular sum 2π. However, a nonplanar quadrilateral always has
total angular sum less than 2π (divide it into two triangles, which
each have angular sum π, and apply the spherical triangle inequality
∠ABC +∠CBD > ∠ABD), so the lines AB and CD are coplanar,
contradicting the assumption that ABCD is a tetrahedron.

5. For a natural number k, let p(k) denote the smallest prime number
which does not divide k. If p(k) > 2, define q(k) to be the product
of all primes less than p(k), otherwise let q(k) = 1. Consider the
sequence

x0 = 1, xn+1 =
xnp(xn)
q(xn)

n = 0, 1, 2, . . . .

Determine all natural numbers n such that xn = 111111.

Solution: An easy induction shows that, if p0, p1, . . . are the primes
in increasing order and n has base 2 representation c0+2c1+4c2+· · ·,
then xn = pc00 p

c1
1 · · ·. In particular, 111111 = 3 · 7 · 11 · 13 · 37 =

p1p3p4p5p10, so xn = 111111 if and only if n = 210+25+24+23+21 =
1082.

6. From the set of all permutations f of {1, 2, . . . , n} that satisfy the
condition

f(i) ≥ i− 1 i = 1, 2, . . . , n,

one is chosen uniformly at random. Let pn be the probability that
the chosen permutation f satisfies

f(i) ≤ i+ 1 i = 1, 2, . . . , n.
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Find all natural numbers n such that pn > 1/3.

Solution: We have pn > 1/3 for n ≤ 6. Let cn be the number
of permutations of the first type. For such a permutation, either
f(1) = 1, or f(2) = 1. In the first case, ignoring 1 gives a valid per-
mutation of {2, . . . , n}; in the latter case, we get a valid permutation
of {2, . . . , n} by identifying 1 and 2 together. Hence cn = 2cn−1 and
so cn = 2n−1 since c1 = 1.

Let dn be the number of permutations of the second type. For such
a permutation, either f(n) = n or f(n) = n − 1. In the first case,
ignoring n gives a valid permutation of {1, . . . , n− 1}. In the latter
case, we must have f(n − 1) = n, so ignoring n and n − 1 gives a
valid permutation of {1, . . . , n − 2}. Thus dn = dn−1 + dn−2, and
the initial conditions d1 = 1, d2 = 2 yield dn = Fn+1, the n + 1-st
Fibonacci number.

It is easily shown (using the formula for Fn or by induction) that
cn/dn < 1/3 for n ≥ 7. Hence the desired n are 1, . . . , 6.
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1.13 Romania

1. Let n > 2 be an integer and f : R2 → R be a function such that for
any regular n-gon A1A2 . . . An,

f(A1) + f(A2) + · · ·+ f(An) = 0.

Prove that f is the zero function.

Solution: We identify R2 with the complex plane and let ζ =
e2πi/n. Then the condition is that for any z ∈ C and any positive
real t,

n∑
j=1

f(z + tζj) = 0.

In particular, for each of k = 1, . . . , n, we have
n∑
j=1

f(z − ζk + ζj) = 0.

Summing over k, we have
n∑

m=1

n∑
k=1

f(z − (1− ζm)ζk) = 0.

For m = n the inner sum is nf(z); for other m, the inner sum again
runs over a regular polygon, hence is 0. Thus f(z) = 0 for all z ∈ C.

2. Find the greatest positive integer n for which there exist n nonneg-
ative integers x1, x2, . . . , xn, not all zero, such that for any sequence
ε1, ε2, . . . , εn of elements of {−1, 0, 1}, not all zero, n3 does not divide
ε1x1 + ε2x2 + . . .+ εnxn.

Solution: The statement holds for n = 9 by choosing 1, 2, 22, . . . , 28,
since in that case

|ε1 + · · ·+ ε928| ≤ 1 + 2 + · · ·+ 28 < 93.

However, if n = 10, then 210 > 103, so by the pigeonhole principle,
there are two subsets A and B of {x1, . . . , x10} whose sums are con-
gruent modulo 103. Let εi = 1 if xi occurs in A but not in B, −1 if
xi occurs in B but not in A, and 0 otherwise; then

∑
εixi is divisible

by n3.
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3. Let x, y be real numbers. Show that if the set

{cos(nπx) + cos(nπy)|n ∈ N}

is finite, then x, y ∈ Q.

Solution: Let an = cosnπx and bn = sinnπx. Then

(an + bn)2 + (an − bn)2 = 2(a2
n + b2n) = 2 + (a2n + b2n).

If {an+ bn} is finite, it follows that {an− bn} is also a finite set, and
hence that {an} is finite, since

an =
1
2

[(an + bn) + (an − bn)],

and similarly {bn} is finite. In particular, am = an for some m < n,
and so (n−m)πx is an integral multiple of π. We conclude x and y
are both rational.

4. Let ABCD be a cyclic quadrilateral and let M be the set of incenters
and excenters of the triangles BCD,CDA,DAB,ABC (for a total
of 16 points). Show that there exist two sets of parallel lines K and
L, each consisting of four lines, such that any line of K ∪L contains
exactly four points of M .

Solution: Let T be the midpoint of the arc AB of the circumcircle
of ABC, I the incenter of ABC, and IB , IC the excenters of ABC
opposite B and C, respectively. We first show TI = TA = TB =
TIC . Note that

∠TAI = ∠TAB+∠BAI = (∠C+∠A)/2 = ∠ICA+∠IAC = ∠TAI,

so TI = TA, and similarly TI = TB. Moreover, in the right triangle
AICI, ∠AICT = π/2 − ∠AIT = π/2 − ∠TAI = ∠TAIC , so TA =
TIC also.

We next show that the midpoint U of IBIC is also the midpoint of
the arc BAC. Note that the line IBIC bisects the exterior angles of
ABC at A, so the line IBIC passes through the midpoint V of the
arc BAC. Considering the right triangles IBBIC and IBCIC , we
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note BU = (IBIC)/2 = CU , so U lies on the perpendicular bisector
of BC, which suffices to show U = V . (Note that IB and IC lie on
the same side of BC as A, so the same is true of U .)

Let E,F,G,H be the midpoints of the arcs AB,BC,CD,DA. Let
IA, IB , IC , ID be the incenters of the triangles BCD,CDA,DAB,
ABC, respectively. Let AB , AC , AD be the excenters of BCD oppo-
site B,C,D, respectively, and so on.

By the first observation, ICIDCDDC is a rectangle with center E,
and the diagonals, which contain the points C and D, have length
2EA = 2EB. Similarly, we obtain rectangles centered at F,G,H.

Now consider the excenters of the form XY , where X and Y are
opposite vertices in ABCD. We shall prove the claim with

K = {BCCB , ICIB , IDIA, ADDA}, L = {ABBA, IAIB , ICID, CDDC}.

Consider the rectangle BCIDBAP , where P is an unknown point.
From the second observation above, the midpoint K of diagonal
BABC is the midpoint of arc CDA, so it lies on the internal bisector
BK of triangle ABC. Again by the first observation, we conclude
M = DA, so DA lies on the lines BCCB and BAAB , and so on,
proving the claim.

5. Given a ∈ R and f1, f2, . . . , fn : R→ R additive functions such that
f1(x)f2(x) · · · fn(x) = axn for all x ∈ R. Prove that there exists
b ∈ R and i ∈ {1, 2, . . . , n} such that fi(x) = bx for all x ∈ R.

Solution: Let ci = fi(1). Then for any integer x,
n∏
i=1

fi(1 +mx) =
n∏
i=1

[ci +mfi(x)] = a(1 +mx)n.

First suppose a 6= 0, in which case ci 6= 0 for all i. Then we have an
equality of polynomials in T :

n∏
i=1

[ci + fi(x)T ] = a(1 + xT )n,

and so by unique factorization, ci+fi(x)T = bi(1+xT ) for some real
number bi. Equating coefficients gives bi = ci and fi(x) = bix = cix
for all x.
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Now suppose a = 0; we shall show that fi is identically zero for
some i. Assume on the contrary that there exist ai for all i such
that fi(ai) 6= 0. Let

xm = a1 +ma2 + · · ·+mn−1am

for any integer m. Then

0 =
n∏
i=1

fi(xm) =
n∏
i=1

[fi(a1) + fi(a2)m+ · · ·+ fi(an)mn−1].

Hence for some i, the polynomial fi(a1)+fi(a2)m+· · ·+fi(an)mn−1

is identically zero, contradicting the fact that fi(ai) 6= 0. Thus for
some i, fi(x) = 0 for all x, proving the claim with b = 0.

6. The sequence {an}n≥2 is defined as follows: if p1, p2, . . . , pk are the
distinct prime divisors of n, then an = p−1

1 + p−1
2 + . . .+ p−1

k . Show
that for any positive integer N ≥ 2,

N∑
n=2

a2a3 · · · an < 1.

Solution: It is easily seen that

n∑
k=2

ak =
n∑
k=2

(
1
p1

+
1
p2

+ · · ·+ 1
pk

)
=
∑
p≤n

1
p

⌊
n

p

⌋
.

On the other hand, we have the inequalities∑
p≤n

1
p

⌊
n

p

⌋
≤

∑
p≤n

n

p2

< n

(
1
4

+
∞∑
k=1

1
(2k + 1)2

)

<
n

4

( ∞∑
k=1

1
k(k + 1)

)
=
n

2
.
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Thus
∑n
k=2 ak < n/2 for all n ≥ 2. Now using the AM-GM inequal-

ity,

a2a3 · · · an <

(
a2 + a3 + · · ·+ an

n− 1

)n−1

<
1

2n−1

(
1 +

1
n− 1

)n−1

<
e

2n−1
<

3
2n−1

.

Adding these inequalities,

∞∑
n=2

a2 · · · an <
1
2

+
1
6

+
1
12

+
1
60

+ 3
(

1
25

+
1
26

+ · · ·
)

=
46
60

+
3
25

(
1 +

1
2

+ · · ·
)

=
46
60

+
6
32

< 1.

7. Let n ≥ 3 be an integer and x1, x2, . . . , xn−1 nonnegative integers
such that

x1 + x2 + . . .+ xn−1 = n

x1 + 2x2 + . . .+ (n− 1)xn−1 = 2n− 2.

Find the minimum of the sum

F (x1, . . . , xn−1) =
n−1∑
k=1

kxk(2n− k).

Solution: The desired sum can be written as 2n(2n−2)−
∑n−1
k=1 k

2xk.
Now note

n−1∑
k=1

k2xk =
n−1∑
k=1

xk+(k−1)(k+1)xk ≤ n+n
∑
k=1

n− 1(k−1)xk = n+n(2n−2−n) = n2−n.

Hence the quantity in question is at most 2n(2n − 2) − (n2 − n) =
3n2−3n, with equality for x1 = n−1, x2 = · · · = xn−2 = 0, xn−1 = 1.

8. Let n, r be positive integers and A a set of lattice points in the plane,
such that any open disc of radius r contains a point of A. Show that
for any coloring of the points of A using n colors, there exist four
points of the same color which are the vertices of a rectangle.
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Solution: Consider a square of side length L = 4nr2 with sides par-
allel to the coordinate axes. One can draw (2nr)2 = 4n2r2 disjoint
disks of radius r inside the square, hence such a square contains at
least 4n2r2 points of A. The lattice points in A lie on L−1 = 4nr2−1
vertical lines; by the pigeonhole principle, some vertical line contais
n + 1 points of A. Again by the pigeonhole principle, two of these
points are colored in the same color.

Now consider an infinite horizontal strip made of ribbons of side
length L; some two of them have two points in the same position in
the same color, and these four points form the vertices of a rectangle.

9. Find all prime numbers p, q for which the congruence

α3pq ≡ α (mod 3pq)

holds for all integers α.

Solution: Without loss of generality assume p ≤ q; the unique so-
lution will be (11, 17), for which one may check the congruence using
the Chinese Remainder Theorem. We first have 23pq ≡ 2 (mod 3),
which means p and q are odd. In addition, if α is a primitive root
mod p, then α3pq−1 ≡ 1 (mod p) implies that p−1 divides 3pq−1 as
well as 3pq−1−3q(p−1) = 3q−1, and conversely that q−1 divides
3p− 1. If p = q, we now deduce p = q = 3, but 427 ≡ 1 (mod 27), so
this fails. Hence p < q.

Since p and q are odd primes, q ≥ p + 2, so (3p − 1)/(q − 1) < 3.
Since this quantity is an integer, and it is clearly greater than 1, it
must be 2. That is, 2q = 3p + 1. On the other hand, p − 1 divides
3q − 1 = (9p + 1)/2 as well as (9p + 1) − (9p − 9) = 10. Hence
p = 11, q = 17.

10. Let n ≥ 3 be an integer and p ≥ 2n − 3 a prime. Let M be a
set of n points in the plane, no three collinear, and let f : M →
{0, 1, . . . , p− 1} be a function such that:

(i) only one point of M maps to 0, and

(ii) if A,B,C are distinct points in M and k is the circumcircle of
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the triangle ABC, then∑
P∈M∩k

f(P ) ≡ 0 (mod p).

Show that all of the points of M lie on a circle.

Solution: Let X be the point mapping to 0. We first show that if
every circle through X and two points of M contains a third point
of M , then all of the points of M lie on a circle. Indeed, consider
an inversion with center at X. Then the image of M − {X} has
the property that the line through any two of its points contains a
third point; it is a standard result that this means the points are
collinear. (Otherwise, find a triangle ABC minimizing the length of
the altitude AH; there is another point N on BC, but then either
ABN or ACN has a shorter altitude than AH, contradiction.)

Now suppose the points of M do not lie on a circle. By the above,
there exists a circle passing through M and only two points A,B of
M . Let f(A) = i, so that by the hypothesis, f(B) = p− i. Let a be
the number of circles passing through X,A and at least one other
point of M , let b be the number of circles passing through X,B
and at least one other point of M , and let S be the sum of f(P )
over all P in M . By adding the relations obtained from the circles
through X and A, we get S + (a − 1)i ≡ 0 (mod p), and similarly,
S+(b−1)(p− i) ≡ 0 (mod p). Therefore a+b−2 ≡ 0 (mod p); since
a+b ≤ 2n+4 < p, we have a+b = 2 and so a = b = 1, contradicting
the assumption that the points do not all lie on a circle.

11. Let x1, x2, . . . , xn, xn+1 be positive reals such that x1+x2+· · ·+xn =
xn+1. Prove that

n∑
i=1

√
xi(xn+i − xi) ≤

√√√√ n∑
i=1

xn+1(xn+1 − xi).

Solution: First note that
n∑
i=1

xn+1(xn+1 − xi) = nx2
n+1 − xn+1

n∑
i=1

xi = (n− 1)xn+1.
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Hence the given inequality may be rewritten as

n∑
i=1

√
1

n− 1
xi
xn+1

(
1− xi

xn+1

)
≤ 1

On the other hand, by the arithmetic-geometry mean inequality, the
left side is at most

n∑
i=1

xi
2xn+i

+
1− xi/xn+1

2(n− 1)
=

1
2

+
(n− 1)
2(n− 1)

= 1.

12. Let x, y, z be real numbers. Prove that the following conditions are
equivalent.

(i) x, y, z > 0 and 1
x + 1

y + 1
z ≤ 1.

(ii) For every quadrilateral with sides a, b, c, d, a2x+b2y+c2z > d2.

Solution: To show (i) implies (ii), note that

a2x+ b2y + c2z ≥ (a2x+ b2y + c2z)
(

1
x

+
1
y

+
1
x

)
≥ (a+ b+ c)2 > d2,

using Cauchy-Schwarz after the first inequality.

To show (i) implies (ii), first note that if x ≤ 0, we may take a
quadrilateral of sides a = n, b = 1, c = 1, d = n and get y + z >
n2(1 − x), a contradiction for large n. Thus x > 0 and similarly
y > 0, z > 0. Now use a quadrilateral of sides 1/x, 1/y, 1/z and
1/x+ 1/y + 1/z − 1/n, where n is large. We then get

x

x2
+

y

y2
+

z

z2
>

(
1
x

+
1
y

+
1
z
− 1
n

)2

.

Since this holds for all n, we may take the limit as n→∞ and get

1
x

+
1
y

+
1
z
≥
(

1
x

+
1
y

+
1
z
− 1
n

)2

,

and hence 1/x+ 1/y + 1/z ≤ 1.
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13. Let n be a positive integer and D a set of n concentric circles
in the plane. Prove that if the function f : D → D satisfies
d(f(A), f(B)) ≥ d(A,B) for all A,B ∈ D, then d(f(A), f(B)) =
d(A,B) for every A,B ∈ D.

Solution: Label the circles D1, . . . , Dn in increasing order of ra-
dius, and let ri denote the radius of Di. Clearly the maximum of
d(A,B) occurs when A and B are antipodal points on D. Let ABCD
be the vertices of a square inscribed in Dn; then f(A) and f(C) are
antipodal, as are f(B) and f(D). In addition, each of the minor arcs
f(A)f(B) and f(B)f(C) must be at least a quarter arc, thus f(B)
bisects one of the semicircles bounded by f(A) and f(C), and f(D)
bisects the other. Now if P is any point on the minor arc AB, then
the arcs f(P )f(A) and f(P )f(B), which are at least as long as the
arcs PA and PB, add up to the quarter arc f(P )f(B). We conclude
f is isometric on Dn.

Since f is clearly injective and is now bijective on Dn, f maps D1 ∪
. . . ∪ Dn−1 into itself. Thus we may repeat the argument to show
that f is isometric on each Di. To conclude, it suffices to show that
distances between adjacent circles, say D1 and D2, are preserved.
This is easy; choose a square ABCD on D1 and let A′, B′, C ′, D′ be
the points on D2 closest to A,B,C,D, respectively. Then A′B′C ′D′

also form a square, and the distance from A to C ′ is the maximum
between any point on D1 and any point on D3. Hence the eight
points maintain their relative position under f , which suffices to
prove isometry.

14. Let n ≥ 3 be an integer and X ⊆ {1, 2, . . . , n3} a set of 3n2 elements.
Prove that one can find nine distinct numbers a1, . . . , a9 in X such
that the system

a1x+ a2y + a3z = 0
a4x+ a5y + a6z = 0
a7x+ a8y + a9z = 0

has a solution (x0, y0, z0) in nonzero integers.
Solution: Label the elements of X in increasing order x1 < · · · <
x3n2 , and put

X1 = {x1, . . . , xn2}, X2 = {xn2+1, . . . , x2n2}, X3 = {x2n2+1, . . . , x3n2}.
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Define the function f : X1 ×X2 ×X3 → X ×X as follows:

f(a, b, c) = (b− a, c− b).

The domain of f contains n6 elements. The range of f , on the other
hand, is contained in the subset of X ×X of pairs whose sum is at
most n3, a set of cardinality

n3−1∑
k=1

k =
n3(n3 − 1)

2
<
n6

2
.

By the pigeonhole principle, some three triples (ai, bi, ci) (i = 1, 2, 3)
map to the same pair, in which case x = b1 − c1, y = c1 − a1, z =
a1−b1 is a solution in nonzero integers. Note that ai cannot equal bj
since X1 and X2 and so on, and that a1 = a2 implies that the triples
(a1, b1, c1) and (a2, b2, c2) are identical, a contradiction. Hence the
nine numbers chosen are indeed distinct.
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1.14 Russia

1. Which are there more of among the natural numbers from 1 to
1000000, inclusive: numbers that can be represented as the sum
of a perfect square and a (positive) perfect cube, or numbers that
cannot be?

Solution: There are more numbers not of this form. Let n =
k2 +m3, where k,m, n ∈ N and n ≤ 1000000. Clearly k ≤ 1000 and
m ≤ 100. Therefore there cannot be more numbers in the desired
form than the 100000 pairs (k,m).

2. The centers O1, O2, O3 of three nonintersecting circles of equal radius
are positioned at the vertices of a triangle. From each of the points
O1, O2, O3 one draws tangents to the other two given circles. It is
known that the intersection of these tangents form a convex hexagon.
The sides of the hexagon are alternately colored red and blue. Prove
that the sum of the lengths of the red sides equals the sum of the
lengths of the blue sides.

Solution: Let A,B,C,D,E, F be the vertices of the hexagon in
order, with A on the tangents to O1, C on the tangents to O2, and
E on the tangents to O3. Since the given circles have equal radius,

X1O2 = O1Y2, Y1O3 = O2Z2, Z1O1 = O3X2

or

X1A+AB +BO2 = O1B +BC + CY2,

Y1C + CD +DO3 = O2D +DE + EZ2,

Z1E + EF + FO1 = O3F + FA+AX2.

Adding these equations and noting that

X1A = AX2, Y1C = CY2, Z1E = EZ2,

(as these segments are tangents to a circle from a single point) and

BO2 = O1B, DO3 = O2D, FO1 = O3F
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(since the circles have equal radii), we get

AB + CD + EF = BC +DE + FA,

as desired.

Note: The analogous statement is also true in the case where the
hexagon has reflex angles at B,D,F . In both cases, we also have
the equality AB ·CD ·EF = BC ·DE ·FA, or equivalently, the lines
AD,BE,CF concur. Moreover, the latter statement remains true
even if the assumption of equal radii is removed, and this fact leads
to a proof of Brianchon’s Theorem.

3. Let x, y, p, n, k be natural numbers such that

xn + yn = pk.

Prove that if n > 1 is odd, and p is an odd prime, then n is a power
of p.

Solution: Let m = gcd(x, y). Then x = mx1, y = my1 and by
virtue of the given equation, mn(xn1 + yn1 ) = pk, and so m = pα for
some nonnegative integer α. It follows that

xn1 + yn1 = pk−n
α

. (1)

Since n is odd,

xn1 + yn1
x1 + y1

= xn−1
1 − xn−2

1 y1 + xn−3
1 y2

1 − · · · − x1y
n−2
1 + yn−1

1 .

Let A denote the right side of the equation. By the condition p > 2,
it follows that at least one of x1, y1 is greater than 1, so since n > 1,
A > 1.

From (1) it follows that A(x1 + y1) = pk−n
α

, so since x1 + y1 > 1,
and A > 1, both of these numbers are divisible by p; moreover,
x1 + y1 = pβ for some natural number β. Thus

A = xn−1
1 − xn−2

1 (pβ − x1) + · · · − x1(pβ − x1)n−2 + (pβ − x1)n−1

= nxn−1
1 +Bp.
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Since A is divisible by p and x1 is relatively prime to p, it follows
that n is divisible by p.

Let n = pq. Then xpq+ypq = pk or (xp)q+(yp)q = pk. If q > 1, then
by the same argument, p divides q. If q = 1, then n = p. Repeating
this argument, we deduce that n = p` for some natural number `.

4. In the Duma there are 1600 delegates, who have formed 16000 com-
mittees of 80 persons each. Prove that one can find two committees
having no fewer than four common members.

First Solution: Suppose any two committees have at most three
common members. Have two deputies count the possible ways to
choose a chairman for each of three sessions of the Duma. The first
deputy assumes that any deputy can chair any session, and so gets
16003 possible choices. The second deputy makes the additional re-
striction that all of the chairmen belong to a single committee. Each
of the 16000 committees yields 803 choices, but this is an overcount;
each of the 16000(16000− 1)/2 pairs of committees give at most 33

overlapping choices. Since the first deputy counts no fewer possibil-
ities than the second, we have the inequality

16003 ≥ 16000 · 803 − 16000 · 15999
2

33.

However,

16000 · 803 − 16000 · 15999
2

33 > 16000 · 803 − 16000 · 15999
2

42

2

=
16000 · 43

4
+ 213 · 106 − 212 · 106

> 212 · 106 = 16003.

We have a contradiction.

Second Solution: Suppose we have N committees such that no
two have more than three common members. For each deputy we
write down all of the unordered pairs of committees she belongs to.
If a person deputy to K committees, she gives rise to K(K − 1)/2
pairs.
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LetK1, . . . ,K1600 be the number of committees that deputies 1, . . . , 1600
belong to (under some labeling of the deputies). The total number
of pairs written down is

K1(K1 − 1)
2

+ . . .+
K1600(K1600 − 1)

2

=
K2

1 + . . .+K2
1600

2
− K1 + . . .+K1600

2

≥ 1
2

(
(K1 + . . .+K1600)2

1600
− (K1 + . . .+K1600)

)
=

1
2

(
(80N)2

1600
− 80N

)
=

1
2
N(4N − 80)

since K1 + . . .+K1600 = 80N .

Since no two committees have more than three common members,
the total number of pairs written cannot exceed 3N(N−1)/2. Hence
N(4N − 80)/2 ≤ 3N(N − 1)/2, i.e. N ≤ 77. In particular, if N =
16000, this cannot be the case.

5. Show that in the arithmetic progression with first term 1 and ratio
729, there are infinitely many powers of 10.

Solution: We will show that for all natural numbers n, 1081n − 1
is divisible by 729. In fact, 1081n− 1 = (1081)n− 1n = (1081− 1) ·A,
and

1081 − 1 = 9 . . . 9︸ ︷︷ ︸
81

= 9 . . . 9︸ ︷︷ ︸
9

· · · 10 . . . 01︸ ︷︷ ︸
8

10 . . . 01︸ ︷︷ ︸
8

. . . 10 . . . 01︸ ︷︷ ︸
8

= 9 1 . . . 1︸ ︷︷ ︸
9

· · · 10 . . . 01︸ ︷︷ ︸
8

10 . . . 01︸ ︷︷ ︸
8

. . . 10 . . . 01︸ ︷︷ ︸
8

.

The second and third factors are composed of 9 units, so the sum of
their digits is divisible by 9, that is, each is a multiple of 9. Hence
1081 − 1 is divisible by 93 = 729, as is 1081n − 1 for any n.

6. In the isosceles triangle ABC (AC = BC) point O is the circumcen-
ter, I the incenter, and D lies on BC so that lines OD and BI are
perpendicular. Prove that ID and AC are parallel.

60



First Solution: If the given triangle is equilateral (i.e. O = I) the
statement is obvious. Otherwise, suppose O lies between I and C.
Draw the altitude CE and note that

∠EIB = 90◦ − 1
2
∠ABC and ∠ODB = 90◦ − 1

2
∠ABC,

so ∠OIB + ∠ODB = 180◦, that is, the points B, I,O,D lie on a
circle. Thus ∠IDB = ∠IOB (both angles are inscribed in arc IB),
but ∠IOB = 1

2∠AOB = ∠ACB. Therefore ∠IDB = ∠ACB, and
so ID||AC. The argument is similar in the cases where I lies between
O and C.

Second Solution: Extend the angle bisector BI to meet the cir-
cumcircle at E. Next extend the line ED to meet the circumcircle at
F . Let G and K be the intersections of ED with AF and the altitude
CH, respectively. The line OD contains the diameter perpendicular
to EB, and so DE = DB, i.e. the triangle EDB is isosceles and
∠DEB = ∠DBE. But then ∠DEB = ∠ABE, hence EF ||AB and
EF ⊥ CI. By inscribed angles,

∠CEF = ∠IEF = ∠CFE = ∠IFE,

so ECFI is a rhombus. Thus CK = KI, and (by the symmetry
of G and D across CH) GK = KD. This means GKDI is also a
rhombus and CG||DI.

7. Two piles of coins lie on a table. It is known that the sum of the
weights of the coins in the two piles are equal, and for any natural
number k, not exceeding the number of coins in either pile, the sum
of the weights of the k heaviest coins in the first pile is not more
than that of the second pile. Show that for any natural number x,
if each coin (in either pile) of weight not less than x is replaced by a
coin of weight x, the first pile will not be lighter than the second.

Solution: Let the first pile have n coins of weights x1 ≥ x2 ≥
· · · ≥ xn, and let the second pile have m coins of weights y1 ≥
y2 ≥ · · · ≥ ym, where x1 ≥ · · · ≥ xs ≥ x ≥ xs+1 ≥ · · · ≥ xn
and y1 ≥ · · · ≥ yt ≥ x ≥ yt+1 ≥ · · · ≥ ym. (If there are no
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coins of weight greater than x, the result is clear.) We need to
show that xs + xs+1 + · · · + xn ≥ xt + yt+1 + · · · + ym. Since
x1 + · · ·+xn = y1 + . . .+ym = A, this inequality can be equivalently
written

xs+ (A− x1 − · · · − xm) ≥ xt+ (A− y1 − . . .− yt),

which in turn can be rewritten

x1 + . . .+ xs + x(t− s) ≤ y1 + . . .+ yt,

which is what we will prove.

If t ≥ s, then

x1 + . . .+ xs + x(t− s) = (x1 + . . .+ xs) + (x+ · · ·+ x)︸ ︷︷ ︸
t−s

≤ (y1 + . . .+ ys) + (ys+1 + . . .+ yt),

since x1 + . . . + xs ≤ y1 + . . . + ys (from the given condition) and
ys+1 ≥ . . . ≥ yt ≥ x.

If t < s, then x1 + . . .+ xs + x(t− s) ≤ y1 + . . .+ yt is equivalent to

x1 + . . .+ xs ≤ y1 + . . .+ yt + (x+ . . .+ x)︸ ︷︷ ︸
t−s

.

The latter inequality follows from the fact that

x1 + . . .+ xs ≤ y1 + . . .+ ys = (y1 + . . .+ yt) + (yt+1 + . . .+ ys)

and ys ≤ . . . ≤ yt+1 ≤ x.

8. Can a 5 × 7 checkerboard be covered by L’s (figures formed from a
2×2 square by removing one of its four 1×1 corners), not crossing its
borders, in several layers so that each square of the board is covered
by the same number of L’s?

First Solution: No such covering exists. Suppose we are given
a covering of a 5 × 7 checkerboard with L’s, such that every cell is
covered by exactly k L’s. Number the rows 1, . . . , 5 and the columns
1, . . . , 7, and consider the 12 squares lying at the intersections of odd-
numbered rows with odd-numbered columns. Each of these cells is
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coverd by k L’s, so at least 12k L’s must be used in total. But these
cover 3 · 12k > 35k cells in total, a contradiction.

Second Solution: Color the cells of the checkerboard alternately
black and white, so that the corners are all black. In each black
square we write the number −2, and in each white square 1. Note
that the sum of the numbers in the cells covered by each L is non-
negative, and consequently if we are given a covering of the board
in k layers, the sum over each L of the numbers covered by that
L is nonnegative. But if this number is S and s is the sum of the
numbers on the board, then

S = ks = k(−2 · 12 + 23 · 1) = −k < 0.

We have a contradiction.

Note: It is proved analogously that a covering of the desired form
does not exist if the checkerboard has dimensions 3 × (2n + 1) or
5 × 5. The 2 × 3 board can be covered by one layer of two L’s, the
5× 9 by one layer of 15 L’s, and the 2× 2 by three layers using four
L’s. Combining these three coverings, it is not hard to show that all
remaining m× n boards (m,n ≥ 2) can be covered.

9. Points E and F are given on side BC of convex quadrilateral ABCD
(with E closer than F to B). It is known that ∠BAE = ∠CDF and
∠EAF = ∠FDE. Prove that ∠FAC = ∠EDB.

Solution: By the equality of angles EAF and FDE, the quadri-
lateral AEFD is cyclic. Therefore ∠AEF +∠FDA = 180◦. By the
equality of angles BAE and CDF we have

∠ADC + ∠ABC = ∠FDA+ ∠CDF + ∠AEF − ∠BAE = 180◦.

Hence the quadrilateral ABCD is cyclic, so ∠BAC = ∠BDC. It
follows that ∠FAC = ∠EDB.

10. On a coordinate plane are placed four counters, each of whose centers
has integer coordinates. One can displace any counter by the vector
joining the centers of two of the other counters. Prove that any two

63



preselected counters can be made to coincide by a finite sequence of
moves.

Solution:

Lemma 1 If three counters lie on a line and have integer coordi-
nates, then we can make any two of them coincide.

Proof: Let A and B be the counters between which the smallest
of the three pairwise distances occurs, and let C be the other one.
By repeatedly moving C either by the vector AB or its reverse, we
can put C on the segment AB, thus decreasing the minimum of the
pairwise distances. Since the points have integer coordinates, repeat-
ing this process must eventually bring the minimum distance down
to zero. If the desired counters coincide, we are done; otherwise,
the one that coincides with the third counter can be moved to the
location of the other one. 2

Project the counters onto one of the axes. The projections behave
like counters, in that if a counter is displaced by a vector, its pro-
jection is displaced by the projection of the vector. As described
in the lemma, we can make the projections of our chosen counters
coincide, using one of the remaining counters as the third counter.
We can now make a third projection coincide with these by treating
our chosen counters as one. (That is, each time we displace one,
we displace the other by the same amount.) Now our two chosen
counters and one more lie on a line perpendicular to the axis, and
by the lemma we can make the desired counters coincide.

11. Find all natural numbers n, such that there exist relatively prime
integers x and y and an integer k > 1 satisfying the equation 3n =
xk + yk.

Solution: The only solution is n = 2.

Let 3n = xk+yk, where x, y are relatively prime integers with x > y,
k > 1, and n a natural number. Clearly neither x nor y is a multiple
of 3. Therefore, if k is even, xk and yk are congruent to 1 mod 3, so
their sum is congruent to 2 mod 3, and so is not a power of 3.

If k is odd and k > 1, then 3n = (x + y)(xk−1 − . . . + yk−1). Thus
x + y = 3m for some m ≥ 1. We will show that n ≥ 2m. Since 3|k
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(see the solution to Russia 3), by putting x1 = xk/3 and y1 = yk/3

we may assume k = 3. Then x3 +y3 = 3m and x+ y = 3n. To prove
the inequality n ≥ 2m, it suffices to show that x3 + y3 ≥ (x+ y)2, or
x2 − xy + y2 ≥ x+ y. Since x ≥ y + 1, x2 − x = x(x− 1) ≥ xy, and
(x2 − x+ xy) + (y2 − y) ≥ y(y − 1) ≥ 0, and the inequality n ≥ 2m
follows.

From the identity (x+ y)3 − (x3 + y3) = 3xy(x+ y) it follows that

32m−1 − 3n−m−1 = xy.

But 2m − 1 ≥ 1, and n −m − 1 ≥ n − 2m ≥ 0. If strict inequality
occurs in either place in the last inequality, then 32m−1− 3n−m−1 is
divisible by 3 while xy is not. Hence n−m− 1 = n− 2m = 0, and
so m = 1, n = 2 and 32 = 23 + 13.

Note: The inequality x2 − xy + y2 ≥ x + y can alternatively be
shown by noting that

x2 − xy + y2 − x− y = (x− y)2 + (x− 1)(y − 1)− 1 ≥ 0,

since (x− y)2 ≥ 1.

12. Show that if the integers a1, . . . , am are nonzero and for each k =
0, 1, . . . ,m (n < m− 1),

a1 + a22k + a33k + . . .+ amm
k = 0,

then the sequence a1, . . . , am contains at least n+ 1 pairs of consec-
utive terms having opposite signs.

Solution: We may assume am > 0, since otherwise we may mul-
tiply each of the numbers by −1. Consider the sequence b1, . . . , bm,
where bi =

∑n
j=0 cji

j for an arbitrary sequence of real numbers
c0, . . . , cn. From the given condition

m∑
i=1

aibi =
m∑
i=1

ai

n∑
j=0

cji
j =

n∑
j=0

cj

n∑
i=1

aii
j = 0.

Suppose now that the sequence a1, . . . , am has k pairs of neighbors
that differ in sign, where k < n+ 1, and let i1, . . . , ik be the indices
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of the first members of these pairs. Let bi = f(i) = (i − x1)(i −
x2) . . . (i − xk), where x` = i` + 1/2 (i = 1, 2, . . . , k). The function
f changes sign only at the points x1, . . . , xk, and so bi and bi+1

have different signs if and only one of the x` falls between them,
which means i = i`. We deduce that the sequences a1, . . . , am and
b1, . . . , bm have the same pairs of neighbors of opposite sign. Since
am and bm are positive, we have that ai and bi have the same sign
for i = 1, . . . ,m, and so

∑m
i=1 aibi > 0, a contradiction.

13. At the vertices of a cube are written eight pairwise distinct natural
numbers, and on each of its edges is written the greatest common
divisor of the numbers at the endpoints of the edge. Can the sum of
the numbers written at the vertices be the same as the sum of the
numbers written at the edges?

Solution: This is not possible. Note that if a and b are natural
numbers with a > b, then gcd(a, b) ≤ b and gcd(a, b) ≤ a/2. It
follows that if a 6= b, then gcd(a, b) ≤ (a + b)/3. Adding 12 such
inequalities, corresponding to the 12 edges, we find that the desired
condition is only possible if gcd(a, b) = (a+b)/3 in each case. But in
this case the larger of a and b is twice the smaller; suppose a = 2b.
Consider the numbers c and d assigned to the vertices of the other
endpoints of the other two edges coming out of the vertex labeled a.
Each of these is either half of or twice a. If at least one is less than
a, it equals b; otherwise, both are equal. Either option contradicts
the assumption that the numbers are distinct.

14. Three sergeants and several solders serve in a platoon. The sergeants
take turns on duty. The commander has given the following orders:

(a) Each day, at least one task must be issued to a soldier.

(b) No soldier may have more than two task or receive more than
one tasks in a single day.

(c) The lists of soldiers receiving tasks for two different days must
not be the same.

(d) The first sergeant violating any of these orders will be jailed.

Can at least one of the sergeants, without conspiring with the others,
give tasks according to these rules and avoid being jailed?
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Solution: The sergeant who goes third can avoid going to jail.
We call a sequence of duties by the first, second and third sergeants
in succession a round. To avoid going to jail, the third sergeant on
the last day of each round gives tasks to precisely those soldiers who
received one task over the previous two days. (Such soldiers exist by
the third condition.) With this strategy, at the end of each cycle each
soldier will have received either two tasks or none, and the number
of the latter will have decreased. It will end up, at some point, that
all of the soldiers have received two tasks, and the first sergeant will
go to jail.

15. A convex polygon is given, no two of whose sides are parallel. For
each side we consider the angle the side subtends at the vertex far-
thest from the side. Show that the sum of these angles equals 180◦.

Solution: Denote by Pa the vertex of the polygon farthest from
the line containing side a. Choose an arbitrary point O in the plane.
We call the two vertical angles, consisting of all lines through O
and parallel to the segment PaQ for some Q on side a, the angles
corresponding to side a.

We prove first that the angles corresponding to different sides do
not overlap. Let a ray ` with vertex O lie inside one of the angles
corresponding to a. The line parallel to this ray passing through
Pa intersects side a at some interior point A. Draw through Pa the
line b parallel to the line c containing side a. From the convexity
of the polygon and the definition of Pa, it follows that the polygon
lies in the strip bounded by b and c. Moreover, since the polygon
has no parallel sides, Pa is the only vertex of the polygon lying
on b. Therefore the segment PaA is strictly longer than any other
segment formed as the intersection of the polygon with a line parallel
to `. If ` lay inside the angle corresponding to another side b, then
contrary to this conclusion, the longest such segment would be PbB
for some B, and hence this cannot occur. In other words, the angles
corresponding to a and b do not overlap.

We now prove that the angles we have constructed cover the entire
plane. Suppose this were not the case. Then there would exist some
angle with vertex O not covered by any of the angles constructed.
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Choose within this angle a ray m, not parallel to any side or diagonal
of the polygon. Of all of the segments formed by intersecting the
polygon with a line parallel to m, choose the one of maximum length.
Clearly one of its vertices must be a vertex P of the polygon, while
the other lies on some side a. Draw the line c through P parallel to
the line b containing a. If one of the sides adjacent to P did not lie
inside the strip bounded by b and c, then we could have found a line
parallel to m intersecting the polygon in a segment longer than PA.
Consequently, our polygon lies within the strip bounded by b and c,
from which we deduce that P is the farthest vertex from the line b
containing side a. This means m lies in the angle corresponding to
a, contradicting our choice of m.

We thus conclude that our constructed angles cover the plane with-
out overlap, and hence the sum of their measures is 360◦. To finish
the proof, simply note that the sum of the desired angles is half that
of the constructed angles.

16. Goodnik writes 10 numbers on the board, then Nogoodnik writes 10
more numbers, all 20 of the numbers being positive and distinct. Can
Goodnik choose his 10 numbers so that no matter what Nogoodnik
writes, he can form 10 quadratic trinomials of the form x2 + px+ q,
whose coefficients p and q run through all of the numbers written,
such that the real roots of these trinomials comprise exactly 11 val-
ues?

Solution: We will prove that Goodnik can choose the numbers

1/4, 1/2, 1, 2, 5, 52, 54, 58, 516, 532.

Lemma 1 (a) If a > 4 and a > b, then the trinomial x2 + ax + b
has two distinct real roots.

(b) If a < 4 and b > 0, then at least one of the trinomials x2 +ax+
b, x2 + bx+ a does not have real roots.

Proof: The first part is obvious, since the discriminant D = a2 −
4b > 4a − 4b > 0. For the second part, note that if b ≤ a, then
b2 − 4a < 0, while if b > a, then a2 − 4b < 0. 2

68



Lemma 2 Suppose 0 < a < b < c < d and both of the trinomials
x2 + dx + a and x2 + cx + b have two real roots. Then all four of
these roots are distinct.

Proof: Suppose the contrary, that these trinomials have a common
root x0. Then x2

0 + dx0 + a = 0 = x2
0 + cx0 + b and consequently

x0 = (b − a)/(d − c) > 0. But if x0 > 0, then x2
0 + dx0 + a > 0, a

contradiction. 2

Suppose Goodnik has written the aforementioned numbers. Con-
sider all of Nogoodnik’s numbers which are greater than 4. If there
are an odd number of them, add to them any of Nogoodnik’s other
numbers. Call these numbers distinguished.

Add to the distinguished numbers members of the set {5, 52, 54, 58,
516, 532} so that the total number of distinguished numbers is 12;
if the powers of 5 do not suffice, add any of Nogoodnik’s remaining
numbers to make a total of 12. From the unused powers of 5 make
trinomials x2 + px+ q with p < q, which have negative discriminant
and hence no real roots.

Let n1, . . . , n12 be the 12 distinguished numbers in increasing order.
Now form from them the 6 trinomials x2+n12x+n1, . . . , x

2+n7x+n6.
By the construction of the 12 distinguished numbers, at least 6 are
greater than 4. Hence by Lemma 1, each of these trinomials has two
distinct real roots. By Lemma 2, all of these roots are distinct. Hence
we have 12 distinct real roots of the “distinguished” trinomials.

Consider the trinomial x2 + 2x + 1, whose unique root is −1. If
this number occurs among the roots of the distinguished trinomials,
we declare the corresponding trinomial “bad”. If not, declare an
arbitrary distinguised trinomial to be bad. Remove the bad trino-
mial, and from its coefficients and the numbers 1/2 and 1/4 form
(by Lemma 1) two trinomials without real roots. Now the number
of distinct real roots of the trinomials constructed so far is 11.

There may be some of Nogoodnik’s numbers left; all except possibly
one must be less than 4 (one may equal 4). By Lemma 1, we form
trinomials from these with no real roots.

17. Can the number obtained by writing the numbers from 1 to n in
order (n > 1) be the same when read left-to-right and right-to-left?
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Solution: This is not possible. Suppose N = 123 · · · 321 is an m-
digit symmetric number, formed by writing the numbers from 1 to
n in succession. Clearly m > 18. Also let A and B be the numbers
formed from the first and last k digits, respectively, of N , where
k = bm/2c. Then if 10p is the largest power of 10 dividing A, then
n < 2 · 10p+1, that is, n has at most p + 2 digits. Moreover, A and
B must contain the fragments

99 . . . 9︸ ︷︷ ︸
p

1 00 . . . 0︸ ︷︷ ︸
p

1 and 1 00 . . . 0︸ ︷︷ ︸
p

1 99 . . . 9︸ ︷︷ ︸
p

,

respectively, which is impossible.

18. Several hikers travel at fixed speeds along a straight road. It is known
that over some period of time, the sum of their pairwise distances
is monotonically decreasing. Show that there is a hiker, the sum of
whose distances to the other hikers is monotonically decreasing over
the same period.

Solution: Let n be the number of hikers, who we denote P1, . . . , Pn.
Let Vij be the rate of approach between Pi and Pj (this is negative
if they are getting further apart). Note that Vij never increases, and
can only decrease once: it changes sign if Pi and Pj meet.

By the given condition, at the end of the period in question the sum
of the pairwise speeds must be positive:∑

1≤i<j≤n

Vij > 0.

Since Vij = Vji, we have (putting Vii = 0)

n∑
j=1

n∑
i=1

Vij = 2
∑

1≤i<j≤n

Vij > 0.

Hence for some j,
∑n
i=1 Vij > 0. Since Vij cannot increase over time,

the sum of the distances from Pj to the other hikers is decreasing
throughout the period.
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19. Show that for n ≥ 5, a cross-section of a pyramid whose base is a
regular n-gon cannot be a regular (n+ 1)-gon.

Solution: Suppose the regular (n+ 1)-gon B1 . . . Bn+1 is a cross-
section of the pyramid SA1 . . . An, whose base A1 . . . An is a regular
n-gon. We consider three cases: n = 5, n = 2k − 1 (k > 3) and
n = 2k (k > 2).

Since the pyramid has n + 1 faces, one side of the section must lie
on each face. Therefore without loss of generality, we may assume
that the points B1, . . . , Bn+1 lie on the edges of the pyramid.

(a) n = 5. Since in the regular hexagon B1 . . . B6 the lines B2B3,
B5B6 andB1B4 are parallel, while the planesA2SA3 andA1SA5

pass through B2B3 and B5B6, respectively, the line ST (T =
A1A5∩A2A3) along which these planes meet is parallel to these
lines, i.e. ST ||B1B4. Draw the plane containing ST and B1B4.
This plane intersects the plane of the base of the pyramid in
the line B1A4, which must pass through the intersection of the
line ST with the plane of the base, that is, through T . Hence
the lines A1A5, A4B1 and A2A3 pass through a single point.
It is proved analogously that the lines A1A2, A3B6 and A4A5

also meet in a point. From this it follows that A4B1 and A3B6

are axes of symmetry of the regular pentagon A1 . . . A5, which
means their intersection O is the center of this pentagon. Now
note that if Q is the center of the regular hexagon B1 . . . B6,
then the planes SA3B6, SA4B1 and SB2B5 intersect in the
line SQ. Consequently, the lines A3B6, A4B1 and A2A5 must
intersect in a point, namely the intersection of line SQ with the
plane of the base. This means the diagonal A2A5 of the regular
pentagon A1 . . . A5 must pass through its center O, which is
impossible.

(b) n = 2k−1 (k > 3). Analogously to the first case one shows that
since in the regular 2k-gonB1 . . . B2k the linesB1B2, Bk+1Bk+2,
and BkBk+3 are parallel, then the lines A1A2, Ak+1Ak+2 and
AkAk+3 must intersect in a point, which is impossible, since in
the regular (2k− 1)-gon A1 . . . A2k−1, Ak+1Ak+2||AkAk+3, but
the lines A1A2 and Ak+1Ak+2 are not parallel.

(c) n = 2k (k > 2). Analogously to the preceding cases, the lines
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A1A2, Ak+1Ak+2 and AkAk+3 are parallel, and hence the lines
B1B2, Bk+1Bk+2 and BkBk+3 must meet in a point, which is
impossible, since Bk+1Bk+2||BkBk+3, while the lines B1B2 and
Bk+1Bk+2 are not parallel.

Note: For n = 3, 4, the statement of the problem is not true. For
examples, consider a regular tetrahedron having a square as a cross-
section, and a square pyramid whose lateral faces are equilateral
triangles, which has a regular pentagon as a cross-section.

Also, the presented solution may be more concisely expressed using
central projection, and the property that under central projection,
the images of lines passing through a single point (or parallel) are
lines passing through a single point (or parallel). It suffices to project
the cross-section of the pyramid onto the plane of the base with
center the vertex of the pyramid.

20. Do there exist three natural numbers greater than 1, such that the
square of each, minus one, is divisible by each of the others?

Solution: Such integers do not exist. Suppose a ≥ b ≥ c satisfy the
desired condition. Since a2 − 1 is divisible by b, the numbers a and
b are relatively prime. Hence the number c2 − 1, which is divisible
by a and b, must be a multiple of ab, so in particular c2 − 1 ≥ ab.
But a ≥ c and b ≥ c, so ab ≥ c2, a contradiction.

21. In isosceles triangle ABC (AB = BC) one draws the angle bisector
CD. The perpendicular to CD through the center of the circumcircle
of ABC intersects BC at E. The parallel to CD through E meets
AB at F . Show that BE = FD.

Solution: We use directed angles modulo π. Let O be the circum-
circle of ABC, and K the intersection of BO and CD. From the
equality of the acute angles BOE and DCA having perpendicular
sides, it follows that ∠BOE = ∠KCE (CD being an angle bisec-
tor), which means the points K,O,E,C lie on a circle. From this it
follows that ∠OKE = ∠OCE; but ∠OCE = ∠OBE, so OB = OC,
and hence ∠BKE = ∠KBE, or in other words BE = KE. More-
over, ∠BKE = ∠KBE = ∠KBA, and so KE||AB. Consequently,
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FEKD is a parallelogram and DF = KE. Therefore, DF = KE =
BE as desired.

22. Does there exist a finite set M of nonzero real numbers, such that
for any natural number n a polynomial of degree no less than n with
coefficients in M , all of whose roots are real and belong to M?

Solution: Such a set does not exist. Suppose on the contrary
that M = {a1, a2, . . . , an} satisfies the desired property. Let m =
min{|a1|, . . . , |an|} and M = max{|a1|, . . . , |an|}; the condition im-
plies M ≥ m > 0.

Consider the polynomial P (x) = bkx
k + · · ·+ b1x+ b0, all of whose

coefficients b0, . . . , bk and roots x1, . . . , xk lie in M . By Vieta’s the-
orem,

−bk−1

bk
= x1 + . . .+ xk

x1x2 + x1x3 + . . .+ xk−1xk =
bk−2

bk

and so

x2
1 + . . .+ x2

k =
b2k−1

b2k
− 2

bk−2

bk
.

It follows that

km2 ≤ x2
1 + . . .+ x2

k =
b2k−1

b2k
− 2

bk−2

bk
≤ M2

m2
+ 2

M

m
.

Hence k ≤ M2/m4 + 2M/m3, contradicting the fact that P may
have arbitrarily large degree.

23. The numbers from 1 to 100 are written in an unknown order. One
may ask about any 50 numbers and find out their relative order.
What is the fewest questions needed to find the order of all 100
numbers?

Solution: Five questions are needed. To determine the order
of a1, . . . , a100 in the sequence, it is necessary that each of the pairs
(ai, ai+1) (i = 1, ..., 99) occur together in at least one question, or else
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the two sequences a1, . . . , ai, ai+1, . . . , an and a1, . . . , ai+1, ai, . . . , an
will give the same answers. We will show that for any two questions,
there can arise a situation where including all pairs of consecutive
numbers not already included requires at least three questions. Let
k1, . . . , k50 be the sequence (in order) of numbers about which the
first question was asked, and k′1, . . . , k

′
50 the corresponding sequence

for the second question. We will construct a sequence a1, . . . , a100 for
which we cannot, given two more questions, uniquely determine the
order of the terms. We consider a situation where all of the numbers
named in the first two questions appear in the answers in the very
same places.

For our desired sequence we shall choose a set with

ki, k
′
i ∈ {a2i−1, a2i}, i = 1, . . . , 50

and moreover, for each quadruple (a4m−3, a4m−2, a4m−1, a4m) (m =
1, . . . , 25), in the first two questions there is no comparison of a
consecutive pair from this quadruple. We will show that such a set
exists. Let X be the set of numbers not named in the first two
questions. For each of the four cases

1 : k2m−1 = k′2m−1, k2m = k′2m

2 : k2m−1 = k′2m−1, k2m 6= k′2m

3 : k2m−1 6= k′2m−1, k2m 6= k′2m

4 : k2m−1 6= k′2m−1, k2m = k′2m,

we construct the quadruple (a4m−3, a4m−2, a4m−1, a4m) in the fol-
lowing manner:

1 : (k2m−1, ∗, ∗, k2m),
2 : (k2m−1, ∗, k2m, k

′
2m)

3 : (k2m−1, k
′
2m−1, k2m, k

′
2m)

4 : (k2m−1, k
′
2m−1, ∗, k2m),

where in place of a ∗ we may choose any number in X not occuring
in the previously constructed quadruples.

Hence we have shown that after any two questions, a situation is
possible where no pair (ai, ai+1) occurs for i not a multiple of 4.
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Each of the 100 numbers occurs in at least one of the nonincluded
pairs, and so must appear in one of the remaining questions.

Suppose that in the given situation, all remaining pairs can be in-
cluded in two questions; then each of the 100 numbers must appear
in exactly one of these questions. Considering the quadruples of the
form (a4i−3, a4i−2, a4i−1, a4i) (i = 1, . . . , 25), we notice that if one
of the numbers in the quadruple appears in some question, then the
remaining three numbers must also appear in the question (or else
not all of the pairs of consecutive numbers in the quadruple would be
included). But then the number of numbers in one question would
have to be a multiple of 4, which 50 is not, giving a contradiction.

Hence 4 questions do not suffice in general. We now show that 5
questions suffice. We ask the first question about M1 = {1, . . . , 50},
and the second about M2 = {51, . . . , 100}. The set M3 consists of
the 25 leftmost numbers from each of M1 and M2, while M4 consists
of the 25 rightmost numbers from each of M1 and M2. Clearly the
answer to the third question locates the first 25 numbers, and the
answer to the fourth question locates the last 25. The fifth question,
asked about the other 50 numbers, completely determines the order.
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1.15 Spain

1. The natural numbers a and b are such that
a+ 1
b

+
b+ 1
a

is an integer. Show that the greatest common divisor of a and b is
not greater than

√
a+ b.

Solution: Let d = gcd(a, b) and put a = md and b = nd. Then we
have (md+ 1)/nd+ (nd+ 1)/md = (m2d+m+ n2d+ n)/mnd is an
integer, so that in particular, d divides m2d+m+ n2d+ n and also
m + n. However, this means d ≤ m + n, and so d ≤

√
d(m+ n) =√

a+ b.

2. Let G be the centroid of the triangle ABC. Prove that if AB+GC =
AC +GB, then ABC is isosceles.

Solution: Let a, b, c be the lengths of sides BC,CA,AB, respec-
tively. By Stewart’s theorem and the fact thatG trisects each median
(on the side further from the vertex), we deduce

9GB2 = 2a2 + 2c2 − b2, 9GC2 = 2a2 + 2b2 − c2.

Now assume b > c. Assuming AB +GC = AC +GB, we have

3(b− c) =
√

2a2 + 2b2 − c2 −
√

2a2 + 2c2 − b2

=
3(b2 − c2)√

2a2 + 2b2 − c2 +
√

2a2 + 2c2 − b2

<
3(b2 − c2)√

2(b− c)2 + 2b2 − c2 +
√

2(b− c)2 + 2c2 − b2

since a2 > (b − c)2 by the triangle inequality. However, 2(b − c)2 +
2b2 − c2 = (2b− c)2, so we have

3(b− c) < 3(b2 − c2)
2b− c+ |2c− b|

.

If b ≤ 2c then the two sides are equal, a contradiction. If b > 2c we
get 9(b− c)2 < 3(b2− c2); upon dividing off 3(b− c) and rearranging,
we get 2b < 4c, again a contradiction. Thus we cannot have b > c
or similarly b < c, so b = c.
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3. Let a, b, c be real numbers. Consider the functions

f(x) = ax2 + bx+ c, g(x) = cx2 + bx+ a.

Given that

|f(−1)| ≤ 1, |f(0)| ≤ 1, |f(1)| ≤ 1,

show that for −1 ≤ x ≤ 1,

|f(x)| ≤ 5
4

and |g(x)| ≤ 2.

Solution: We may assume a > 0, so that f is convex; then
f(−1), f(1) ≤ 1 implies f(x) ≤ 1 for −1 ≤ x ≤ 1, so it suffices
to look at the point t where f takes its minimum. If t is not in
the interval, we have f(x) ≥ −1, so assume it is; without loss of
generality, we may assume t ≥ 0.

We now consider two cases. First suppose t ≤ 1/2. In this case
f(−1) ≥ f(1) ≥ f(0), so it suffices to impose the conditions f(−1) ≤
1, f(0) ≥ −1. If we write f(x) = a(x− t)2 + k, we have 2 ≥ f(−1)−
f(0) = a(2t+1), so a ≤ 2/(2t+1). Then f(0) ≥ −1 means at2 +k ≥
−1, so

k ≥ −1− at2 ≥ −1− 2t2

2t+ 1
= −1− 2t

2 + 1/t
,

which is decreasing in t (the numerator of the fraction is increasing,
the denominator is decreasing and there is a minus sign in front).
Thus k ≥ 5/4.

Now suppose t ≥ 1/2. In this case f(−1) ≥ f(0) ≥ f(1), so the
relevant conditions are f(−1) ≤ 1, f(1) ≥ −1. If we write f(x) =
a(x − t)2 + k, we have 2 ≥ f(−1) − f(1) = 2at, so a ≤ 1/t. Then
f(1) ≥ −1 means a(1− t)2 + k ≥ −1, so

k ≥ −1− a(1− t)2 ≥ −1− (1− t)2

t
= −1− (1− t)

t/(1− t)

which is increasing in t (similar reasoning). Thus k ≥ 5/4.

We move on to g. We assume c > 0 and that the minimum of
g occurs in [0, 1]. Assuming g(−1), g(1) ≤ 1, we again need only
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determine the minimum of g. Writing g(x) = c(x− t)2 + k, we have
c ≤ 1 and c(1− t)2 + k ≥ −1, so

k ≥ −1− c(1− t)2 ≥ −1− (1− t)2 ≥ −2.

4. Find all real solutions of the equation√
x2 − p+ 2

√
x2 − 1 = x

for each real value of p.

Solution: Squaring both sides, we get

x2 = 5x2 − 4− p+ 4
√

(x2 − p)(x2 − 1).

Isolating the radical and squaring again, we get

16(x2 − p)(x2 − 1) = (4x2 − p− 4)2,

which reduces to (16− 8p)x2 = p2 − 8p + 16. Since x ≥ 0 (it is the
sum of two square roots), we have

x =
|p− 4|√
16− 8p

if a solution exists. We need only determine when this value actually
satisfies. Certainly we need p ≤ 2. In that case plugging in our
claimed value of x and multiplying through by

√
16− 8p gives

|3p− 4|+ 2|p| = 4− p.

If p ≥ 4/3 this becomes 6p = 8, or p = 4/3; if 0 ≤ p ≤ 4/3 this holds
identically; if p ≤ 0 this becomes 4p = 0, or p = 0. We conclude
there exists a solution if and only if 0 ≤ p ≤ 4/3, in which case it is
the solution given above.

5. At Port Aventura there are 16 secret agents. Each agent is watching
one or more other agents, but no two agents are both watching each
other. Moreover, any 10 agents can be ordered so that the first is
watching the second, the second is watching the third, etc., and the
last is watching the first. Show that any 11 agents can also be so
ordered.
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Solution: We say two agents are partners if neither watches the
other. First note that each agent watches at least 7 others; if an agent
were watching 6 or fewer others, we could take away 6 agents and
leave a group of 10 which could not be arranged ina circle. Similarly,
each agent is watched by at least 7 others. Hence each agent is allied
with at most one other.

Given a group of 11 agents, there must be one agent x who is not
allied with any of the others in the group (since allies come in pairs).
Remove that agen t and arrange the other 10 in a circle. The removed
agent watches at least one of the other 10 and is watched by at least
one. Thus there exists a pair u, v of agents with u watching v,
u watching x and x watching v (move around the circle until the
direction of the arrow to x changes); thus x can be spliced into the
loop between u and v.

6. A regular pentagon is constructed externally on each side of a regular
pentagon of side 1. This figure is then folded and the two edges
meeting at each vertex of the original pentagon but not belonging
to the original pentagon are glued together. Determine the volume
of water that can be poured into the resulting container without
spillage.

Solution: The figure formed by the water is a prismatoid of height
equal to the vertical component of one of the glued edges. To determine
this component, introducte a coordinate system centered at one of the
base vertices, such that (cos 36, sin 36, 0) and (− cos 36, sin 36, 0) are two
vertices. (All angles are measured in degrees.) The third vertex adjacent
to this one has coordinates (0, y, z) for some y, z with z > 0, y2 + z2 = 1
and y cos 36 = cos 108 (this being the dot product of the vectors of the
two edges ). Therefore

y =
cos 108
cos 36

=
(1−

√
5)/4

(1 +
√

5)/4

and z = 2 · 51/4/(1 +
√

5).
Now we must determine the areas of the bases of the prismatoid. The

area of the lower base is the area of a regular pentagon of side 1, which is
5/4 cot 36. The area of the upper base is the area of a regular pentagon
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in which the circumradius has been increased by y, namely 5/4 cot 36(1 +
y sin 36)2. The volume is the height times the average of the bases, namely

55/4

2(1 +
√

5)
cot 36(1 + cos 108 tan 36)2 ≈ 0.956207.
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1.16 Turkey

1. Let
1996∏
n=1

(
1 + nx3n

)
= 1 + a1x

k1 + a2x
k2 + . . .+ amx

km ,

where a1, a2, . . . , am are nonzero and k1 < k2 < . . . < km. Find
a1996.

Solution: Note that ki is the number obtained by writing i in
base 2 and reading the result as a number in base 3, and ai is the
sum of the exponents of the powers of 3 used. In particular, 1996 =
210 + 29 + 28 + 27 + 26 + 23 + 22, so

a1996 = 10 + 9 + 8 + 7 + 6 + 3 + 2 = 45.

2. In a parallelogram ABCD with ∠A < 90◦, the circle with diameter
AC meets the lines CB and CD again at E and F , respectively, and
the tangent to this circle at A meets BD at P . Show that P, F,E
are collinear.

Solution: Without loss of generality, suppose B,D,P occur in
that order along BD. Let G and H be the second intersections of
AD and AB with the circle. By Menelaos’s theorem, it suffices to
show that

CE ·BP ·DF
EB · PD · FC

= 1.

First note that

BP

AB

AD

DP
=

sin∠BAP
sin∠APB

sin∠APD
sin∠DAP

=
sin∠BAP
sin∠DAP

.

Since AP is tangent to the circle, ∠BAP = ∠HAP = π−∠HCA =
π − ∠FAC; similarly, ∠DAP = ∠GCA = ∠EAC. We conclude

BP

AB

AD

DP
=

sin∠FAC
sin∠EAC

=
FC

EC
.

Finally we note that DF/BE = DA/AB because the right triangles
AFD and AEB have the same angles at B and D and are thus
similar. This proves the claim.
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3. Given real numbers 0 = x1 < x2 < . . . < x2n < x2n+1 = 1 with
xi+1 − xi ≤ h for 1 ≤ i ≤ 2n, show that

1− h
2

<
n∑
i=1

x2i(x2i+1 − x2i−1) <
1 + h

2
.

Solution: The difference between the middle quantity and 1/2 is
the difference between the sum of the areas of the rectangles bounded
by the lines x = x2i−1, x = x2i+1, y = 0, y = x2i and the triangle
bounded by the lines y = 0, x = 1, x = y. The area contained in the
rectangles but not the triangle is a union of triangles of total base
less than 1 and height at most h, as is the area contained in the
triangle but not the rectangles. Hence the sum differs from 1/2 by
at most h/2, as desired.

4. In a convex quadrilateral ABCD, triangles ABC and ADC have
the same area. Let E be the the intersection of AC and BD,
and let the parallels through E to the lines AD,DC,CB,BA meet
AB,BC,CD,DA at K,L,M,N , respectively. Compute the ratio of
the areas of the quadrilaterals KLMN and ABCD.

Solution: The triangles EKL and DAC are homothetic, so the
ratio of their areas equals (EK/AD)(EL/CD) = (BE/BD)2 = 1/4,
since B and D are equidistant from the line AC. Similarly the ratio
of the areas of EMN and BCA is 1/4, so the union of the triangles
EKL and EMN has area 1/4 that of ABCD.

As for triangle EKN , its base KN is parallel to BD and half as
long, so its area is one-fourth that of ABD. Similarly EML has
area one-fourth that of BCD, and so the union of the two triangles
EKN and EML has area one-fourth that of ABCD, and so the
quadrilateral KLMN has area one-half that of ABCD.

5. Find the maximum number of pairwise disjoint sets of the form
Sa,b = {n2 + an+ b : n ∈ Z} with a, b ∈ Z.

Solution: Only two such sets are possible, for example, with
(a, b) = (0, 0) and (0, 2) (since 2 is not a difference of squares). There
is no loss of generality in assuming a ∈ {0, 1} by a suitable shift of
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n, and the sets generated by (0, a) and (1, b) have the common value
(a − b)2 + a = (a − b)2 + (a − b) + b. Thus we have a = 0 or a = 1
universally.

First suppose a = 0. If b− c 6≡ 2 (mod 4), then (0, b) and (0, c) give
a common value because b− c is a difference of squares; clearly this
precludes having three disjoint sets. Now suppose a = 1. If b− c is
even, we can find x, y such that b − c = (x + y + 1)(x − y), and so
x2 + x + b = y2 + y + c; again, this precludes having three disjoint
sets.

6. For which ordered pairs of positive real numbers (a, b) is the limit of
every sequence {xn} satisfying the condition

lim
n→∞

(axn+1 − bxn) = 0

zero?

Solution: This holds if and only if b < a. If b > a, the sequence
xn = (b/a)n satisfies the condition but does not go to zero; if b = a,
the sequence xn = 1 + 1/2 + · · · + 1/n does likewise. Now suppose
b < a. If L and M are the limit inferior and limit superior of the
given sequence, the condition implies M ≤ (b/a)L; since L ≤ M ,
we have M ≤ (b/a)M , and so L,M ≥ 0. Similarly, the condition
implies L ≥ (b/a)M , and since M ≥ L, we have L ≥ (b/a)L, so
L,M ≤ 0; therefore L = M = 0 and the sequence converges to 0.
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1.17 United Kingdom

1. Consider the pair of four-digit positive integers

(M,N) = (3600, 2500).

Notice that M and N are both perfect squares, with equal digits in
two places, and differing digits in the remaining two places. More-
over, when the digits differ, the digit in M is exactly one greater
than the corresponding digit in N . Find all pairs of four-digit posi-
tive integers (M,N) with these properties.

Solution: If M = m2 and N = n2, then

(m+ n)(m− n) ∈ {11, 101, 110, 1001, 1010, 1100}.

Since M and N are four-digit numbers, we must have 32 ≤ n < m ≤
99, and so 65 ≤ m+ n ≤ 197. Moreover, m+ n and m− n are both
odd or both even, so 11, 110 and 1010 lead to no solutions. From
this we get exactly five acceptable factorizations:

101 = (m+ n)(m− n) = 101× 1
1001 = (m+ n)(m− n) = 143× 7
1001 = (m+ n)(m− n) = 91× 11
1001 = (m+ n)(m− n) = 77× 13
1100 = (m+ n)(m− n) = 110× 10

giving the solutions

(M,N) = (2601, 2500), (5625, 4624), (2601, 1600), (2025, 1024), (3600, 2500).

2. A function f defined on the positive integers satisfies f(1) = 1996
and

f(1) + f(2) + · · ·+ f(n) = n2f(n) (n > 1).

Calculate f(1996).

Solution: An easy induction will show that

f(n) =
2× 1996
n(n+ 1)

.
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Namely,

f(n) =
1

n2 − 1

(
3992
1 · 2

+ · · ·+ 3992
(n− 1)n

)
=

3992
n2 − 1

(
1− 1

2
+

1
2
− 1

3
+ · · ·+ 1

n− 1
− 1
n

)
=

3992
(n+ 1)(n− 1)

(
1− 1

n

)
=

3992
(n+ 1)(n− 1)

n− 1
n

=
3992

n(n+ 1)
.

In particular, f(1996) = 2/1997.

3. Let ABC be an acute triangle and O its circumcenter. Let S denote
the circle through A,B,O. The lines CA and CB meet S again
at P and Q, respectively. Prove that the lines CO and PQ are
perpendicular.

Solution: The angles ∠PAB and ∠BQP are supplementary, so
∠BQP = ∠CAB (as directed angles mod π). In other words, the
line PQ makes the same angle with the line CQ as the tangent to
the circumcircle of ABC through C. Hence PQ is parallel to the
tangent, so perpendicular to OC.

4. Define

q(n) =
⌊

n

b
√
nc

⌋
(n = 1, 2, . . .).

Determine all positive integers n for which q(n) > q(n+ 1).

Solution: We have q(n) > q(n+ 1) if and only if n+ 1 is a perfect
square. Indeed, if n+ 1 = m2, then

q(n) =
⌊
m2 − 1
m− 1

⌋
= m+ 1, q(n+ 1) =

⌊
m2

m

⌋
= m.

On the other hand, for n = m2 + d with 0 ≤ d ≤ 2m,

q(n) =
⌊
m2 + d

m

⌋
= m+

⌊
d

m

⌋
which is nondecreasing.
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5. Let a, b, c be positive real numbers.

(a) Prove that 4(a3 + b3) ≥ (a+ b)3.

(b) Prove that 9(a3 + b3 + c3) ≥ (a+ b+ c)3.

Solution: Both parts follow from the Power Mean inequality: for
r > 1 and x1 . . . , xn positive,(

xr1 + · · ·+ xrn
n

)1/r

≥ x1 + · · ·+ xn
n

,

which in turn follows from Jensen’s inequality applied to the convex
function xr.

6. Find all solutions in nonnegative integers x, y, z of the equation

2x + 3y = z2.

Solution: If y = 0, then 2x = z2− 1 = (z+ 1)(z− 1), so z+ 1 and
z − 1 are powers of 2. The only powers of 2 which differ by 2 are 4
and 2, so (x, y, z) = (3, 0, 3).

If y > 0, then 2x is a quadratic residue modulo 3, hence x is even.
Now we have 3y = z2 − 2x = (z + 2x/2)(z − 2x/2). The factors
are powers of 3, say z + 2x/2 = 3m and z − 2x/2 = 3n, but then
3m− 3n = 2x/2+1. Since the right side is not divisible by 3, we must
have n = 0 and

3m − 1 = 2x/2+1.

If x = 0, we have m = 1, yielding (x, y, z) = (0, 1, 2). Otherwise,
3m−1 is divisible by 4, som is even and 2x/2+1 = (3m/2+1)(3m/2−1).
The two factors on the right are powers of 2 differing by 2, so they
are 2 and 4, giving x = 4 and (x, y, z) = (4, 2, 5).

7. The sides a, b, c and u, v, w of two triangles ABC and UVW are
related by the equations

u(v + w − u) = a2,

v(w + u− v) = b2,

w(u+ v − w) = c2.

86



Prove that ABC is acute, and express the angles U, V,W in terms
of A,B,C.

Solution: Note that

a2 + b2 − c2 = w2 − u2 − v2 + 2uv = (w + u− v)(w − u+ v) > 0

by the triangle inequality, so cosC > 0. By this reasoning, all of the
angles of triangle ABC are acute. Moreover,

cosC =
a2 + b2 − c2

2ab

=

√
(w + u− v)(w − u+ v)

4uv

=

√
w2 − u2 − v2 + 2uv

4uv

=
1√
2

√
1− cosU

from which we deduce cosU = 1−2 cos2A = cos(π−2A). Therefore
U = π − 2A, and similarly V = π − 2B, W = π − 2C.

8. Two circles S1 and S2 touch each other externally at K; they also
touch a circle S internally at A1 and A2, respectively. Let P be one
point of intersection of S with the common tangent to S1 and S2 at
K. The line PA1 meets S1 again at B1, and PA2 meets S2 again at
B2. Prove that B1B2 is a common tangent to S1 and S2.

Solution: It suffices to show that ∠B2B1O1 = ∠B1B2O2 = π/2,
where O1 and O2 are the centers of S1 and S2, respectively. By
power-of-a-point, PA1 · PB1 = PK2 = PA2 · PB2, so triangles
PA1A2 and PB2B1 are similar. Therefore ∠PB1B2 = ∠PA2A1 =
1
2∠POA1, where O is the center of S.

Now note that the homothety at A1 carrying S1 to S takes O1 to
O and B1 to P , so ∠POA1 = ∠B1O1A1. From this we deduce
∠PB1B2 = ∠B1O1N , where N is the midpoint of A1B1. Finally,

∠B2B1O1 = π − ∠PB1B2 − ∠O1B1N = π/2,

as desired.
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9. Find all solutions in positive real numbers a, b, c, d to the following
system of equations:

a+ b+ c+ d = 12
abcd = 27 + ab+ ac+ ad+ bc+ bd+ cd.

Solution: The first equation implies abcd ≤ 81 by the arithmetic-
geometric mean inequality, with equality holding for a = b = c =
d = 3. Again by AM-GM,

abcd ≥ 27 + 6(abcd)1/2.

However, x2 − 6x − 27 ≥ 0 for x ≤ −3 or x ≥ 9, so (abcd)1/2 ≥ 9,
hence abcd ≥ 81. We conclude abcd = 81, and hence a = b = c =
d = 3.
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1.18 United States of America

1. Prove that the average of the numbers n sinn◦ (n = 2, 4, 6, . . . , 180)
is cot 1◦.

Solution: All arguments of trigonometric functions will be in
degrees. We need to prove

2 sin 2 + 4 sin 4 + · · ·+ 178 sin 178 = 90 cot 1, (2)

which is equivalent to

2 sin 2·sin 1+2(2 sin 4·sin 1)+· · ·+89(2 sin 178·sin 1) = 90 cos 1. (3)

Using the identity 2 sin a · sin b = cos(a− b)− cos(a+ b), we find

2 sin 2 · sin 1 + 2(2 sin 4 · sin 1) + · · ·+ 89(2 sin 178 · sin 1)
= (cos 1− cos 3) + 2(cos 3− cos 5) + · · ·+ 89(cos 177− cos 179)
= cos 1 + cos 3 + cos 5 + · · ·+ cos 175 + cos 177− 89 cos 179
= cos 1 + (cos 3 + cos 177) + · · ·+ (cos 89 + cos 91)− 89 cos 179
= cos 1 + 89 cos 1 = 90 cos 1,

so (1) is true.

Note: An alternate solution involves complex numbers. One ex-
presses sinn as (eπin/180 − e−πin/180)/(2i) and uses the fact that

x+ 2x2 + · · ·+ nxn = (x+ · · ·+ xn) + (x2 + · · ·+ xn) + · · ·+ xn

=
1

x− 1
[(xn+1 − x) + (xn+1 − x2) + · · ·

+ (xn+1 − xn)]

=
nxn+1

x− 1
− xn+1 − x

(x− 1)2
.

2. For any nonempty set S of real numbers, let σ(S) denote the sum of
the elements of S. Given a set A of n positive integers, consider the
collection of all distinct sums σ(S) as S ranges over the nonempty
subsets of A. Prove that this collection of sums can be partitioned
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into n classes so that in each class, the ratio of the largest sum to
the smallest sum does not exceed 2.

Solution: Let A = {a1, a2, . . . , an} where a1 < a2 < · · · < an.
For i = 1, 2, . . . , n let si = a1 + a2 + · · · + ai and take s0 = 0. All
the sums in question are less than or equal to sn, and if σ is one of
them, we have

si−1 < σ ≤ si (1)

for an appropriate i. Divide the sums into n classes by letting Ci
denote the class of sums satisfying (1). We claim that these classes
have the desired property. To establish this, it suffices to show that
(1) implies

1
2
si < σ ≤ si. (2)

Suppose (1) holds. The inequality a1 + a2 + · · · + ai−1 = si−1 < σ
shows that the sum σ contains at least one addend ak with k ≥ i.
Then since then ak ≥ ai, we have

si − σ < si − si−1 = ai ≤ ak ≤ σ,

which together with σ ≤ si implies (2).

Note: The result does not hold if 2 is replaced by any smaller
constant c. To see this, choose n such that c < 2 − 2−(n−1) and
consider the set {1, . . . , 2n−1}. If this set is divided into n subsets,
two of 1, . . . , 2n−1, 1 + · · · + 2n−1 must lie in the same subset, and
their ratio is at least (1 + · · ·+ 2n−1)/(2n−1) = 2− 2−(n−1) > c.

3. Let ABC be a triangle. Prove that there is a line ` (in the plane of
triangle ABC) such that the intersection of the interior of triangle
ABC and the interior of its reflection A′B′C ′ in ` has area more
than 2/3 the area of triangle ABC.

First Solution: In all of the solutions, a, b, c denote the lengths
of the sides BC,CA,AB, respectively, and we assume without loss
of generality that a ≤ b ≤ c.
Choose ` to be the angle bisector of ∠A. Let P be the intersection of
` with BC. Since AC ≤ AB, the intersection of triangles ABC and

90



A′B′C ′ is the disjoint union of two congruent triangles, APC and
APC ′. Considering BC as a base, triangles APC and ABC have
equal altitudes, so their areas are in the same ratio as their bases:

Area(APC)
Area(ABC)

=
PC

BC
.

Since AP is the angle bisector of ∠A, we have BP/PC = c/b, so

PC

BC
=

PC

BP + PC
=

1
c/b+ 1

.

Thus it suffices to prove

2
c/b+ 1

>
2
3
. (1)

But 2b ≥ a + b > c by the triangle inequality, so c/b < 2 and thus
(1) holds.

Second Solution: Let the foot of the altitude from C meet AB
at D. We will use the notation [XY Z] to denote the area of triangle
XY Z.

First suppose [BDC] > (1/3)[ABC]. In this case we reflect through
CD. If B′ is the image of B, then BB′C lies in ABC and the area
of the overlap is at least 2/3[ABC].

Now suppose [BDC] ≤ (1/3)[ABC]. In this case we reflect through
the bisector of ∠A. If C ′ is the image of C, then triangle ACC ′ is
contained in the overlap, and [ACC ′] > [ADC] ≥ 2/3[ABC].

Note: Let F denote the figure given by the intersection of the
interior of triangle ABC and the interior of its reflection in `. Yet
another approach to the problem involves finding the maximum at-
tained for Area(F)/Area(ABC) by taking ` from the family of lines
perpendicular to AB. By choosing the best alternative between the
angle bisector at C and the optimal line perpendicular to AB, one
can ensure

Area(F)
Area(ABC)

>
2

1 +
√

2
= 2(
√

2− 1) = 0.828427, . . .

and this constant is in fact the best possible.
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4. An n-term sequence (x1, x2, . . . , xn) in which each term is either 0
or 1 is called a binary sequence of length n. Let an be the number of
binary sequences of length n containing no three consecutive terms
equal to 0, 1, 0 in that order. Let bn be the number of binary
sequences of length n that contain no four consecutive terms equal
to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that bn+1 = 2an for all
positive integers n.

First Solution: We refer to the binary sequences counted by (an)
and (bn) as “type A” and “type B”, respectively. For each binary
sequence (x1, x2, . . . , xn) there is a corresponding binary sequence
(y0, y1, . . . , yn) obtained by setting y0 = 0 and

yi = x1 + x2 + · · ·+ xi mod 2, i = 1, 2, . . . , n. (2)

(Addition mod 2 is defined as follows: 0 + 0 = 1 + 1 = 0 and
0 + 1 = 1 + 0 = 1.) Then

xi = yi + yi−1 mod 2, i = 1, 2, . . . , n,

and it is easily seen that (1) provides a one-to-one correspondence be-
tween the set of all binary sequences of length n and the set of binary
sequences of length n+ 1 in which the first term is 0. Moreover, the
binary sequence (x1, x2, . . . , xn) has three consecutive terms equal
to 0, 1, 0 in that order if and only if the corresponding sequence
(y0, y1, . . . , yn) has four consecutive terms equal to 0, 0, 1, 1 or 1, 1,
0, 0 in that order, so the first is of type A if and only if the second
is of type B. The set of type B sequences of length n + 1 in which
the first term is 0 is exactly half the total number of such sequences,
as can be seen by means of the mapping in which 0’s and 1’s are
interchanged.

Second Solution: The expression 2an−1 − an counts the number
of type A sequences of length n − 1 that do not remain of type A
when 0 is attached, or in other words the number of type A sequences
of length n− 1 ending in 0, 1. Since a type A sequence followed by
1 is still of type A, this number in turn equals the number of type A
sequences of length n− 2 ending in 0. However, this number can be
viewed as the number of type A sequences of length n−2, minus the
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number of such sequences ending in 1. There are as many type A
sequences of length n− 2 ending in 1 as there are type A sequences
of length n − 3, again since every type A sequence remains type A
when 1 is added. We conclude that 2an−1 − an = an−2 − an−3, or
equivalently

an = 2an−1 − an−2 + an−3.

We also note the initial values a0 = 1, a1 = 2, a2 = 4.

Similarly, the expression 2bn−1 − bn counts the number of type B
sequences of length n− 1 ending in 0,0,1 or 1,1,0. Since adding 1 to
a type B sequence ending in 0, or 0 to a type B sequence ending in
1, yields another type B sequence, this number is the same as the
number of type B sequences of length n− 2 ending in 0,0 or 1,1, or
equivalently the number not ending in 0,1 or 1,0. As in the type A
case, we note that each type B sequence of length n− 3 generates a
unique type B sequence of length n− 2 ending in 0, 1 or 1, 0, and so
2bn−1 − bn = bn−2 − bn−3. Since b1 = 2, b2 = 4, b4 = 8, we conclude
by induction that bn+1 = 2an for all n.

5. Triangle ABC has the following property: there is an interior point P
such that ∠PAB = 10◦, ∠PBA = 20◦, ∠PCA = 30◦, and ∠PAC =
40◦. Prove that triangle ABC is isosceles.

First Solution: All angles will be in degrees. Let x = ∠PCB.
Then ∠PBC = 80− x. By the Law of Sines,

1 =
PA

PB

PB

PC

PC

PA

=
sin∠PBA
sin∠PAB

sin∠PCB
sin∠PBC

sin∠PAC
sin∠PCA

=
sin 20 sinx sin 40

sin 10 sin(80− x) sin 30
=

4 sinx sin 40 cos 10
sin(80− x)

.

The identity 2 sin a · cos b = sin(a− b) + sin(a+ b) now yields

1 =
2 sinx(sin 30 + sin 50)

sin(80− x)
=

sinx(1 + 2 cos 40)
sin(80− x)

,

so

2 sinx cos 40 = sin(80− x)− sinx = 2 sin(40− x) cos 40.
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This gives x = 40 − x and thus x = 20. It follows that ∠ACB =
50 = ∠BAC, so triangle ABC is isosceles.

Second Solution: Let D be the reflection of A across the line
BP . Then triangle APD is isosceles with vertex angle

∠APD = 2(180−∠BPA) = 2(∠PAB+∠ABP ) = 2(10 + 20) = 60,

and so is equilateral. Also, ∠DBA = 2∠PBA = 40. Since ∠BAC =
50, we have DB ⊥ AC.

Let E be the intersection of DB with CP . Then

∠PED = 180− ∠CED = 180− (90− ∠ACE) = 90 + 30 = 120

and so ∠PED + ∠DAP = 180. We deduce that the quadrilateral
APED is cyclic, and therefore ∠DEA = ∠DPA = 60.

Finally, we note that ∠DEA = 60 = ∠DEC. Since AC ⊥ DE,
we deduce that A and C are symmetric across the line DE, which
implies that BA = BC, as desired.

6. Determine (with proof) whether there is a subset X of the integers
with the following property: for any integer n there is exactly one
solution of a+ 2b = n with a, b ∈ X.

First Solution: Yes, there is such a subset. If the problem is
restricted to the nonnegative integers, it is clear that the set of inte-
gers whose representations in base 4 contains only the digits 0 and 1
satisfies the desired property. To accommodate the negative integers
as well, we switch to “base −4”. That is, we represent every integer
in the form

∑k
i=0 ci(−4)i, with ci ∈ {0, 1, 2, 3} for all i and ck 6= 0,

and let X be the set of numbers whose representations use only the
digits 0 and 1. This X will again have the desired property, once we
show that every integer has a unique representation in this fashion.

To show base −4 representations are unique, let {ci} and {di} be
two distinct finite sequences of elements of {0, 1, 2, 3}, and let j be
the smallest integer such that cj 6= dj . Then

k∑
i=0

ci(−4)i 6≡
k∑
i=0

di(−4)i (mod 4j),
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so in particular the two numbers represented by {ci} and {di} are
distinct. On the other hand, to show that n admits a base −4
representation, find an integer k such that 1 + 42 + · · · + 42k ≥ n
and express n+ 4 + · · ·+ 42k−1 as

∑2k
i=0 ci4

i. Now set d2i = c2i and
d2i−1 = 3− c2i−1, and note that n =

∑2k
i=0 di(−4)i.

Second Solution: For any S ⊂ Z, let S∗ = {a+2b| a, b ∈ S}. Call
a finite set of integers S = {a1, a2, . . . , am} ⊂ Z good if |S∗| = |S|2,
i.e., if the values ai + 2aj (1 ≤ i, j ≤ m) are distinct. We first
prove that given a good set and n ∈ Z, we can always find a good
superset T of S such that n ∈ T ∗. If n ∈ S∗ already, take T = S.
Otherwise take T = S ∪ {k, n − 2k} where k is to be chosen. Then
put T ∗ = S∗ ∪Q ∪R, where

Q = {3k, 3(n− 2k), k + 2(n− 2k), (n− 2k) + 2k}

and

R = {k + 2ai, (n− 2k) + 2ai, ai + 2k, ai + 2(n− 2k)| 1 ≤ i ≤ m}.

Note that for any choice of k, we have n = (n− 2k) + 2k ∈ Q ⊂ T ∗.
Except for n, the new values are distinct nonconstant linear forms
in k, so if k is sufficiently large, they will all be distinct from each
other and from the elements of S∗. This proves that T ∗ is good.

Starting with the good set X0 = {0}, we thus obtain a sequence
of sets X1, X2, X3, . . . such that for each positive integer j, Xj is a
good superset of Xj−1 and X∗j contains the jth term of the sequence
1,−1, 2,−2, 3,−3, . . . . It follows that

X =
∞⋃
j=0

Xj

has the desired property.
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1.19 Vietnam

1. Solve the system of equations:

√
3x
(

1 +
1

x+ y

)
= 2

√
7y
(

1− 1
x+ y

)
= 4

√
2.

Solution: Let u =
√
x, v =

√
y, so the system becomes

u+
u

u2 + v2
=

2√
3

v − v

u2 + v2
=

4
√

2√
7
.

Now let z = u+ vi; the system then reduces to the single equation

z +
1
z

= 2

(
1√
3

+
2
√

2√
7
i

)
.

Let t denote the quantity inside the parentheses; then

z = t±
√
t2 − 1

=
1√
3

+
2
√

2√
7
i±
(

2√
21

+
√

2I
)

from which we deduce

u =
(

1√
3
± 2√

21

)2

, v =

(
2
√

2√
7
±
√

2

)2

.

2. Let ABCD be a tetrahedron with AB = AC = AD and circum-
center O. Let G be the centroid of triangle ACD, let E be the
midpoint of BG, and let F be the midpoint of AE. Prove that OF
is perpendicular to BG if and only if OD is perpendicular to AC.

Solution: We identify points with their vectors originating from
the circumcenter, so that A · B = A · C = A · D and A2 = B2 =
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C2 = D2. Now

(O − F ) · (B −G) =
1
2

(A+ E) · (B −G)

=
1
4

[(2A+B +G) · (B −G)]

=
1
36

[18A ·B − 6A · (A+ C +D) + 9B2 − (A+ C +D)2]

=
1
36

[2A ·D − 2C ·D].

Therefore OF ⊥ BF if and only if OD ⊥ AC.

3. Determine, as a function of n, the number of permutations of the set
{1, 2, . . . , n} such that no three of 1, 2, 3, 4 appear consecutively.

Solution: There are n! permutations in all. Of those, we exclude
(n−2)! permutations for each arrangement of 1, 2, 3, 4 into an ordered
triple and one remaining element, or 24(n− 2)! in all. However, we
have twice excluded each of the 24(n− 3)! permutations in which all
four of 1, 2, 3, 4 occur in a block. Thus the number of permutations
of the desired form is n!− 24(n− 2)! + 24(n− 3)!.

4. Determine all functions f : N→ N satisfying (for all n ∈ N)

f(n) + f(n+ 1) = f(n+ 2)f(n+ 3)− 1996.

Solution: From the given equation, we deduce

f(n)− f(n+ 2) = f(n+ 3)[f(n+ 2)− f(n+ 4)].

If f(1) > f(3), then by induction, f(2m−1) > f(2m+1) for all m >
0, giving an infinite decreasing sequence f(1), f(3), . . . of positive
integers, a contradiction. Hence f(1) ≤ f(3), and similarly f(n) ≤
f(n+ 2) for all n.

Now note that

0 = 1996 + f(n) + f(n+ 1)− f(n+ 2)f(n+ 3)
≤ 1996 + f(n+ 2) + f(n+ 3)− f(n+ 2)f(n+ 3)
= 1997− [f(n+ 2)− 1][f(n+ 3)− 1].
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In particular, either f(n+ 2) = 1 or f(n+ 3) ≤ 1997, and vice versa.

The numbers f(2m + 1) − f(2m − 1) are either all zero or all posi-
tive, and similarly for the numbers f(2m + 2) − f(2m). If they are
both positive, eventually f(n+ 2) and f(n+ 3) both exceed 1997, a
contradiction.

We now split into three cases. If f(2m) and f(2m + 1) are both
constant, we have [f(2m) − 1][f(2m + 1) − 1] = 1997 and so either
f(2m) = 1 and f(2m + 1) = 1997 or vice versa. If f(2m + 1)
is constant but f(2m) is not, then f(2m + 1) = 1 for all m and
f(2m+2) = f(2m)+1997, so f(2m) = 1997(m−1)+f(2). Similarly,
if f(2m) is not constant, then f(2m) = 1 and f(2m+ 1) = 1997m+
f(1).

5. Consider triangles ABC where BC = 1 and ∠BAC has a fixed
measure α > π/3. Determine which such triangle minimizes the
distance between the incenter and centroid of ABC, and compute
this distance in terms of α.

Solution: If we fix B and C and force A to lie above the line BC,
then A is constrained to an arc. The centroid of ABC is constrained
to the image of that arc under a 1/3 homothety at the midpoint of
BC. On the other hand, the incenter subtends an angle of (π+α)/2
at BC, so it is also constrained to lie on an arc, but its arc passes
through B and C. Since the top of the incenter arc lies above the
top of the centroid arc, the arcs cannot intersect (or else their circles
would intersect four times). Moreover, if we dilate the centroid arc
about the midpoint of BC so that its image is tangent to the incenter
arc at its highest point, the image lies between the incenter arc and
BC.

In other words, the distance from the incenter to the centroid is al-
ways at least the corresponding distance for ABC isosceles. Hence
we simply compute the distance in that case. The incenter makes
an isosceles triangle of vertex angle (π + α)/2, so its altitude is
1/2 cot(π + α)/4. Meanwhile, the distance of the centroid to BC
is 1/3 that of A to BC, or 1/6 cot(α/2). The desired distance is thus

1
2

cot
π + α

4
− 1

6
cot

α

2
.
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6. Let a, b, c, d be four nonnegative real numbers satisfying the condi-
tion

2(ab+ ac+ ad+ bc+ bd+ cd) + abc+ abd+ acd+ bcd = 16.

Prove that

a+ b+ c+ d ≥ 2
3

(ab+ ac+ ad+ bc+ bd+ cd)

and determine when equality occurs.

Solution: For i = 1, 2, 3, define si as the average of the products
of the i-element subsets of {a, b, c, d}. Then we must show

3s2 + s3 = 4⇒ s1 ≥ s2.

It suffices to prove the (unconstrained) homogeneous inequality

3s2
2s

2
1 + s3s

3
1 ≥ 4s3

2,

as then 3s2 + s3 = 4 will imply (s1 − s2)3 + 3(s3
1 − s3

2) ≥ 0.

We now recall two basic inequalities about symmetric means of non-
negative real numbers. The first is Schur’s inequality:

3s3
1 + s3 ≥ 4s1s2,

while the second,
s2

1 ≥ s2

is a case of Maclaurin’s inequality si+1
i ≥ sii+1. These combine to

prove the claim:

3s2
2s

2
1 + s3s

3
1 ≥ 3s2

2s
2
1 +

s2
2s3

s1
≥ 4s3

2.

Finally, for those who have only seen Schur’s inequality in three
variables, note that in general any inequality involving s1, . . . , sk
which holds for n ≥ k variables also holds for n + 1 variables, by
replacing the variables x1, . . . , xn+1 by the roots of the derivative of
the polynomial (x− x1) · · · (x− xn+1).
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2 1996 Regional Contests:
Problems and Solutions

2.1 Asian Pacific Mathematics Olympiad

1. Let ABCD be a quadrilateral with AB = BC = CD = DA. Let
MN and PQ be two segments perpendicular to the diagonal BD and
such that the distance between them is d > BD/2, with M ∈ AD,
N ∈ DC, P ∈ AB, and Q ∈ BC. Show that the perimeter of the
hexagon AMNCQP does not depend on the position of MN and
PQ so long as the distance between them remains constant.

Solution: The lengths of AM,MN,NC are all linear in the dis-
tance between the segments MN and AC; if this distance is h, ex-
trapolating from the extremes MN = AC and M = N = D gives
that

AM +MN +NC = AC +
2AB −AC
BD/2

h.

In particular, if the segments MN and PQ maintain constant total
distance from AC, as they do if their distance remains constant, the
total perimeter of the hexagon is constant.

2. Let m and n be positive integers such that n ≤ m. Prove that

2nn! ≤ (m+ n)!
(m− n)!

≤ (m2 +m)n.

Solution: The quantity in the middle is (m+n)(m+n−1) · · · (m−
n + 1). If we pair off terms of the form (m + x) and (m + 1 − x),
we get products which do not exceed m(m + 1), since the function
f(x) = (m + x)(m + 1 − x) is a concave parabola with maximum
at x = 1/2. From this the right inequality follows. For the left, we
need only show (m+ x)(m+ 1− x) ≥ 2x for x ≤ n; this rearranges
to (m− x)(m+ 1 + x) ≥ 0, which holds because m ≥ n ≥ x.

3. Let P1, P2, P3, P4 be four points on a circle, and let I1 be the incenter
of the triangle P2P3P4, I2 be the incenter of the triangle P1P3P4, I3
be the incentre of the triangle P1P2P4, and I4 be the incenter of the
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triangle P1P2P3. Prove that I1, I2, I3 and I4 are the vertices of a
rectangle.

Solution: Without loss of generality, assume P1, P2, P3, P4 occur
on the circle in that order. Let M12,M23,M34,M41 be the midpoints
of arcs P1P2, P2P3, P3P4, P4P1, respectively. Then the line P3M1 is
the angle bisector of ∠P2P3P1 and so passes through I4. Moreover,
the triangle M12P2I4 is isosceles because

∠I4M12P2 = ∠P3P1P2

= π − 2∠P1P2I4 − 2∠M12P2P1

= π − 2∠M12P2I4.

Hence the circle centered at M passing through P1 and P2 also passes
through I4, and likewise through I3.

From this we determine that the angle bisector of ∠P3M12P4 is the
perpendicular bisector of I3I4. On the other hand, this angle bisector
passes through M34, so it is simply the line M12M34; by symmetry, it
is also the perpendicular bisector of I1I2. We conclude that I1I2I3I4
is a parallelogram.

To show that I1I2I3I4 is actually a rectangle, it now suffices to show
that M12M34 ⊥M23M41. To see this, simply note that the angle be-
tween these lines is half the sum of the measures of the arcs M12M23

and M34M41, but these arcs clearly comprise half of the circle.

4. The National Marriage Council wishes to invite n couples to form
17 discussion groups under the following conditions:

(a) All members of the group must be of the same sex, i.e. they are
either all male or all female.

(b) The difference in the size of any two groups is either 0 or 1.
(c) All groups have at least one member.
(d) Each person must belong to one and only one group.

Find all values of n, n ≤ 1996, for which this is possible. Justify
your answer.

Solution: Clearly n ≥ 9 since each of 17 groups must contain at
least one member. Suppose there are k groups of men and 17 − k
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groups of women; without loss of generality, we assume k ≤ 8. If m
is the minimum number of members in a group, then the number of
men in the groups is at most k(m+1), while the number of women is
at least (k + 1)m. As there are the same number as men as women,
we have k(m + 1) ≥ (k + 1)m, so m ≤ k ≤ 8, and the maximum
number of couples is k(k + 1) ≤ 72. In fact, any number of couples
between 9 and 72 can be distributed: divide the men as evenly as
possible into 8 groups, and divide the women as evenly as possible
into 9 groups. Thus 9 ≤ n ≤ 72 is the set of acceptable numbers of
couples.

5. Let a, b and c be the lengths of the sides of a triangle. Prove that
√
a+ b− c+

√
b+ c− a+

√
c+ a− b ≤

√
a+
√
b+
√
c

and determine when equality occurs.

Solution: By the triangle inequality, b + c − a and c + a − b are
positive. For any positive x, y, we have

2(x+ y) ≥ x+ y + 2
√
xy = (

√
x+
√
y)2

by the AM-GM inequality, with equality for x = y. Substituting
x = a+ b− c, y = b+ c− a, we get

√
a+ b− c+

√
b+ c− a ≤ 2

√
a,

which added to the two analogous inequalities yields the desired
result. Inequality holds for a + b − c = b + c − a = c + a − b, i.e.
a = b = c.
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2.2 Austrian-Polish Mathematics Competition

1. Let k ≥ 1 be an integer. Show that there are exactly 3k−1 positive
integers n with the following properties:

(a) The decimal representation of n consists of exactly k digits.
(b) All digits of k are odd.
(c) The number n is divisible by 5.
(d) The number m = n/5 has k odd (decimal) digits.

Solution: The multiplication in each place must produce an even
number of carries, since these will be added to 5 in the next place
and an odd digit must result. Hence all of the digits of m must be
1, 5 or 9, and the first digit must be 1, since m and n have the same
number of decimal digits. Hence there are 3k−1 choices for m and
hence for n.

2. A convex hexagon ABCDEF satisfies the following conditions:

(a) Opposite sides are parallel (i.e. AB ‖ DE, BC ‖ EF , CD ‖
FA).

(b) The distances between opposite sides are equal (i.e.
d(AB,DE) = d(BC,EF ) = d(CD,FA), where d(g, h) denotes
the distance between lines g and h).

(c) The angles ∠FAB and ∠CDE are right.

Show that diagonals BE and CF intersect at an angle of 45◦.

Solution: The conditions imply that A and D are opposite vertices
of a square APDQ such that B,C,E, F lie on AP,PD,DQ,QA,
respectively, and that all six sides of the hexagon are tangent to the
inscribed circle of the square. The diagonals BE and CF meet at
the center O of the square. Let T,U, V be the feet of perpendiculars
from O to AB,BC,CD; then ∠TOB = ∠BOU by reflection across
OB, and similarly ∠UOC = ∠COV . Therefore π/2 = 2∠BOC,
proving the claim.

3. The polynomials Pn(x) are defined by P0(x) = 0, P1(x) = x and

Pn(x) = xPn−1(x) + (1− x)Pn−2(x) n ≥ 2.
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For every natural number n ≥ 1, find all real numbers x satisfying
the equation Pn(x) = 0.

Solution: One shows by induction that

Pn(x) =
x

x− 2
[(x− 1)n − 1].

Hence Pn(x) = 0 if and only if x = 0 or x = 1 + e2πik/n for some
k ∈ {1, . . . , n− 1}.

4. The real numbers x, y, z, t satisfy the equalities x+y+ z+ t = 0 and
x2 + y2 + z2 + t2 = 1. Prove that

−1 ≤ xy + yz + zt+ tx ≤ 0.

Solution: The inner expression is (x + z)(y + t) = −(x + z)2, so
the second inequality is obvious. As for the first, note that

1 = (x2 + z2) + (y2 + t2) ≥ 1
2

[(x+ z)2 + (y + t)2] ≥ |(x+ z)(y + t)|

by two applications of the power mean inequality.

5. A convex polyhedron P and a sphere S are situated in space such
that S intercepts on each edge AB of P a segment XY with AX =
XY = Y B = 1

3AB. Prove that there exists a sphere T tangent to
all edges of P .

Solution: Let AB and BC be two edges of the polyhedron, so that
the sphere meets AB in a segment XY with AX = XY = Y B and
meets BC in a segment ZW with BZ = ZW = WC. In the plane
ABC, the points X,Y, Z,W lie on the cross-section of the sphere,
which is a circle. Therefore BY · BX = BZ · BW by power-of-
a-point; this clearly implies AB = BC, and so the center of S is
equidistant from AB and BC. We conclude that any two edges of
P are equidistant from S, and so there is a sphere concentric with
S tangent to all edges.
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6. Natural numbers k, n are given such that 1 < k < n. Solve the
system of n equations

x3
i (x

2
i + · · ·+ x2

i+k−1) = x2
i−1 1 ≤ i ≤ n

in n real unknowns x1, . . . , xn. (Note: x0 = xn, x1 = xn+1, etc.)

Solution: The only solution is x1 = · · ·xn = k−1/3. Let L and M
be the smallest and largest of the xi, respectively. If M = xi, then

kM3L2 ≤ x3
i (x

2
i + · · ·+ x2

i+k−1) = x2
i−1 ≤M2

and so M ≤ 1/(kL2). Similarly, if L = xj , then

kL3M2 ≥ x3
j (x

2
j + · · ·+ x2

j+k−1) = x2
j−1 ≥ L2

and so L ≥ 1/(kM2). Putting this together, we get

L ≥ 1
kM2

≥ kL4

and so L ≥ k−1/3; similarly, M ≤ k−1/3. Obviously L ≤ M , so we
have L = M = k−1/3 and x1 = · · · = xn = k−1/3.

7. Show that there do not exist nonnegative integers k and m such that
k! + 48 = 48(k + 1)m.

Solution: Suppose such k,m exist. We must have 48|k!, so k ≥ 6;
one checks that k = 6 does not yield a solution, so k ≥ 7. In that
case k! is divisible by 32 and by 9, so that (k! + 48)/48 is relatively
prime to 6, as then is k + 1.

If k + 1 is not prime, it has a prime divisor greater than 3, but
this prime divides k! and not k! + 48. Hence k + 1 is prime, and by
Wilson’s theorem k!+1 is a multiple of k+1. Since k!+48 is as well,
we find k + 1 = 47, and we need only check that 46!/48 + 1 is not a
power of 47. We check that 46!/48 + 1 ≡ 29 (mod 53) (by cancelling
as many terms as possible in 46! before multiplying), but that 47 has
order 13 modulo 53 and that none of its powers is congruent to 29
modulo 53.
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8. Show that there is no polynomial P (x) of degree 998 with real co-
efficients satisfying the equation P (x)2 − 1 = P (x2 + 1) for all real
numbers x.

Solution: The equation implies P (x) = ±P (−x); since P has
even degree, it must be an even polynomial, that is, P (x) = Q(x2)
for some polynomial Q of degree 499. Then Q(t)2−1 = Q(t2+2t+1)
for infinitely many values of t (namely t ≥ 0), so this equation is also
a polynomial identity. However, it implies that Q(t) = ±Q(−2− t);
if we put R(t) = Q(t− 1), we have R(t) = ±R(−t), so that R is an
odd polynomial. In particular, R(0) = 0, so Q(−1) = 0. But now
we find Q(1) = −1, Q(4) = 0, Q(25) = −1, . . .; this process produces
infinitely many zeroes of Q, a contradiction.

9. We are given a collection of rectangular bricks, no one of which is
a cube. The edge lengths are integers. For every triple of positive
integers (a, b, c), not all equal, there is a sufficient supply of a× b× c
bricks. Suppose that the bricks completely tile a 10× 10× 10 box.

(a) Assume that at least 100 bricks have been used. Prove that
there exist at least two parallel bricks, that is, if AB is an edge
of one of the bricks, A′B′ is an edge of the other and AB ‖ A′B′,
then AB = A′B′.

(b) Prove the same statement with 100 replaced by a smaller num-
ber. The smaller the number, the better the solution.

Solution: We prove the claim with 97 bricks. For each integer up
to 16, we tabulate the number of nonparallel bricks of that volume
(disallowing cubical bricks and bricks with a dimension greater than
10) and their total volume:

Volume 2 3 4 5 6 7 8 9 10 12 14 15 16
Number 3 3 6 3 9 3 9 6 9 15 6 6 12
Total 6 9 24 15 54 21 72 54 90 180 74 90 192

Assuming no two bricks are parallel, the 90 smallest bricks have total
volume 891. The 7 other bricks each have volume at least 18, giving
a total volume of at least 1017, a contradiction.
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We have not determined the optimal constant (one can improve the
above bound to 96 easily), but we note that an arrangement with 73
nonparallel bricks is possible.
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2.3 Balkan Mathematical Olympiad

1. Let O and G be the circumcenter and centroid, respectively, of tri-
angle ABC. If R is the circumradius and r the inradius of ABC,
show that

OG ≤
√
R(R− 2r).

Solution: Using vectors with origin at O, we note that

OG2 =
1
9

(A+B + C)2 =
1
3
R2 +

2
9
R2(cos 2A+ cos 2B + cos 2C).

Hence R2 − OG2 = (a2 + b2 + c2)/9. On the other hand, by the
standard area formula K = rs = abc/4R, we have 2rR = abc/(a +
b+ c). We now note that

(a2 + b2 + c2)(a+ b+ c) ≥ 9abc

by two applications of the AM-GM inequality, so 2rR ≤ R2 −OG2,
proving the claim.

2. Let p > 5 be a prime number and X = {p − n2|n ∈ N, n2 < p}.
Prove that X contains two distinct elements x, y such that x 6= 1
and x divides y.

Solution: Write p = m2 + k with k ≤ 2m. If 1 < k < 2m and
k is either odd or a multiple of 4, we can write k = a(2m − a) =
m2 − (m − a)2, and then k|p2 − (m − a)2. If k is even but not a
multiple of 4, write 2k = a(2m − a) and proceed as above, which
still works because 2k < m2 for p > 5.

We can’t have k = 2m since m2 + 2m = m(m + 2) is composite, so
the only case left is p = m2 +1. In this case let t = 2m = p−(m−1)2

and write either t or 2t as a difference of squares (m−1)2−(m−a)2;
this still works because 2t < (m− 1)2 for p ≥ 7.

3. Let ABCDE be a convex pentagon, and let M,N,P,Q,R be the
midpoints of sides AB,BC,CD,DE,EA, respectively. If the seg-
ments AP,BQ,CR,DM have a common point, show that this point
also lies on EN .
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Solution: Let T be the common point, which we take as the origin
of a vector system. Then A×P = 0, or equivalently A×(C+D) = 0,
which we may write A × C = D × A. Similarly, we have B ×D =
E × B, C × E = A × C, D × A = B ×D. Putting these equalities
together gives E × B = C × E, or E × (B + C) = 0, which means
the line EN also passes through the origin T .

4. Show that there exists a subset A of the set {1, 2, . . . , 1996} having
the following properties:

(a) 1, 21996 − 1 ∈ A;

(b) every element of A, except 1, is the sum of two (not necessarily
distinct) elements of A;

(c) A contains at most 2012 elements.

Solution: We state the problem a bit differently: we want to
write down at most 2012 numbers, starting with 1 and ending with
21996−1, such that every number written is the sum of two numbers
previously written. If 2n − 1 has been written, then 2n(2n − 1)
can be obtained by n doublings, and 22n − 1 can be obtained in
one more step. Hence we can obtain 22 − 1, 24 − 1, . . . , 2256 − 1
in (1 + 1) + (2 + 1) + · · · + (128 + 1) = 263 steps. In 243 steps,
we turn 2256 − 1 into 2499 − 2243. Now notice that the numbers
2243− 2115, 2115− 251, 251− 219, 219− 23, 23− 21, 21− 1 have all been
written down; in 6 steps, we now obtain 2499− 1. We make this into
2998 − 1 in 500 steps, and make 21996 − 1 in 999 steps. Adding 1 for
the initial 1, we count

1 + 263 + 243 + 6 + 500 + 999 = 2012

numbers written down, as desired.
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2.4 Czech-Slovak Match

1. Let Z∗ denote the set of nonzero integers. Show that an integer p > 3
is prime if and only if for any a, b ∈ Z∗, exactly one of the numbers

N1 = a+ b− 6ab+
p− 1

6
, N2 = a+ b+ 6ab+

p+ 1
6

belongs to Z∗.

Solution: If N1 = 0, then p = (6a− 1)(6b− 1) is composite; simi-
larly, N2 = 0 implies p = −(6a+1)(6b+1) is composite. Conversely,
suppose that p is composite. If p ≡ 0, 2, 3 or 4 (mod 6), then N1 and
N2 are not integers. Otherwise, all divisors of p are congruent to
±1 (mod 6), so there exist natural numbers c, d such that

p = (6c+ 1)(6d+ 1)or(6c− 1)(6d− 1)or(6c+ 1)(6d− 1).

In the first case, N2 is not an integer and N1 = 0 for a = −c, b = −d.
In the second case, N2 is not an integer and N1 = 0 for a = c, b = d.
In the third case, N1 is not an integer and N2 = 0 for a = c, b = −d.

2. Let M be a nonempty set and ∗ a binary operation on M . That is,
to each pair (a, b) ∈ M ×M one assigns an element a ∗ b. Suppose
further that for any a, b ∈M ,

(a ∗ b) ∗ b = a and a ∗ (a ∗ b) = b.

(a) Show that a ∗ b = b ∗ a for all a, b ∈M .
(b) For which finite sets M does such a binary operation exist?

Solution:

(a) First note that [a ∗ (a ∗ b)] ∗ (a ∗ b) = a by the first rule. By
the second rule, we may rewrite the left side as b ∗ (a ∗ b), so
b ∗ (a ∗ b) = a and so b ∗ a = b ∗ [b ∗ (a ∗ b)]. By the second rule,
this equals a ∗ b, so a ∗ b = b ∗ a.

(b) Such sets exist for all finite sets M . Identify M with {1, . . . , n}
and define

a ∗ b = c⇔ a+ b+ c ≡ 0 (mod n).

It is immediate that the axioms are satisfied.
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3. A pyramid π is given whose base is a square of side 2a and whose
lateral edges have length a

√
17. Let M be a point in the interior of

the pyramid, and for each face of π, consider the pyramid similar to π
whose vertex is M and whose base lies in the plane of the face. Show
that the sum of the surface areas of these five pyramids is greater
than or equal to one-fifth the surface area of π, and determine for
which M equality holds.

Solution: All faces of π have the same area S1 = 4a2. The
segments connecting the point M with the vertices of the pyramid
partition π into a quadrilateral pyramid and four tetrahedra. Let
v1, . . . , v5 denote the heights of these five bodies from vertex M ;
then the volumes of the bodies sum to the volume of π, which means

5∑
i=1

1
3
S1vi =

1
3
S1v.

In other words,
∑
vi = v. On the other hand, the vi are also the

heights of the small pyramids similar to π, so

5∑
i=1

vi
v

= 1 =
5∑
i=1

ki =
5∑
i=1

√
Si
S
,

where S denotes the surface area of π, Si that of the i-th small
pyramid, and ki the coefficient of similarity between the i-th pyramid
and π. We conclude

S =

(
5∑
i=1

√
Si

)2

≤ 5
5∑
i=1

Si

by the power mean (or Cauchy-Schwarz) inequality. Equality holds
only when all of the Si are equal, as are the vi, which occurs when
M is the center of the inscribed sphere of the pyramid.

4. Determine whether there exists a function f : Z → Z such that for
each k = 0, 1, . . . , 1996 and for each m ∈ Z the equation f(x) + bx =
m has at least one solution x ∈ Z.

Solution: Each integer y can be written uniquely as 1997m + k
with m ∈ Z and k ∈ {0, . . . , 1996}. Define the function f by f(y) =
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m− ky; then f(x) + kx = m has the solution x = 1997m+ k, so the
condition is satisfied.

5. Two sets of intervals A,B on a line are given. The set A contains
2m− 1 intervals, every two of which have a common interior point.
Moreover, each interval in A contains at least two disjoint intervals
of B. Show that there exists an interval in B which belongs to at
least m intervals from A.

Solution: Let αi = [ai, bi] (i = 1, . . . , 2m − 1) be the intervals,
indexed so that a1 ≤ a2 ≤ . . . ≤ a2m−1. Choose k ∈ {m, . . . , 2m−1}
to minimize bk. By assumption, the interval αk contains two disjoint
intervals from B, say β1 = [c1, d1] and β2 = [c2, d2]. Without loss of
generality, assume

ak ≤ c1 < d1 < c2 < d2 ≤ bk.

If d1 ≤ bi for i = 1, 2, . . . ,m, then β1 ⊂ αi for i = 1, 2, . . . ,m,
so β1 satisfies the desired property. Otherwise, d1 > bs for some
s ∈ {1, 2, . . . ,m}. By assumption, c2 > d1 > bs. Since no two of the
α are disjoint, we have bs ≥ ai for all i, so c2 > ai. On the other
hand, by the choice of k, bk ≤ bi for i = m, . . . , 2m1. Therefore
ai < c2 < d2 ≤ bk ≤ bi for each i ∈ {m,m + 1, . . . , 2m − 1}, and so
β2 has the desired property.

6. The points E and D lie in the interior of sides AC and BC, respec-
tively, of a triangle ABC. Let F be the intersection of the lines
AD and BE. Show that the area of the triangles ABC and ABF
satisfies

SABC
SABF

=
|AC|
|AE|

+
|BC|
|BD|

− 1.

Solution: Let the line parallel to BC through F meet AB at K
and AC at N ; let the line parallel to CA through F meet BC at
M and AB at P ; let the line parallel to AB through F meet BC
at L and CA at O. Let vC and vF be the distances of C and F ,
respectively, to the line AB. Then

SABC
SABF

=
vC
vF

=
BC

FK
=
BL+ LM +MC

FK
.
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Under the homothety through B carrying F to E, the segment PM
maps to AC. Thus

LM

FK
=
FM

FP
=
EC

AC
=
AC

AE
− 1

and similarly
CM

FK
=
NF

FK
=
CD

BD
=
BC

BD
− 1.

The required assertion follows by putting this all together and noting
BL = FK.
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2.5 Iberoamerican Olympiad

1. Let n be a natural number. A cube of side length n can be di-
vided into 1996 cubes whose side lengths are also natural numbers.
Determine the smallest possible value of n.

Solution: Since 1996 > 123, we must have n ≥ 13, and we now
show n = 13 suffices. Inside a cube of edge 13, we place one cube of
edge 5, one cube of length 4, and 2 of length 2, and fill the remainder
with cubes of edge 1. The number of cubes used is

133− (53− 1)− (43− 1)− 2(23− 1) = 2197− 124− 63− 2(7) = 1996,

as desired.

2. Let M be the midpoint of the median AD of triangle ABC. The line
BM intersects side AC at the point N . Show that AB is tangent to
the circumcircle of NB if and only if the following equality holds:

BM

BN
=
BC2

BN2
.

Solution: First note that (by the Law of Sines in triangles ABM
and AMN)

BM

MN
=

sin∠MAB

sin∠ABM
sin∠MNA

sin∠NAM
.

Then note that (by the Law of Sines in triangles ABD and ADC)

sin∠MAB

sin∠NAM
=
BD

DC

sin∠ABD
sin∠DCA

.

By the Law of Sines in triangle BNC,

BC2

BN2
=

sin2 ∠BNC

sin2 ∠BCN
;

therefore BM/MN = BC2/BN2 if and only if

sin∠ABD
sin∠ABM

=
sin∠BNC
sin∠BCN

,

which if we put α = ∠ABM,β = ∠BCN, θ = ∠NBC becomes

sin(α+ θ) sinβ = sin(β + θ) sinα.
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Rewriting each side as a difference of cosines and cancelling, this
becomes

cos(α+ θ − β) = cos(β − α+ θ).

Both angles in this equation are between −π and π, so the angles
are either equal or negatives of each other. The latter implies θ = 0,
which is untrue, so we deduce α = β, and so BM/MN = BC2/BN2

if and only if ∠ABM = ∠BCN , that is, if AB is tangent to the
circumcircle of BNC.

3. We have a square table of k2 − k + 1 rows and k2 − k + 1 columns,
where k = p + 1 and p is a prime number. For each prime p, give
a method of distributing the numbers 0 and 1, one number in each
square of the table, such that in each row and column there are
exactly k zeroes, and moreover no rectangle with sides parallel to
the sides of the table has zeroes at all four corners.

Solution: The projective plane of order p is defined as the set of
equivalence classes in the set (Z mod p)3 − (0, 0, 0) where (a, b, c) is
equivalent to (ma,mb) whenever m is coprime to p. Label the rows
and columns by elements of the projective plane, and place a 1 in
row (a, b, c) and column (d, e, f) if ad+ be+ cf = 0; then the desired
condition is immediately verified.

Solution: This holds for n = 2, and we prove it in general by
induction on n. Assume the result for n − 1. The fractions newly
added are those with b = n and a relatively prime to n. Those
removed have a + b = n. Now note that the added fractions 1/an
and 1/bn precisely cancel the removed fraction 1/ab, so the sum
remains unchanged.

4. Given a natural number n ≥ 2, consider all of the fractions of the
form 1

ab , where a and b are relatively prime natural numbers such
that a < b ≤ n and a+ b > n. Show that the sum of these fractions
is 1/2.

5. Three counters A,B,C are placed at the corners of an equilateral
triangle of side n. The triangle is divided into triangles of side length
1. Initially all lines of the figure are painted blue. The counters move
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along the lines, painting their paths red, according to the following
rules:

(i) First A moves, then B, then C, then A, and so on in succesion.
On each turn, each counter moves the full length of a side of
one of the short triangles.

(ii) No counter may retrace a segment already painted red, though
it can stop on a red vertex, even if another counter is already
there.

Show that for all integers n > 0 it is possible to paint all of the
segments red in this fashion.

Solution: The cases n = 1, 2 are trivial; we use them as the base
cases for an inductive proof. We describe the moves for A, under-
standing that the moves for B and C are the same moves rotated
by 2π/3 and 4π/3, respectively. To fix directions, imagine the trian-
gle is oriented with one side parallel to the horizontal and the third
vertex above it, and suppose A starts at the bottom left. We first
move A right for n− 1 steps. We then alternate moving it up to the
left and down to the left for a total of 2n − 5 steps. We then trace
a path through the inner triangle of side n − 2 using the induction
hypothesis, ending at another corner. Finally, we follow the unused
edges from that corner, ending three steps later.

6. In the plane are given n distinct points A1, . . . , An, and to each point
Ai is assigned a nonzero real number λi such that (AiAj)2 = λi+λj
for all i 6= j. Show that

(a) n ≤ 4;

(b) If n = 4, then 1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

= 0.

Solution: For any four points Ai, Aj , Ak, Am, we have

AiA
2
k −AkA2

j = AiA
2
m −AmA2

j = λi − λj

and by an elementary lemma, this means AiAj is perpendicular to
AkAm. Since this holds for all permutations of i, j, k,m, we conclude
that Am is the orthocenter of triangle AiAjAk, so that in particular
no other points can be given, hence n ≤ 4.
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Now suppose n = 4; without loss of generality, assume that A1A2A3

form an acute triangle inside which A4 lies. Note that

2λ1 = A1A
2
2 +A1A

2
3 −A1A

2
3 = 2A1A2 ·A1A3 cos∠A3A1A2.

Using this and analogous formulae, and that ∠A1A3A4 = ∠A1A2A4

and ∠A3A1A2 = π − ∠A3A4A2, we get

λ1λ2

λ3λ4
=

(A1A2 ·A1A3 cos∠A3A1A2)(A1A2 ·A2A4 cos∠A1A2A4)
(A3A1 ·A3A4 cos∠A1A3A4)(A2A4 ·A3A4 cos∠A2A4A3)

= −A1A
2
2

A3A4

2

= −λ1 + λ2

λ3 + λ4
.

Therefore 1/λ1 + 1/λ2 + 1/λ3 + 1/λ4 = 0, as desired.
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2.6 St. Petersburg City Mathematical Olympiad

1. Several one-digit numbers are written on a blackboard. One can
replace any one of the numbers by the last digit of the sum of all
of the numbers. Prove that the initial collection of numbers can be
recovered by a sequence of such operations.

Solution: At each step, erase the leftmost number and write the
sum on the right, so that (x1, . . . , xn) becomes (x2, . . . , xn−1, x1 +
· · ·+ xn). Since there are finitely many n-tuples, some n-tuple must
repeat, and the first such must be the original configuration, since
each n-tuple (y1, . . . , yn) comes from a unique n-tuple, namely (yn−
y1 − · · · − yn−1, y1, . . . , yn−1).

2. Fifty numbers are chosen from the set {1, . . . , 99}, no two of which
sum to 99 or 100. Prove that the chosen numbers must be 50, 51, . . . ,
99.

Solution: In the sequence

99, 1, 98, 2, 97, 3, . . . , 51, 49, 50,

any two adjacent numbers sum to 99 or 100, so both cannot occur.
Grouping the numbers into 49 pairs plus one extra, we see at most
50 numbers can occur, and 50 must be one of them. Since we must
step at least two terms along the list to make the next choice, the
numbers must indeed be 50, 51, . . . , 99. Clearly we maximize the
number of chosen numbers by taking them two apart, and the list
has odd length, so taking 99, 98, . . . , 50 is the only Draw a graph
with {1, . . . , 99} as vertices, where two numbers are adjacent if they
sum to 99 or 100.

3. Let M be the intersection of the diagonals of the trapezoid ABCD.
A point P such that ∠APM = ∠DPM is chosen on the base BC.
Prove that the distance from C to the line AP is equal to the distance
from B to the line DP .

Solution: Since M lies on the internal angle bisector of angle
∠APD, it lies at the same distance from the lines AP and DP . The
ratio of this distance to the distance from C to AP is AM/AC, while
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the ratio of this distance to the distance from B to DP is BM/MD.
But AM/MC = BM/MD by similar triangles, so the latter two
distances are indeed the same.

4. In a group of several people, some are acquainted with each other
and some are not. Every evening, one person invites all of his ac-
quaintances to a party and introduces them to each other. Suppose
that after each person has arranged at least one party, some two peo-
ple are still unacquainted. Prove that they will not be introduced at
the next party.

Solution: We claim that two people unacquainted after each per-
son has held at least one party lie in different connected components
of the original (and final) graph of acquaintance. If two people are
connected by a path of length n, they will be connected by a path
of length n − 1 after one person along the path (including either of
the two people at the ends) holds a party, by a path of length n− 2
after two of them hold a party, and so on. After each person holds
a party, the two people on the ends will be acquainted.

5. Let M be the intersection of the diagonals of a cyclic quadrilateral,
N the intersections of the lines joining the midpoints of opposite
sides, and O the circumcenter. Prove that OM ≥ ON .

Solution: We use vectors. If A,B,C,D are the vertices of the
quadrilateral in order, then N = (A+B+C+D)/4; in particular, if
E and F are the midpoints of AC and BD, respectively, then N is
the midpoint of EF . The circle with diameter OM passes through E
and F , so OM ≥ OE and OM ≥ OF ; moreover, in any triangle, the
median to a side is no longer than the average of the other two sides
(rotate the triangle by π about the foot of the median, so twice the
median becomes a diagonal of a parallelogram, and use the triangle
inequality). Hence OM ≥ ON .

6. Prove that for every polynomial P (x) of degree 10 with integer coeffi-
cients, there is an infinite (in both directions) arithmetic progression
which does not contain P (k) for any integer k.

Solution: Since P is not linear, there exists x such that P (x +
1) − P (x) = n > 1. Since P (t + k) ≡ P (t) (mod k), each value of
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P is congruent to one of P (x), P (x + 1), . . . , P (x + n − 1) modulo
n. However, since P (x + 1) − P (x) = n, the values of P cover at
most n − 1 distinct residue classes, and so there is an arithmetic
progression of difference n containing no values of P .

7. There are n parking spaces along a one-way road down which n
drivers are traveling. Each driver goes to his favorite parking space
and parks there if it is free; otherwise, he parks at the nearest free
place down the road. If there is no free space after his favorite, he
drives away. How many lists a1, . . . , an of favorite parking spaces are
there which permit all of the drivers to park?

Solution: There are (n + 1)n−1 such lists. To each list of prefer-
ences (a1, . . . , an) which allows all drivers to park, associate the list
(b2, . . . , bn), where bi is the difference mod n + 1 between the num-
bers of the space driver i wants and the space the previous driver
took. Clearly any two lists give rise to different sequences of bi.

We now argue that any list of bi comes from a list of preferences.
Imagine that the n parking spaces are arranged in a circle with an
extra phantom space put in at the end. Put the first driver in any
space, then for i = 2, . . . , n, put driver i in the first available space
after the space bi away from the space taken by driver i − 1; this
gives a list of preferences if and only if the one space not taken at
the end is the phantom space. However, by shifting the position of
the first driver, we can always ensure that the phantom space is the
space not taken.

Thus the sequences of bi are equal in number to the lists of prefer-
ences, so there are (n+ 1)n−1 of each.

8. Find all positive integers n such that 3n−1 + 5n−1 divides 3n + 5n.

Solution: This only occurs for n = 1. Let sn = 3n + 5n and note
that

sn = (3 + 5)sn−1 − 3 · 5 · sn−2

so sn−1 must also divide 3 · 5 · sn−2. If n > 1, then sn−1 is coprime
to 3 and 5, so sn−1 must divide sn−2, which is impossible since
sn−1 > sn−2.
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9. Let M be the midpoint of side BC of triangle ABC, and let r1 and
r2 be the radii of the incircles of triangles ABM and ACM . Prove
that r1 < 2r2.

Solution: Recall that the area of a triangle equals its inradius
times half its perimeter. Since ABM and ACM have equal area, we
have

r1

r2
=
AC +AM + CM

AB +AM +BM

and it suffices to show AC + AM + CM < 2AB + 2AM + 2BM ;
since BM = CM , this simplifies to AC < 2AB + AM + CM . In
fact, by the triangle inequality, AC < AM + CM , so we are done.

10. Several positive integers are written on a blackboard. One can erase
any two distinct integers and write their greatest common divisor and
least common multiple instead. Prove that eventually the numbers
will stop changing.

Solution: If a, b are erased and c < d are written instead, we have
c ≤ min(a, b) and d ≥ max(a, b); moreover, ab = cd. From this we
may conclude a+b ≤ c+d by writing ab+a2 = cd+a2 ≤ ac+ad (the
latter since (d − a)(c − a) ≤ 0) and dividing both sides by a. Thus
the sum of the numbers never decreases, and it is obviously bounded
(e.g. by n times the product of the numbers, where n is the number
of numbers on the board); hence it eventually stops changing, at
which time the numbers never change.

11. No three diagonals of a convex 1996-gon meet in a point. Prove that
the number of triangles lying in the interior of the 1996-gon and
having sides on its diagonals is divisible by 11.

Solution: There is exactly one such triangle for each choice of six
vertices of the 1996-gon: if A,B,C,D,E, F are the six vertices in
order, the corresponding triangle is formed by the lines AD,BE,CF .
Hence the number of triangles is

(
1996

6

)
; since 1991 is a multiple of

11, so is the number of triangles.

12. Prove that for every polynomial x2 +px+ q with integer coefficients,
there exists a polynomial 2x2 + rx + s with integer coefficiets such
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that the sets of values of the two polynomials on the integers are
disjoint.

Solution: If p is odd, then x2 +px+ q has the same parity as q for
all integers x, and it suffices to choose r even and s of the opposite
parity as q. If p = 2m is even, then x2 +px+q = (x+m)2 +(q−m2)
which is congruent to q−m2 or q−m2 +1 modulo 4. Now it suffices
to choose r even and s congruent to q −m2 + 2 modulo 4.

13. In a convex pentagon ABCDE, AB = BC, ∠ABE + ∠DBC =
∠EBD, and ∠AEB + ∠BDC = π. Prove that the orthocenter of
triangle BDE lies on AC.

Solution: By the assumption ∠AEB + ∠BDC = π, there ex-
ists a point F on AC such that ∠AFB = ∠AEB and ∠BFC =
∠BDC; this means F is the second intersection of the circumcircles
of BCD and ABE. The triangle ABC is isosceles, so ∠FCB =
(π−∠ABC)/2. Hence ∠FDB = ∠FCB = π/2−∠DBE by the as-
sumption ∠ABE + ∠DBC = ∠EBD, and so DF ⊥ BE. Similarly
EF ⊥ BD, and so F is the orthocenter of BDE.

14. In a federation consisting of two republics, each pair of cities is linked
by a one-way road, and each city can be reached from each other
city by these roads. The Hamilton travel agency provides n different
tours of the cities of the first republic (visiting each city once and
returning to the starting city without leaving the republic) and m
tours of the second republic. Prove that Hamilton can offer mn such
tours around the whole federation.

Solution: From each pair of tours, we construct a tour of both
republics from which the two original tours can be reconstructed
(so in particular, all such pairs will be distinct). We first look for
cities u, v in the first republic and w, x in the second, such that u
immediately precedes v in the first tour, x immediately precedes w
in the second, and there are roads from u to w and from x to v. In
that case, we may start from v, tour the first republic ending at u,
go to w, tour the second republic ending at x, and return to v. Call
this a “direct” tour; the two original tours can be determined from
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a direct tour by reading off the cities of either republic in the order
they appear.

Now suppose no direct tour exists; without loss of generality, assume
the number of cities in the second republic does not exceed the num-
ber in the first republic. In this case, whenever u is some number of
cities ahead of v in the first tour, and x is the same number ahead
of w in the second tour, the “parallel” roads uw and vx must point
in the same direction (by repeated application of the above obser-
vation). Since each city is reachable from each other city, given a
vertex v, we can find x immediately preceding w in the second tour
such that there are roads from w to v and from v to x. We now
form an “alternating” tour starting at v by alternately taking roads
parallel to vx and wv; once the second republic is exhausted, we
tour the remaining cities of the first republic in order, returning to
v. The two original tours can be determined from an alternating
tour by reading off the cities of the first republic in the order they
appear, and those of the second republic in the reverse of the order
in which they appear.

15. Sergey found 11 different solutions to the equation f(19x−96/x) = 0.
Prove that if he had tried harder, he could have found at least one
more solution.

Solution: The equation 19x − 96/x = t can be rewritten 19x2 −
tx − 96 = 0; since t2 + 19 · 96 > 0, it always has two real roots.
Therefore the number of zeroes of f (if finite) is an even integer, so
Sergey can find at least one more zero.

16. The numbers 1, 2, . . . , 2n are divided into two groups of n numbers.
Prove that the pairwise sums of numbers in each group (the sum of
each number with itself included) have the same remainders upon
division by 2n. (Note: each pair of distinct numbers should be added
twice, and each remainder must occur the same number of times in
the two groups.)

Solution: Let S and T be the groups, and let P (x) =
∑
i∈S x

i and
Q(x) =

∑
j∈T x

j ; the claim amounts to showing

P (x)2 ≡ Q(x)2 (mod x2n − 1).
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This follows by noting that x−1|P (x)−Q(x) since both groups have
the same number of elements, and that x2n−1 + · · ·+ 1|P (x) +Q(x)
since each of the numbers 1, . . . , 2n occurs exactly once.

17. The points A′ and C ′ are chosen on the diagonal BD of a parallelo-
gram ABCD so that AA′ ‖ CC ′. The point K lies on the segment
A′C, and the line AK meets CC ′ at L. A line parallel to BC is
drawn through K, and a line parallel to BD is drawn through C;
these meet at M . Prove that D,M,L are collinear.

Solution: Let M ′ and M ′′ be the intersections of DM with MK
and MC, respectively. Since M ′K ‖ DA, we have LM ′/LD =
LK/LA. Since CK ‖ C ′A, we have LK/LA = LC/LC ′. Fi-
nally, since CM ‖ C ′D, we have LM ′′/LD = LC/LC ′. Therefore
LM ′/LD = LM ′′/LD and so M ′ = M ′′ = M .

18. Find all quadruples of polynomials P1(x), P2(x), P3(x), P4(x) with
real coefficients such that for each quadruple of integers x, y, z, t such
that xy − zt = 1, one has

P1(x)P2(y)− P3(z)P4(t) = 1.

Solution: If P1(1) = 0, then P3(z)P4(t) = −1 for each pair of
integers z, t, and so P3 and P4 are constant functions; moreover,
P1(x)P2(y) = 0, so one of P1 and P2 is identically zero. Ignoring
such cases, which are easily enumerated, we assume Pi(1) 6= 0 for all
i.

We first note that P1(x)P2(1) = P1(1)P2(x) for all nonzero integers
x, so that P1 and P2 are equal up to a scalar factor; similarly, P3 and
P4 are equal up to a scalar factor. Now note that P1(x)P2(ay) =
P1(ax)P2(y) for all nonzero a, x, y, so that the difference between
the two sides is identically zero as a polynomial in a. In particular,
that means no term in P1(x)P2(y) has unequal exponent in x and
y, and the same is true of P1(x)P1(y). On the other hand, if P1(x)
has terms of more than one degree, then P1(x)P1(y) contains a term
with different degrees in x and y. Hence P1(x) = cxk for some
integer k and some constant c, and similarly P2(x) = dxk, P3(x) =
exm, P4(x) = fxm.
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Thus we must determine when cdxkyk−efzmtm = 1 whenever xy−
zt = 1 in integers. Clearly k = m since otherwise one of the two
terms on the left dominates the other, and cd = 1 by setting x = y =
1 and z = t = 0, and similarly ef = 1. Now note that (xy)k−(zt)k =
1 can only happen in general for k = 1, since for k > 1, there are no
consecutive perfect k-th powers. We conclude P1(x) = cx, P2(x) =
x/c, P3(x) = ex, P4(x) = x/e for some nonzero real numbers c, e.

19. Two players play the following game on a 100 × 100 board. The
first player marks a free square, then the second player puts a 1× 2
domino down covering two free squares, one of which is marked. This
continues until one player is unable to move. The first player wins if
the entire board is covered, otherwise the second player wins. Which
player has a winning strategy?

Solution: The first player has a winning strategy. Let us say
a position is stable if every square below or to the right of a free
square is free. Then we claim the first player can always ensure that
on his turn, either the position is stable or there is a free square with
exactly one free neighbor (or both).

Let us label the square in the i-th row and j-th column as (i, j), with
(1, 1) in the top left. We call a free square a corner if is not below or
to the right of another free square. Let (a1, b1), (a2, b2), . . ., (ak, bk)
be the corners from top to bottom.

First notice that if (a, b) is a corner such that both (a+ 1, b− 1) and
(a−1, b+ 1) are nonfree (or off the board), then the first player may
mark (a, b), and however the second player moves, the result will be a
stable position. More generally, if (a, b), (a+1, b−1), · · · , (a+k, b−k)
are corners and (a−1, b+1) and (a+k+1, b−k−1) are both nonfree
or off the board, the first player can be sure to return to a stable
position.

To show this, first note that we cannot have both a = 1 and b −
k = 1, or else the number of nonfree squares would be odd, which
is impossible. Without loss of generality, assume that b − k 6= 1
is not the final corner. The first player now marks (a, b). If the
second player covers (a, b) and (a, b+1), the position is again stable.
Otherwise, the first player marks (a+ 1, b−1) and the second player
is forced to cover it and (a + 2, b − 1). Then the first player marks
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(a+2, b−2) and the second player is forced to cover it and (a+3, b−2),
and so on. After (a+k, b−k) is marked, the result is a stable position.
(Note that the assumption b−k 6= 1 ensures that the moves described
do not cross the edge of the board.)

To finish the proof, we need to show that such a chain of corners must
exist. Write the labels (a1, b1), . . . , (ak, bk) in a row, and join two
adjacent labels by a segment if they are of the form (a, b), (a+1, b−1).
If two adjacent labels (a, b), (a+ i, b−j) are not joined by a segment,
then either i = 1 or j = 1 but not both. If i = 1, draw an arrow
between the labels pointing towards (a + i, b − j); otherwise draw
the arrow the other way. Also draw arrows pointing to (a1, b1) and
(ak, bk). There is now one more chain of corners (joined by segments)
than arrows, so some chain has two arrows pointing to it. That chain
satisfies the condition above, so the first player can use it to create
another stable position. Consequently, the first player can ensure
victory.

20. Let BD be the bisector of angle B in triangle ABC. The circumcircle
of triangle BDC meets AB at E, while the circumcircle of triangle
ABD meets BC at F . Prove that AE = CF .

Solution: By power-of-a-point, AE ·AB = AD·AC and CF ·CB =
CD · CA, so AE/CF = (AD/CD)(BC/AB). However, AB/CB =
AD/CD by the angle bisector theorem, so AE = CF .

21. A 10× 10 table consists of positive integers such that for every five
rows and five columns, the sum of the numbers at their intersections
is even. Prove that all of the integers in the table are even.

Solution: We denote the first five entries in a row as the “head”
of that row. We first show that the sum of each head is even. We
are given that the sum of any five heads is even; by subtracting two
such sums overlapping in four heads, we deduce that the sum of any
two heads is even. Now subtracting two such relations from a sum
of five heads, we determine that the sum of any head is even.

By a similar argument, the sum of any five entries in a row is even.
By the same argument as above, we deduce that each entry is even.
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22. Prove that there are no positive integers a and b such that for each
pair p, q of distinct primes greater than 1000, the number ap+ bq is
also prime.

Solution: Suppose a, b are so chosen, and let m be a prime greater
than a+b. By Dirichlet’s theorem, there exist infinitely many primes
in any nonzero residue class modulo m; in particular, there exists a
pair p, q such that p ≡ b (mod m), q ≡ −a (mod m), giving ap + bq
is divisible by m, a contradiction.

23. In triangle ABC, the angle A is 60◦. A point O is taken inside the
triangle such that ∠AOB = ∠BOC = 120◦. The points D and E
are the midpoints of sides AB and AC. Prove that the quadrilateral
ADOE is cyclic.

Solution: Since ∠OBA = 60◦ − ∠OAB = ∠OAC, the triangles
OAB and OCA are similar, so there is a spiral similarity about O
carrying OAB to OCA. This similarity preserves midpoints, so it
carries D to E, and therefore ∠AOD = ∠COE = 120◦ − ∠AOE.
We conclude ∠DOE = 120◦ and so ADOE is cyclic.

24. There are 2000 towns in a country, each pair of which is linked by
a road. The Ministry of Reconstruction proposed all of the possi-
ble assignments of one-way traffic to each road. The Ministry of
Transportation rejected each assignment that did not allow travel
from any town to any other town. Prove that more of half of the
assignments remained.

Solution: We will prove the same statement for n ≥ 6 towns.
First suppose n = 6. In this case there are 215 assignments, and an
assignment is rejected only if either one town has road to all of the
others in the same direction, or if there are two sets of three towns,
such that within each town the roads point in a circle, but all of the
roads from one set to the other point in the same direction. There
are 5 · 211 bad assignments of the first kind and 20 · 8 of the second
kind, so the fraction of good assignments is at least 5/8.
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For n ≥ 6, we claim that the fraction of good assignments is at least

5
8

n−1∏
i=6

(
1− 1

2i−1

)
.

We show this by induction on n: a good assignment on n − 1 ver-
tices can be extended to a good assignment on n vertices simply by
avoiding having all edges from the last vertex pointing in the same
direction, which occurs in 2 cases out of 2n−1.
Now it suffices to show that the above expression is more than 1/2.
In fact,

∞∏
i=5

(
1− 1

2i

)−1

≤ 1 +
∞∑
i=5

i− 4
2i

= 1 +
1
25

∞∑
i=0

i+ 1
2i

= 1 +
1
25

∞∑
i=0

∞∑
k=i

1
2i

= 1 +
1
25

∞∑
i=0

1
2i−1

= 1 +
4
25

=
9
8

Thus the fraction of good assignments is at least (5/8)(8/9) = 5/9 >
1/2.

25. The positive integers m,n,m, n are written on a blackboard. A
generalized Euclidean algorithm is applied to this quadruple as fol-
lows: if the numbers x, y, u, v appear on the board and x > y, then
x− y, y, u+ v, v are written instead; otherwise x, y − x, u, v + u are
written instead. The algorithm stops when the numbers in the first
pair become equal (they will equal the greatest common divisor of
m and n). Prove that the arithmetic mean of the numbers in the
second pair at that moment equals the least common multiple of m
and n.

Solution: Note that xv + yu does not change under the opera-
tion, so it remains equal to 2mn throughout. Thus when the first
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two numbers both equal gcd(m,n), the sum of the latter two is
2mn/ gcd(m,n) = 2lcm(m,n).

26. A set of geometric figures consists of red equilateral triangles and
blue quadrilaterals with all angles greater than 80◦ and less than
100◦. A convex polygon with all of its angles greater than 60◦ is
assembled from the figures in the set. Prove that the number of
(entirely) red sides of the polygon is a multiple of 3.

Solution: We first enumerate the ways to decompose various angles
α into sums of 60◦ angles (T ) and angles between 80◦ and 100◦ (Q):

60◦ < α < 180◦ α = T, 2T, T +Q, 2Q
α = 180◦ α = 3T, 2Q
α = 360◦ α = 6T, 3T + 2Q, 4Q

(The range for Q cannot be increased, since 3Q ranges from 240◦

to 300◦; even including the endpoints would allow for additional
combinations above.)

The set of all of the vertices of all of the polygons can be divided
into three categories, namely those which lie in the interior, on an
edge, or at a vertex of the large polygon. The above computation
shows that the number of T angles at interior or edge vertices is a
multiple of 3; since the total number is three times the number of
triangles, we deduce that the number of T angles at vertices of the
large polygon is also a multiple of 3.

Next note that every edge is entirely of one color, since we cannot
have both a T and a Q at a 180◦ angle. Additionally, no vertex of
the large polygon consists of more than two angles, and a T cannot
occur by itself. All this means that the number of red sides is half
the number of T angles at the vertices, which is a multiple of 3.

27. The positive integers 1, 2, . . . , n2 are placed in some fashion in the
squares of an n×n table. As each number is placed in a square, the
sum of the numbers already placed in the row and column containing
that square is written on a blackboard. Give an arrangement of
the numbers that minimizes the sum of the numbers written on the
blackboard.
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Solution: Rather than describe the arrangement, we demonstrate
it for n = 4:

1 5 9 13
14 2 6 10
11 15 3 7
8 12 16 4

Note that the sum of the numbers written may also be computed as
the product of each number with the number of empty spaces in its
row and column at the time it was placed.

We now simply note that the contribution from rows is at least that
of the minimal arrangement, and analogously for columns. This is
because we end up multiplying n numbers by each of 0, 1, . . . , n− 1.
By the rearrangement inequality, the total is minimizing by multi-
plying 1, . . . , n by n− 1, n+ 1, . . . , 2n by n− 2, and so on.
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3 1997 National Contests:
Problems

3.1 Austria

1. Solve the system

(x− 1)(y2 + 6) = y(x2 + 1)
(y − 1)(x2 + 6) = x(y2 + 1).

2. Consider the sequence of positive integers which satisfies an = a2
n−1+

a2
n−2 + a2

n−3 for all n ≥ 3. Prove that if ak = 1997 then k ≤ 3.

3. Let k be a positive integer. The sequence an is defined by a1 = 1, and
an is the n-th positive integer greater than an−1 which is congruent
to n modulo k. Find an in closed form. What happens if k = 2?

4. Given a parallelogram ABCD, inscribe in the angle ∠BAD a circle
that lies entirely inside the parallelogram. Similarly, inscribe a circle
in the angle ∠BCD that lies entirely inside the parallelogram and
such that the two circles are tangent. Find the locus of the tangency
point of the circles, as the two circles vary.

131



3.2 Bulgaria

1. Find all real numbers m such that the equation

(x2 − 2mx− 4(m2 + 1))(x2 − 4x− 2m(m2 + 1)) = 0

has exactly three different roots.

2. Let ABC be an equilateral triangle with area 7 and let M,N be
points on sides AB,AC, respectively, such that AN = BM . Denote
by O the intersection of BN and CM . Assume that triangle BOC
has area 2.

(a) Prove that MB/AB equals either 1/3 or 2/3.

(b) Find ∠AOB.

3. Let f(x) = x2 − 2ax − a2 − 3/4. Find all values of a such that
|f(x)| ≤ 1 for all x ∈ [0, 1].

4. Let I and G be the incenter and centroid, respectively, of a triangle
ABC with sides AB = c, BC = a, CA = b.

(a) Prove that the area of triangle CIG equals |a− b|r/6, where r
is the inradius of ABC.

(b) If a = c+ 1 and b = c− 1, prove that the lines IG and AB are
parallel, and find the length of the segment IG.

5. Let n ≥ 4 be an even integer andA a subset of {1, 2, . . . , n}. Consider
the sums e1x1 + e2x2 + e3x3 such that:

• x1, x2, x3 ∈ A;

• e1, e2, e3 ∈ {−1, 0, 1};
• at least one of e1, e2, e3 is nonzero;

• if xi = xj , then eiej 6= −1.

The set A is free if all such sums are not divisible by n.

(a) Find a free set of cardinality bn/4c.
(b) Prove that any set of cardinality bn/4c+ 1 is not free.

132



6. Find the least natural number a for which the equation

cos2 π(a− x)− 2 cosπ(a− x) + cos
3πx
2a

cos
(πx

2a
+
π

3

)
+ 2 = 0

has a real root.

7. Let ABCD be a trapezoid (AB||CD) and choose F on the segment
AB such that DF = CF . Let E be the intersection of AC and BD,
and let O1, O2 be the circumcenters of ADF,BCF . Prove that the
lines EF and O1O2 are perpendicular.

8. Find all natural numbers n for which a convex n-gon can be di-
vided into triangles by diagonals with disjoint interiors, such that
each vertex of the n-gon is the endpoint of an even number of the
diagonals.

9. For any real number b, let f(b) denote the maximum of the function∣∣∣∣sinx+
2

3 + sinx
+ b

∣∣∣∣
over all x ∈ R. Find the minimum of f(b) over all b ∈ R.

10. Let ABCD be a convex quadrilateral such that ∠DAB = ∠ABC =
∠BCD. Let H and O denote the orthocenter and circumcenter of
the triangle ABC. Prove that H,O,D are collinear.

11. For any natural number n ≥ 3, let m(n) denote the maximum num-
ber of points lying within or on the boundary of a regular n-gon of
side length 1 such that the distance between any two of the points
is greater than 1. Find all n such that m(n) = n− 1.

12. Find all natural numbers a, b, c such that the roots of the equations

x2 − 2ax+ b = 0
x2 − 2bx+ c = 0
x2 − 2cx+ a = 0

are natural numbers.
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13. Given a cyclic convex quadrilateral ABCD, let F be the intersection
of AC and BD, and E the intersection of AD and BC. Let M,N
be the midpoints of AB,CD. Prove that

MN

EF
=

1
2

∣∣∣∣ABCD − CD

AB

∣∣∣∣ .
14. Prove that the equation

x2 + y2 + z2 + 3(x+ y + z) + 5 = 0

has no solutions in rational numbers.

15. Find all continuous functions f : R→ R such that for all x ∈ R,

f(x) = f

(
x2 +

1
4

)
.

16. Two unit squares K1,K2 with centers M,N are situated in the plane
so that MN = 4. Two sides of K1 are parallel to the line MN , and
one of the diagonals of K2 lies on MN . Find the locus of the mid-
point of XY as X,Y vary over the interior of K1,K2, respectively.

17. Find the number of nonempty subsets of {1, 2, . . . , n} which do not
contain two consecutive numbers.

18. For any natural number n ≥ 2, consider the polynomial

Pn(x) =
(
n

2

)
+
(
n

5

)
x+

(
n

8

)
x2 + · · ·+

(
n

3k + 2

)
xk,

where k = bn−2
3 c.

(a) Prove that Pn+3(x) = 3Pn+2(x)− 3Pn+1(x) + (x+ 1)Pn(x).
(b) Find all integers a such that 3b(n− 1)/2c divides Pn(a3) for all

n ≥ 3.

19. Let M be the centroid of triangle ABC.

(a) Prove that if the line AB is tangent to the circumcircle of the
triangle AMC, then

sin∠CAM + sin∠CBM ≤ 2√
3
.
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(b) Prove the same inequality for an arbitrary triangle ABC.

20. Let m,n be natural numbers and m + i = aib
2
i for i = 1, 2, . . . , n,

where ai and bi are natural numbers and ai is squarefree. Find all
values of n for which there exists m such that a1 +a2 + · · ·+an = 12.

21. Let a, b, c be positive numbers such that abc = 1. Prove that

1
1 + a+ b

+
1

1 + b+ c
+

1
1 + c+ a

≤ 1
2 + a

+
1

2 + b
+

1
2 + c

.

22. Let ABC be a triangle and M,N the feet of the angle bisectors of
B,C, respectively. Let D be the intersection of the ray MN with
the circumcircle of ABC. Prove that

1
BD

=
1
AD

+
1
CD

.

23. Let X be a set of cardinality n + 1 (n ≥ 2). The ordered n-
tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) of distinct elements of X
are called separated if there exist indices i 6= j such that ai = bj .
Find the maximal number of n-tuples such that any two of them are
separated.
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3.3 Canada

1. How many pairs (x, y) of positive integers with x ≤ y satisfy gcd(x, y) =
5! and lcm(x, y) = 50!?

2. Given a finite number of closed intervals of length 1, whose union
is the closed interval [0, 50], prove that there exists a subset of the
intervals, any two of whose members are disjoint, whose union has
total length at least 25. (Two intervals with a common endpoint are
not disjoint.)

3. Prove that
1

1999
<

1
2
· 3

4
· · · · · 1997

1998
<

1
44
.

4. Let O be a point inside a parallelogram ABCD such that ∠AOB +
∠COD = π. Prove that ∠OBC = ∠ODC.

5. Express the sum

n∑
k=0

(−1)k

k3 + 9k2 + 26k + 24

(
n

k

)
in the form p(n)/q(n), where p, q are polynomials with integer coef-
ficients.
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3.4 China

1. Let x1, x2, . . . , x1997 be real numbers satisfying the following condi-
tions:

(a) − 1√
3
≤ xi ≤

√
3 for i = 1, 2, . . . , 1997;

(b) x1 + x2 + · · ·+ x1997 = −318
√

3.

Determine the maximum value of x12
1 + x12

2 + · · ·+ x1
19972.

2. Let A1B1C1D1 be a convex quadrilateral and P a point in its inte-
rior. Assume that the angles PA1B1 and PA1D1 are acute, and sim-
ilarly for the other three vertices. Define Ak, Bk, Ck, Dk as the reflec-
tions of P across the linesAk−1Bk−1, Bk−1Ck−1, Ck−1Dk−1, Dk−1Ak−1.

(a) Of the quadrilaterals AkBkCkDk for k = 1, . . . , 12, which ones
are necessarily similar to the 1997th quadrilateral?

(b) Assume that the 1997th quadrilateral is cyclic. Which of the
first 12 quadrilaterals must then be cyclic?

3. Show that there exist infinitely many positive integers n such that
the numbers 1, 2, . . . , 3n can be labeled

a1, . . . , an, b1, . . . , bn, c1, . . . , cn

in some order so that the following conditions hold:

(a) a1 + b1 + c1 = · · · = an + bn + cn is a multiple of 6;

(b) a1 + · · · + an = b1 + · · · + bn = c1 + · · · + cn is also a multiple
of 6.

4. Let ABCD be a cyclic quadrilateral. The lines AB and CD meet at
P , and the lines AD and BC meet at Q. Let E and F be the points
where the tangents from Q meet the circumcircle of ABCD. Prove
that points P,E, F are collinear.

5. Let A = {1, 2, . . . , 17} and for a function f : A→ A, denote f [1](x) =
f(x) and f [k+1](x) = f(f [k](x)) for k ∈ N. Find the largest natural
number M such that there exists a bijection f : A → A satisfying
the following conditions:
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(a) If m < M and 1 ≤ i ≤ 16, then

f [m](i+ 1)− f [m](i) 6≡ ±1 (mod 17).

(b) For 1 ≤ i ≤ 16,

f [M ](i+ 1)− f [M ](i) ≡ ±1 (mod 17).

(Here f [k](18) is defined to equal f [k](1).)

6. Let a1, a2, . . . , be nonnegative integers satisfying

an+m ≤ an + am (m,n ∈ N).

Prove that
an ≤ ma1 +

( n
m
− 1
)
am

for all n ≥ m.
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3.5 Colombia

1. We are given an m× n grid and three colors. We wish to color each
segment of the grid with one of the three colors so that each unit
square has two sides of one color and two sides of a second color.
How many such colorings are possible?

2. We play the following game with an equilaterial triangle of n(n+1)/2
pennies (with n pennies on each side). Initially, all of the pennies
are turned heads up. On each turn, we may turn over three pennies
which are mutually adjacent; the goal is to make all of the pennies
show tails. For which values of n can this be achieved?

3. Let ABCD be a fixed square, and consider all squares PQRS such
that P and R lie on different sides of ABCD and Q lies on a diagonal
of ABCD. Determine all possible positions of the point S.

4. Prove that the set of positive integers can be partitioned into an
infinite number of (disjoint) infinite sets A1, A2, . . . so that if x, y, z, w
belong to Ak for some k, then x − y and z − w belong to the same
set Ai (where i need not equal k) if and only if x/y = z/w.
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3.6 Czech and Slovak Republics

1. Let ABC be a triangle with sides a, b, c and corresponding angles
α, β, γ. Prove that the equality α = 3β implies the inequality (a2 −
b2)(a− b) = bc2, and determine whether the converse also holds.

2. Each side and diagonal of a regular n-gon (n ≥ 3) is colored red
or blue. One may choose a vertex and change the color of all of
the segments emanating from that vertex, from red to blue and vice
versa. Prove that no matter how the edges were colored initially, it
is possible to make the number of blue segments at each vertex even.
Prove also that the resulting coloring is uniquely determined by the
initial coloring.

3. The tetrahedron ABCD is divided into five convex polyhedra so that
each face of ABCD is a face of one of the polyhedra (no faces are di-
vided), and the intersection of any two of the five polyhedra is either
a common vertex, a common edge, or a common face. What is the
smallest possible sum of the number of faces of the five polyhedra?

4. Show that there exists an increasing sequence {an}∞n=1 of natural
numbers such that for any k ≥ 0, the sequence {k + an} contains
only finitely many primes.

5. For each natural number n ≥ 2, determine the largest possible value
of the expression

Vn = sinx1 cosx2 + sinx2 cosx3 + · · ·+ sinxn cosx1,

where x1, x2, . . . , xn are arbitrary real numbers.

6. A parallelogram ABCD is given such that triangle ABD is acute
and ∠BAD = π/4. In the interior of the sides of the parallelogram,
points K on AB, L on BC, M on CD, N on DA can be chosen
in various ways so that KLMN is a cyclic quadrilateral whose cir-
cumradius equals those of the triangles ANK and CLM . Find the
locus of the intersection of the diagonals of all such quadrilaterals
KLMN .
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3.7 France

1. Each vertex of a regular 1997-gon is labeled with an integer, such
that the sum of the integers is 1. Starting at some vertex, we write
down the labels of the vertices reading counterclockwise around the
polygon. Can we always choose the starting vertex so that the sum
of the first k integers written down is positive for k = 1, . . . , 1997?

2. Find the maximum volume of a cylinder contained in the intersection
of a sphere with center O radius R and a cone with vertex O meeting
the sphere in a circle of radius r, having the same axis as the cone?

3. Find the maximum area of the orthogonal projection of a unit cube
onto a plane.

4. Given a triangle ABC, let a, b, c denote the lengths of its sides and
m,n, p the lengths of its medians. For every positive real α, let λ(α)
be the real number satisfying

aα + bα + cα = λ(α)α(mα + nα + pα).

(a) Compute λ(2).

(b) Determine the limit of λ(α) as α tends to 0.

(c) For which triangles ABC is λ(α) independent of α?
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3.8 Germany

1. Determine all primes p for which the system

p+ 1 = 2x2

p2 + 1 = 2y2

has a solution in integers x, y.

2. A square Sa is inscribed in an acute triangle ABC by placing two
vertices on side BC and one on each of AB and AC. Squares Sb and
Sc are inscribed similarly. For which triangles ABC will Sa, Sb, Sc
all be congruent?

3. In a park, 10000 trees have been placed in a square lattice. Deter-
mine the maximum number of trees that can be cut down so that
from any stump, you cannot see any other stump. (Assume the trees
have negligible radius compared to the distance between adjacent
trees.)

4. In the circular segment AMB, the central angle ∠AMB is less than
90◦. FRom an arbitrary point on the arc AB one constructs the
perpendiculars PC and PD onto MA and MB (C ∈ MA, D ∈
MB). Prove that the length of the segemnt CD does not depend on
the position of P on the arc AB.

5. In a square ABCD one constructs the four quarter circles having
their respective centers at A, B, C and D and containing the two
adjacent vertices. Inside ABCD lie the four intersection points E,
F , G and H, of these quarter circles, which form a smaller square
S. Let C be the circle tangent to all four quarter circles. Compare
the areas of S and C.

6. Denote by u(k) the largest odd number that divides the natural
number k. Prove that

1
2n
·

2n∑
k=1

u(k)
k
≥ 2

3
.

7. Find all real solutions of the system of equations

x3 = 2y − 1
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y3 = 2z − 1
z3 = 2x− 1

8. Define the functions

f(x) = x5 + 5x4 + 5x3 + 5x2 + 1
g(x) = x5 + 5x4 + 3x3 − 5x2 − 1.

Find all prime numbers p and for which there exists a natural number
0 ≤ x < p, such that both f(x) and g(x) are divisible by p, and for
each such p, find all such x.
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3.9 Greece

1. Let P be a point inside or on the sides of a square ABCD. Determine
the minimum and maximum possible values of

f(P ) = ∠ABP + ∠BCP + ∠CDP + ∠DAP.

2. Let f : (0,∞)→ R be a function such that

(a) f is strictly increasing;

(b) f(x) > −1/x for all x > 0;

(c) f(x)f(f(x) + 1/x) = 1 for all x > 0.

Find f(1).

3. Find all integer solutions of

13
x2

+
1996
y2

=
z

1997
.

4. Let P be a polynomial with integer coefficients having at least 13
distinct integer roots. Show that if n ∈ Z is not a root of P , then
|P (n)| ≥ 7(6!)2, and give an example where equality is achieved.
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3.10 Hungary

1. Each member of a committee ranks applicants A,B,C in some order.
It is given that the majority of the committee ranks A higher than
B, and also that the majority of the commitee ranks B higher than
C. Does it follow that the majority of the committee ranks A higher
than C?

2. Let a, b, c be the sides, ma,mb,mc the lengths of the altitudes, and
da, db, dc the distances from the vertices to the orthocenter in an
acute triangle. Prove that

mada +mbdb +mcdc =
a2 + b2 + c2

2
.

3. Let R be the circumradius of triangle ABC, and let G and H be
its centroid and orthocenter, respectively. Let F be the midpoint of
GH. Show that AF 2 +BF 2 + CF 2 = 3R2.

4. A box contains 4 white balls and 4 red balls, which we draw from
the box in some order without replacement. Before each draw, we
guess the color of the ball being drawn, always guessing the color
more likely to occur (if one is more likely than the other). What is
the expected number of correct guesses?

5. Find all solutions in integers of the equation

x3 + (x+ 1)3 + (x+ 2)3 + · · ·+ (x+ 7)3 = y3.

6. We are given 1997 distinct positive integers, any 10 of which have the
same least common multiple. Find the maximum possible number
of pairwise coprime numbers among them.

7. Let AB and CD be nonintersecting chords of a circle, and let K be
a point on CD. Construct (with straightedge and compass) a point
P on the circle such that K is the midpoint of the intersection of the
part of the segment CD lying inside triangle ABP .

8. We are given 111 unit vectors in the plane whose sum is zero. Show
that there exist 55 of the vectors whose sum has length less than 1.
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3.11 Iran

1. Suppose w1, . . . , wk are distinct real numbers with nonzero sum.
Prove that there exist integers n1, . . . , nk such that n1w1 + · · · +
nkwk > 0 and that for any permutation π of {1, . . . , k} not equal to
the identity, we have n1wπ(1) + · · ·+ nkwπ(k) < 0.

2. Suppose the point P varies along the arc BC of the circumcircle
of triangle ABC, and let I1, I2 be the respective incenters of the
triangles PAB,PAC. Prove that

(a) the circumcircle of PI1I2 passes through a fixed point;

(b) the circle with diameter I1I2 passes through a fixed point;

(c) the midpoint of I1I2 lies on a fixed circle.

3. Suppose f : R+ → R
+ is a decreasing continuous function such that

for all x, y ∈ R+,

f(x+ y) + f(f(x) + f(y)) = f(f(x+ f(y))) + f(y + f(x)).

Prove that f(f(x)) = x.

4. Let A be a matrix of zeroes and ones which is symmetric (Aij = Aji
for all i, j) such that Aii = 1 for all i. Show that there exists a subset
of the rows whose sum is a vector all of whose components are odd.
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3.12 Ireland

1. Find all pairs (x, y) of integers such that 1 + 1996x+ 1998y = xy.

2. Let ABC be an equilateral triangle. For M inside the triangle, let
D,E, F be the feet of the perpendiculars from M to BC,CA,AB,
respectively. Find the locus of points M such that ∠FDE = π/2.

3. Find all polynomials p(x) such that for all x,

(x− 16)p(2x) = 16(x− 1)p(x).

4. Let a, b, c be nonnegative real numbers such that a + b + c ≥ abc.
Prove that a2 + b2 + c2 ≥ abc.

5. Let S = {3, 5, 7, . . .}. For x ∈ S, let δ(x) be the unique integer such
that 2δ(x) < x < 2δ(x)+1. For a, b ∈ S, define

a ∗ b = 2δ(a)−1(b− 3) + a.

(a) Prove that if a, b ∈ S, then a ∗ b ∈ S.

(b) Prove that if a, b, c ∈ S, then (a ∗ b) ∗ c = a ∗ (b ∗ c).

6. Let ABCD be a convex quadrilateral with an inscribed circle. If
∠A = ∠B = 2π/3, ∠D = π/2 and BC = 1, find the length of AD.

7. Let A be a subset of {0, 1, . . . , 1997} containing more than 1000
elements. Prove that A contains either a power of 2, or two distinct
integers whose sum is a power of 2.

8. Determine the number of natural numbers n satisfying the following
conditions:

(a) The decimal expansion of n contains 1000 digits.

(b) All of the digits of n are odd.

(c) The absolute value of the difference between any two adjacent
digits of n is 2.
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3.13 Italy

1. A rectangular strip of paper 3 centimeters wide is folded exactly
once. What is the least possible area of the region where the paper
covers itself?

2. Let f be a real-valued function such that for any real x,

(a) f(10 + x) = f(10− x);

(b) f(20 + x) = −f(20− x).

Prove that f is odd (f(−x) = −f(x)) and periodic (there exists
T > 0 such that f(x+ T ) = f(x)).

3. The positive quadrant of a coordinate plane is divided into unit
squares by lattice lines. Is it possible to color some of the unit
squares so as to satisfy the following conditions:

(a) each square with one vertex at the origin and sides parallel to
the axes contains more colored than uncolored squares;

(b) each line parallel to the angle bisector of the quadrant at the
origin passes through only finitely many colored squares?

4. Let ABCD be a tetrahedron. Let a be the length of AB and let
S be the area of the projection of the tetrahedron onto a plane
perpendicular to AB. Determine the volume of the tetrahedron in
terms of a and S.

5. Let X be the set of natural numbers whose decimal representations
have no repeated digits. For n ∈ X, let An be the set of numbers
whose digits are a permutation of the digits of n, and let dn be the
greatest common divisor of the numbers in An. Find the largest
possible value of dn.
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3.14 Japan

1. Prove that among any ten points located in a circle of diameter 5,
there exist two at distance less than 2 from each other.

2. Let a, b, c be positive integers. Prove the inequality

(b+ c− a)2

(b+ c)2 + a2
+

(c+ a− b)2

(c+ a)2 + b2
+

(a+ b− c)2

(a+ b)2 + c2
≥ 3

5
,

and determine when equality holds.

3. Let G be a graph with 9 vertices. Suppose given any five points of
G, there exist at least 2 edges with both endpoints among the five
points. What is the minimum possible number of edges in G?

4. Let A,B,C,D be four points in space not lying in a plane. Suppose
AX + BX + CX + DX is minimized at a point X = X0 distinct
from A,B,C,D. Prove that ∠AX0B = ∠CX0D.

5. Let n be a positive integer. Show that one can assign to each vertex
of a 2n-gon one of the letters A or B such that the sequences of n
letters obtained by starting at a vertex and reading counterclockwise
are all distinct.
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3.15 Korea

1. Show that among any four points contained in a unit circle, there
exist two whose distance is at most

√
2.

2. Let f : N→ N be a function satisfying

(a) For every n ∈ N, f(n+ f(n)) = f(n).

(b) For some n0 ∈ N, f(n0) = 1.

Show that f(n) = 1 for all n ∈ N.

3. Express
∑n
k=1b
√
kc in terms of n and a = b

√
nc.

4. Let C be a circle touching the edges of an angle ∠XOY , and let
C1 be the circle touching the same edges and passing through the
center of C. Let A be the second endpoint of the diameter of C1

passing through the center of C, and let B be the intersection of
this diameter with C. Prove that the circle centered at A passing
through B touches the edges of ∠XOY .

5. Find all integers x, y, z satisfying x2 + y2 + z2 − 2xyz = 0.

6. Find the smallest integer k such that there exist two sequences {ai},
{bi} (i = 1, . . . , k) such that

(a) For i = 1, . . . , k, ai, bi ∈ {1, 1996, 19962, . . .}.
(b) For i = 1, . . . , k, ai 6= bi.

(c) For i = 1, . . . , k − 1, ai ≤ ai+1 and bi ≤ bi+1.

(d)
∑k
i=1 ai =

∑k
i=1 bi.

7. Let An be the set of all real numbers of the form 1+ α1√
2

+ α2

(
√

2)2 +· · ·+
αn

(
√

2)n
, where αj ∈ {−1, 1} for each j. Find the number of elements

of An, and find the sum of all products of two distinct elements of
An.

8. In an acute triangle ABC with AB 6= AC, let V be the intersection
of the angle bisector of A with BC, and let D be the foot of the
perpendicular from A to BC. If E and F are the intersections of the
circumcircle of AVD with CA and AB, respectively, show that the
lines AD,BE,CF concur.
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9. A word is a sequence of 8 digits, each equal to 0 or 1. Let x and y be
two words differing in exactly three places. Show that the number
of words differing from each of x and y in at least five places is 188.

10. Find all pairs of functions f, g : R→ R such that

(a) if x < y, then f(x) < f(y);

(b) for all x, y ∈ R, f(xy) = g(y)f(x) + f(y).

11. Let a1, . . . , an be positive numbers, and define

A =
a1 + · · ·+ an

n

G = (a1 · · · an)1/n

H =
n

a−1
1 + · · ·+ a−1

n

.

(a) If n is even, show that A
H ≤ −1 +

(
A
G

)n
.

(b) If n is odd, show that A
H ≤ −

n−2
n + 2(n−1)

n

(
A
G

)n
.

12. Let p1, . . . , pr be distinct primes, and let n1, . . . , nr be arbitrary
natural numbers. Prove that the number of pairs (x, y) of integers
satisfying x3 + y3 = pn1

1 · · · pnrr is at most 2r−1.
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3.16 Poland

1. The positive integers x1, . . . , x7 satisfy the conditions

x6 = 144, xn+3 = xn+2(xn+1 + xn) n = 1, 2, 3, 4.

Compute x7.

2. Solve the following system of equations in real numbers x, y, z:

3(x2 + y2 + z2) = 1
x2y2 + y2z2 + z2x2 = xyz(x+ y + z)3.

3. In a tetrahedron ABCD, the medians of the faces ABD,ACD,BCD
fromD make equal angles with the corresponding edgesAB,AC,BC.
Prove that each of these faces has area less than the sum of the areas
of the other two faces.

4. The sequence a1, a2, . . . is defined by

a1 = 0, an = abn/2c + (−1)n(n+1)/2 n > 1.

For every integer k ≥ 0, find the number of n such that

2k ≤ n < 2k+1 and an = 0.

5. Given a convex pentagon ABCDE with DC = DE and ∠BCD =
∠DEA = π/2, let F be the point on segmentAB such thatAF/BF =
AE/BC. Show that

∠FCE = ∠FDE and ∠FEC = ∠BDC.

6. Consider n points (n ≥ 2) on a unit circle. Show that at most n2/3 of
the segments with endpoints among the n chosen points have length
greater than

√
2.
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3.17 Romania

1. In the plane are given a line ∆ and three circles tangent to ∆ and
externally tangent to each other. Prove that the triangle formed by
the centers of the circles is obtuse, and find all possible measures of
the obtuse angle.

2. Determine all sets A of nine positive integers such that for any n ≥
500, there exists a subset B of A, the sum of whose elements is n.

3. Let n ≥ 4 be an integer and M a set of n points in the plane, no three
collinear and not all lying on a circle. Find all functions f : M → R

such that for any circle C containing at least three points of M ,∑
P∈M∩C

f(P ) = 0.

4. Let ABC be a triangle, D a point on side BC and ω the circum-
circle of ABC. Show that the circles tangent to ω,AD,BD and
to ω,AD,DC, respectively, are tangent to each other if and only if
∠BAD = ∠CAD.

5. Let V A1 · · ·An be a pyramid with n ≥ 4. A plane Π intersects the
edges V A1, . . . , V An at B1, . . . , Bn, respectively. Suppose that the
polygons A1 · · ·An and B1 · · ·Bn are similar. Prove that Π is parallel
to the base of the pyramid.

6. Let A be the set of positive integers representable in the form a2+2b2

for integers a, b with b 6= 0. Show that if p2 ∈ A for a prime p, then
p ∈ A.

7. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p− 1}. Find the max-
imum length of an arithmetic progression, none of whose elements
contain the digit k when written in base p.

8. Let p, q, r be distinct prime numbers and let A be the set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.

Find the smallest integer n such that any n-element subset of A
contains two distinct elements x, y such that x divides y.
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9. Let ABCDEF be a convex hexagon. Let P,Q,R be the intersections
of the lines AB and EF , EF and CD, CD and AB, respectively.
Let S, T, U be the intersections of the lines BC and DE, DE and
FA, FA and BC, respectively. Show that if AB/PR = CD/RQ =
EF/QP , then BC/US = DE/ST = FA/TU .

10. Let P be the set of points in the plane and D the set of lines
ithe plane. Determine whether there exists a bijective function
f : P → D such that for any three collinear points A,B,C, the
lines f(A), f(B), f(C) are either parallel or concurrent.

11. Find all functions f : R→ [0,∞) such that for all x, y ∈ R,

f(x2 + y2) = f(x2 − y2) + f(2xy).

12. Let n ≥ 2 be an integer and P (x) = xn+an−1x
n−1 + · · ·+a1x+1 be

a polynomial with positive integer coefficients. Suppose that ak =
an−k for k = 1, 2, . . . , n − 1. Prove that there exist infinitely many
pairs x, y of positive integers such that x|P (y) and y|P (x).

13. Let P (x), Q(x) be monic irreducible polynomials over the rational
numbers. Suppose P and Q have respective roots α and β such that
α + β is rational. Prove that the polynomial P (x)2 − Q(x)2 has a
rational root.

14. Let a > 1 be an integer. Show that the set

{a2 + a− 1, a3 + a2 − 1, . . .}

contains an infinite subset, any two members of which are relatively
prime.

15. Find the number of ways to color the vertices of a regular dodecagon
in two colors so that no set of vertices of a single color form a regular
polygon.

16. Let Γ be a circle and AB a line not meeting Γ. For any point P ∈ Γ,
let P ′ be the second intersection of the line AP with Γ and let f(P )
be the second intersection of the line BP ′ with Γ. Given a point P0,
define the sequence Pn+1 = f(Pn) for n ≥ 0. Show that if a positive
integer k satisfies P0 = Pk for a single choice of P0, then P0 = Pk
for all choices of P0.
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3.18 Russia

1. Show that the numbers from 1 to 16 can be written in a line, but
not in a circle, so that the sum of any two adjacent numbers is a
perfect square.

2. On equal sides AB and BC of an equilateral triangle ABC are chosen
points D and K, and on side AC are chosen points E and M , so
that DA + AE = KC + CM = AB. Show that the angle between
the lines DM and KE equals π/3.

3. A company has 50000 employees. For each employee, the sum of the
numbers of his immediate superiors and of his immediate inferiors is
7. On Monday, each worker issues an order and gives copies of it to
each of his immediate inferiors (if he has any). Each day thereafter,
each worker takes all of the orders he received on the previous day
and either gives copies of them to all of his immediate inferiors if he
has any, or otherwise carries them out himself. It turns out that on
Friday, no orders are given. Show that there are at least 97 employees
who have no immediate superiors.

4. The sides of the acute triangle ABC are diagonals of the squares
K1,K2,K3. Prove that the area of ABC is covered by the three
squares.

5. The numbers from 1 to 37 are written in a line so that each number
divides the sum of the previous numbers. If the first number is 37
and the second number is 1, what is the third number?

6. Find all paris of prime numbers p, q such that p3 − q5 = (p+ q)2.

7. (a) In Mexico City, to restrict traffic flow, for each private car are
designated two days of the week on which that car cannot be
driven on the streets of the city. A family needs to have use of
at least 10 cars each day. What is the smallest number of cars
they must possess, if they may choose the restricted days for
each car?

(b) The law is changed to restrict each car only one day per week,
but the police get to choose the days. The family bribes the
police so that for each car, they will restrict one of two days
chosen by the family. Now what is the smallest number of cars
the family needs to have access to 10 cars each day?
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8. A regular 1997-gon is divided by nonintersecting diagonals into tri-
angles. Prove that at least one of the triangles is acute.

9. On a chalkboard are written the numbers from 1 to 1000. Two
players take turns erasing a number from the board. The game ends
when two numbers remain: the first player wins if the sum of these
numbers is divisible by 3, the second player wins otherwise. Which
player has a winning strategy?

10. 300 apples are given, no one of which weighs more than 3 times any
other. Show that the apples may be divided into groups of 4 such
that no group weighs more than 11/2 times any other group.

11. In Robotland, a finite number of (finite) sequences of digits are for-
bidden. It is known that there exists an infinite decimal fraction,
not containing any forbidden sequences. Show that there exists an
infinite periodic decimal fraction, not containing any forbidden se-
quences.

12. (a) A collection of 1997 numbers has the property that if each num-
ber is subtracted from the sum of the remaining numbers, the
same collection of numbers is obtained. Prove that the product
of the numbers is 0.

(b) A collection of 100 numbers has the same property. Prove that
the product of the numbers is positive.

13. Given triangle ABC, let A1, B1, C1 be the midpoints of the broken
lines CAB,ABC,BCA, respectively. Let lA, lB , lC be the respective
lines through A1, B1, C1 parallel to the angle bisectors of A,B,C.
Show that lA, lB , lC are concurrent.

14. The MK-97 calculator can perform the following three operations on
numbers in its memory:

(a) Determine whether two chosen numbers are equal.
(b) Add two chosen numbers together.
(c) For chosen numbers a and b, find the real roots of x2 + ax+ b,

or announce that no real roots exist.

The results of each operation are accumulated in memory. Initially
the memory contains a single number x. How can one determine,
using the MK-97, whether x is equal to 1?
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15. The circles S1 and S2 intersect at M and N . Show that if vertices
A and C of a rectangle ABCD lie on S1 while vertices B and D lie
on S2, then the intersection of the diagonals of the rectangle lies on
the line MN .

16. For natural numbers m,n, show that 2n− 1 divides (2m− 1)2 if and
only if n divides m(2m − 1).

17. Can three faces of a cube of side length 4 be covered with 16 1 × 3
rectangles?

18. The vertices of triangle ABC lie inside a square K. Show that if
the triangle is rotated 180◦ about its centroids, at least one vertex
remains inside the square.

19. Let S(N) denote the sum of the digits of the natural number N .
Show that there exist infinitely many natural numbers n such that
S(3n) ≥ S(3n+1).

20. The members of Congress form various overlapping factions such
that given any two (not necessarily distinct) factions A and B, the
complement of A∪B is also a faction. Show that for any two factions
A and B, A ∪B is also a faction.

21. Show that if 1 < a < b < c, then

loga(loga b) + logb(logb c) + logc(logc a) > 0.

22. Do there exist pyramids, one with a triangular base and one with
a convex n-sided base (n ≥ 4), such that the solid angles of the
triangular pyramid are congruent to four of the solid angles of the
n-sided pyramid?

23. For which α does there exist a nonconstant function f : R→ R such
that

f(α(x+ y)) = f(x) + f(y)?

24. Let P (x) be a quadratic polynomial with nonnegative coefficients.
Show that for any real numbers x and y, we have the inequality

P (xy)2 ≤ P (x2)P (y2).

157



25. Given a convex polygon M invariant under a 90◦ rotation, show that
there exist two circles, the ratio of whose radii is

√
2, one containing

M and the other contained in M .

26. (a) The Judgment of the Council of Sages proceeds as follows: the
king arranges the sages in a line and places either a white hat
or a black hat on each sage’s head. Each sage can see the color
of the hats of the sages in front of him, but not of his own hat
or of the hats of the sages behind him. Then one by one (in an
order of their choosing), each sage guesses a color. Afterward,
the king executes those sages who did not correctly guess the
color of their own hat.
The day before, the Council meets and decides to minimize the
number of executions. What is the smallest number of sages
guaranteed to survive in this case?

(b) The king decides to use three colors of hats: white, black and
red. Now what is the smallest number of sages guaranteed to
survive?

27. The lateral sides of a box with base a×b and height c (where a, b, c are
natural numbers) are completely covered without overlap by rectan-
gles whose edges are parallel to the edges of the box, each containing
an odd number of unit squares. Prove that if c is odd, then the num-
ber of rectangles covering lateral edges of the box is even.

28. Do there exist real numbers b and c such that each of the equations
x2 +bx+c = 0 and 2x2 +(b+1)x+c+1 = 0 have two integer roots?

29. A class consists of 33 students. Each student is asked how many
other students in the class have his first name, and how many have
his last name. It turns out that each number from 0 to 10 occurs
among the answers. Show that there are two students in the class
with the same first and last name.

30. The incircle of triangle ABC touches sides AB,BC,CA at M,N,K,
respectively. The line through A parallel to NK meets MN at D.
The line through A parallel to MN meets NK at E. Show that the
line DE bisects sides AB and AC of triangle ABC.

31. The numbers from 1 to 100 are arranged in a 10 × 10 table so that
no two adjacent numbers sum to S. Find the smallest value of S for
which this is possible.
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32. Find all integer solutions of the equation

(x2 − y2)2 = 1 + 16y.

33. An n × n square grid (n ≥ 3) is rolled into a cylinder. Some of the
cells are then colored black. Show that there exist two parallel lines
(horizontal, vertical or diagonal) of cells containing the same number
of black cells.

34. Two circles intersect at A and B. A line through A meets the first
circle again at C and the second circle again at D. Let M and N
be the midpoints of the arcs BC and BD not containing A, and let
K be the midpoint of the segment CD. Show that ∠MKN = π/2.
(You may assume that C and D lie on opposite sides of A.)

35. A polygon can be divided into 100 rectangles, but not into 99. Prove
that it cannot be divided into 100 triangles.

36. Do there exist two quadratic trinomials ax2 + bx+ c and (a+ 1)x2 +
(b + 1)x + (c + 1) with integer coefficients, both of which have two
integer roots?

37. A circle centered at O and inscribed in triangle ABC meets sides
AC,AB,BC at K,M,N , respectively. The median BB1 of the tri-
angle meets MN at D. Show that O,D,K are collinear.

38. Find all triples m,n, l of natural numbers such that

m+ n = gcd(m,n)2,m+ l = gcd(m, l)2, n+ l = gcd(n, l)2.

39. On an infinite (in both directions) strip of squares, indexed by the
natural numbers, are placed several stones (more than one may be
placed on a single square). We perform a sequence of moves of one
of the following types:

(a) Remove one stone from each of the squares n − 1 and n and
place one stone on square n+ 1.

(b) Remove two stones from square n and place one stone on each
of the squares n+ 1, n− 2.

Prove that any sequence of such moves will lead to a position in which
no further moves can be made, and moreover that this position is
independent of the sequence of moves.
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40. An n× n× n cube is divided into unit cubes. We are given a closed
non-self-intersecting polygon (in space), each of whose sides joins
the centers of two unit cubes sharing a common face. The faces of
unit cubes which intersect the polygon are said to be distinguished.
Prove that the edges of the unit cubes may be colored in two colors
so that each distinguished face has an odd number of edges of each
color, while each nondistinguished face has an even number of edges
of each color.

41. Of the quadratic trinomials x2 + px + q where p, q are integers and
1 ≤ p, q ≤ 1997, which are there more of: those having integer roots
or those not having real roots?

42. We are given a polygon, a line l and a point P on l in general position:
all lines containing a side of the polygon meet l at distinct points
differing from P . We mark each vertex of the polygon whose sides
both meet the line l at points differing from P . Show that P lies
inside the polygon if and only if for each choice of l there are an odd
number of marked vertices.

43. A sphere inscribed in a tetrahedron touches one face at the inter-
section of its angle bisectors, a second face at the intersection of its
altitudes, and a third face at the intersection of its medians. Show
that the tetrahedron is regular.

44. In an m×n rectangular grid, where m and n are odd integers, 1× 2
dominoes are initially placed so as to exactly cover all but one of
the 1 × 1 squares at one corner of the grid. It is permitted to slide
a domino towards the empty square, thus exposing another square.
Show that by a sequence of such moves, we can move the empty
square to any corner of the rectangle.
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3.19 South Africa

1. From an initial triangle A0B0C0 a sequence A1B1C1, A2B2C2, . . .
is formed such that at each stage, Ak+1, Bk+1, Ck+1 are the points
where the incircle of AkBkCk touches the sides BkCk, CkAk, AkBk,
respectively.

(a) Express ∠Ak+1Bk+1Ck+1 in terms of ∠AkBkCk.

(b) Deduce that as k →∞, ∠AkBkCk → 60◦.

2. Find all natural numbers with the property that, when the first digit
is moved to the end, the resulting number is 3 1

2 times the original
one.

3. Find all functions f : Z→ Z which satisfy f(m+ f(n)) = f(m) + n
for all m,n ∈ Z.

4. A circle and a point P above the circle lie in a vertical plane. A
particle moves along a straight line from P to a point Q on the circle
under the influence of gravity. That is, the distance traveled from P
in time t equals 1

2gt
2 sinα, where g is a constant and α is the angle

between PQ and the horizontal. Describe (geometrically) the point
Q for which the time taken to move from P to Q is minimized.

5. Six points are joined pairwise by red or blue segments. Must there
exist a closed path consisting of four of the segments, all of the same
color?
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3.20 Spain

1. Calculate the sum of the squares of the first 100 terms of an arith-
metic progression, given that the sum of the first 100 terms is −1 and
that the sum of the second, fourth, . . . , and the hundredth terms is
1.

2. Let A be a set of 16 lattice points forming a square with 4 points on
a side. Find the maximum number of points of A no three of which
form an isosceles right triangle.

3. For each parabola y = x2 + px + q meeting the coordinate axes in
three distinct points, a circle through these points is drawn. Show
that all of the circles pass through a single point.

4. Let p be a prime number. Find all k ∈ Z such that
√
k2 − pk is a

positive integer.

5. Show that in any convex quadrilateral of area 1, the sum of the
lengths of the sides and diagonals is at least 2(2 +

√
2).

6. The exact quantity of gas needed for a car to complete a single loop
around a track is distributed among n containers placed along the
track. Prove that there exists a position starting at which the car,
beginning with an empty tank of gas, can complete a single loop
around the track without running out of gas. (Assume the car can
hold unlimited quantities of gas.)
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3.21 Taiwan

1. Let a be a rational number, b, c, d be real numbers, and f : R →
[−1, 1] a function satisfying

f(x+ a+ b)− f(x+ b) = cbx+ 2a+ bxc − 2bx+ ac − bbcc+ d

for each x ∈ R. Show that f is periodic, that is, there exists p > 0
such that f(x+ p) = f(x) for all x ∈ R.

2. Let AB be a given line segment. Find all possible points C in the
plane such that in the triangle ABC, the altitude from A and the
median from B have the same length.

3. Let n ≥ 3 be an integer, and suppose that the sequence a1, a2, . . . , an
satisfies ai−1+ai+1 = kiai for some sequence k1, k2, . . . , kn of positive
integers. (Here a0 = an and an+1 = a1.) Show that

2n ≤ k1 + k2 + · · ·+ kn ≤ 3n.

4. Let k = 22n + 1 for some positive integer n. Show that k is a prime
if and only if k is a factor of 3(k−1)/2 + 1.

5. Let ABCD be a tetrahedron. Show that

(a) If AB = CD, AD = BC, AC = BD, then the triangles
ABC,ACD,ABD,BCD are acute;

(b) If ABC,ACD,ABD,BCD have the same area, then AB =
CD,AD = BC,AC = BD.

6. Let X be the set of integers of the form

a2k102k + a2k−2102k−2 + · · ·+ a2102 + a0,

where k is a nonnegative integer and a2i ∈ {1, 2, . . . , 9} for i =
0, 2, . . . , 2k. Show that every integer of the form 2p3q, for p and q
nonnegative integers, divides some element of X.

7. Determine all positive integers k for which there exists a function
f : N→ Z such that

(a) f(1997) = 1998;
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(b) for all a, b ∈ N, f(ab) = f(a) + f(b) + kf(gcd(a, b)).

8. Let ABC be an acute triangle with circumcenter O and circumradius
R. Let AO meet the circumcircle of OBC again at D, BO meet the
circumcircle of OCA again at E, and CO meet the circumcircle of
OAB again at F . Show that OD ·OE ·OF ≥ 8R3.

9. For n ≥ k ≥ 3, let X = {1, 2, . . . , n} and let Fk be a family of k-
element subsets of X such that any two subsets in Fk have at most
k − 2 common elements. Show that there exists a subset Mk of X
with at least blog2 nc+ 1 elements containing no subset in Fk.
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3.22 Turkey

1. In a triangle ABC with a right angle at A, let H denote the foot of
the altitude from A. Show that the sum of the inradii of the triangles
ABC,ABH,ACH equals AH.

2. The sequences {an}∞n=1, {bn}∞n=1 are defined as follows: a1 = α,
b1 = β, an+1 = αan − βbn, bn+1 = βan + αbn for all n ≥ 1. How
many pairs (α, β) of real numbers are there such that a1997 = b1 and
b1997 = a1?

3. In a soccer league, when a player moves from a team X with x players
to a team Y with y players, the federation receives y − x million
dollars from Y if y ≥ x, but pays x− y million dollars to X if x > y.
A player may move as often as he wishes during a season. The league
consists of 18 teams, each of which begins a certain season with 20
players. At the end of the season, 12 teams end up with 20 players,
while the other 6 end up with 16, 16, 21, 22, 22, 23 players. What is
the maximum amount the federation could have earned during the
season?

4. The edge AE of a convex pentagon ABCDE with vertices on a unit
circle passes through the center of the circle. If AB = a, BC = b,
CD = c, DE = d and ab = cd = 1/4, compute AC + CE in terms
of a, b, c, d.

5. Prove that for each prime p ≥ 7, there exists a positive integer n and
integers x1, . . . , xn, y1, . . . , yn not divisible by p such that

x2
1 + y2

1 ≡ x2
2 (mod p)

x2
2 + y2

2 ≡ x2
3 (mod p)

...
x2
n + y2

n ≡ x2
1 (mod p).

6. Given an integer n ≥ 2, find the minimal value of

x5
1

x2 + x3 + · · ·+ xn
+

x5
2

x3 + · · ·+ xn + x1
+ · · ·+ x5

n

x1 + · · ·+ xn−1

for positive real numbers x1, . . . , xn subject to the condition x2
1 +

· · ·+ x2
n = 1.
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3.23 Ukraine

1. A rectangular grid is colored in checkerboard fashion, and each cell
contains an integer. It is given that the sum of the numbers in each
row and the sum of the numbers in each column is even. Prove that
the sum of all numbers in black cells is even.

2. Find all solutions in real numbers to the following system of equa-
tions:

x1 + x2 + · · ·+ x1997 = 1997
x4

1 + x4
2 + · · ·+ x1997

4 = x3
1 + x3

2 + · · ·+ x3
1997.

3. Let d(n) denote the greatest odd divisor of the natural number n. We
define the function f : N→ N such that f(2n− 1) = 2n and f(2n) =
n+ 2n

d(n) for all n ∈ N. Find all k such that f(f(· · · f(1) · · ·)) = 1997,
where f is iterated k times.

4. Two regular pentagons ABCDE and AEKPL are situated in space
so that ∠DAK = 60◦. Prove that the planes ACK and BAL are
perpendicular.

5. The equation ax3 + bx2 + cx+ d = 0 is known to have three distinct
real roots. How many real roots are there of the equation

4(ax3 + bx2 + cx+ d)(3ax+ b) = (3ax2 + 2bx+ c)2?

6. Let Q+ denote the set of positive rational numbers. Find all func-
tions f : Q+ → Q

+ such that for all x ∈ Q+:

(a) f(x+ 1) = f(x) + 1;

(b) f(x2) = f(x)2.

7. Find the smallest integer n such that among any n integers, there
exist 18 integers whose sum is divisible by 18.

8. Points K,L,M,N lie on the edges AB,BC,CD,DA of a (not nec-
essarily right) parallelepiped ABCDA1B1C1D1. Prove that the
centers of the circumscribed spheres of the tetrahedra A1AKN ,
B1BKL, C1CLM , D1DMN are the vertices of a parallelogram.
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3.24 United Kingdom

1. (a) Let M and N be two 9-digit positive integers with the property
that if any one digit of M is replaced by the digit of N in the
corresponding place, the resulting integer is a multiple of 7.
Prove that any number obtained by replacing a digit of N with
the corresponding digit of M is also a multiple of 7.

(b) Find an integer d > 9 such that the above result remains true
when M and N are two d-digit positive integers.

2. In acute triangle ABC, CF is an altitude, with F on AB, and BM
is a median, with M on CA. Given that BM = CF and ∠MBC =
∠FCA, prove that the triangle ABC is equilateral.

3. Find the number of polynomials of degree 5 with distinct coefficients
from the set {1, 2, . . . , 9} that are divisible by x2 − x+ 1.

4. The set S = {1/r : r = 1, 2, 3, . . .} of reciprocals of the positive
integers contains arithmetic progressions of various lengths. For in-
stance, 1/20, 1/8, 1/5 is such a progression, of length 3 and common
difference 3/40. Moreover, this is a maximal progression in S of
length 3 since it cannot be extended to the left or right within S
(−1/40 and 11/40 not being members of S).

(a) Find a maximal progression in S of length 1996.

(b) Is there a maximal progression in S of length 1997?

167



3.25 United States of America

1. Let p1, p2, p3, . . . be the prime numbers listed in increasing order,
and let x0 be a real number between 0 and 1. For positive integer
k, define

xk = 0 if xk−1 = 0,
{

pk
xk−1

}
if xk−1 6= 0,

where {x} = x − bxc denotes the fractional part of x. Find, with
proof, all x0 satisfying 0 < x0 < 1 for which the sequence x0, x1, x2, . . .
eventually becomes 0.

2. LetABC be a triangle, and draw isosceles trianglesBCD,CAE,ABF
externally toABC, withBC,CA,AB as their respective bases. Prove
that the lines throughA,B,C perpendicular to the lines EF,FD,DE,
respectively, are concurrent.

3. Prove that for any integer n, there exists a unique polynomial Q
with coefficients in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

4. To clip a convex n-gon means to choose a pair of consecutive sides
AB,BC and to replace them by the three segments AM,MN , and
NC, where M is the midpoint of AB and N is the midpoint of BC.
In other words, one cuts off the triangle MBN to obtain a convex
(n + 1)-gon. A regular hexagon P6 of area 1 is clipped to obtain a
heptagon P7. Then P7 is clipped (in one of the seven possible ways)
to obtain an octagon P8, and so on. Prove that no matter how the
clippings are done, the area of Pn is greater than 1/3, for all n ≥ 6.

5. Prove that, for all positive real numbers a, b, c,

(a3 + b3 + abc)−1 + (b3 + c3 + abc)−1 + (c3 + a3 + abc)−1 ≤ (abc)−1.

6. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997 satis-
fies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real
number x such that an = bnxc for all 1 ≤ n ≤ 1997.
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3.26 Vietnam

1. Determine the smallest integer k for which there exists a graph on
25 vertices such that every vertex is adjacent to exactly k others,
and any two nonadjacent vertices are both adjacent to some third
vertex.

2. Find the largest real number α for which there exists an infinite
sequence a1, a2, . . . of positive integers satisfying the following prop-
erties.

(a) For each n ∈ N, an > 1997n.

(b) For every n ≥ 2, aαn does not exceed the greatest common
divisor of the set {ai + aj : i+ j = n}.

3. Let f : N→ Z be the function defined by

f(0) = 2, f(1) = 503, f(n+ 2) = 503f(n+ 1)− 1996f(n).

For k ∈ N, let s1, . . . , sk be integers not less than k, and let pi be a
prime divisor of f(2si) for i = 1, . . . , k. Prove that for t = 1, . . . , k,

k∑
i=1

pi | 2t if and only if k | 2t.

4. Find all pairs (a, b) of positive reals such that for every n ∈ N and
every real number x satisfying

4n2x = log2(2n2x+ 1),

we have ax + bx ≥ 2 + 3x.

5. Let n, k, p be positive integers such that k ≥ 2 and k(p + 1) ≤ n.
Determine the number of ways to color n labeled points on a circle
in blue or red, so that exactly k points are colored blue, and any arc
whose endpoints are blue but contains no blue points in its interior
contains exactly p red points.
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4 1997 Regional Contests:
Problems

4.1 Asian Pacific Mathematics Olympiad

1. Let

S = 1 +
1

1 + 1
3

+
1

1 + 1
3 + 1

6

+ · · ·+ 1
1 + 1

3 + 1
6 + · · ·+ 1

1993006

,

where the denominators contain partial sums of the sequence of re-
ciprocals of triangular numbers. Prove that S > 1001.

2. Find an integer n with 100 ≤ n ≤ 1997 such that n divides 2n + 2.

3. Let ABC be a triangle and let

la =
ma

Ma
, lb =

mb

Mb
, lc =

mc

Mc
,

where ma,mb,mc are the lengths of the internal angle bisectors and
Ma,Mb,Mc are the lengths of the extensions of the internal angle
bisectors to the circumcircle. Prove that

la

sin2A
+

lb

sin2B
+

lc

sin2 C
≥ 3,

with equality if and only if ABC is equilateral.

4. The triangle A1A2A3 has a right angle at A3. For n ≥ 3, let An+1

be the foot of the perpendicular from An to An−1An−2.

(a) Show that there is a unique point P in the plane interior to the
triangles An−2An−1An for all n ≥ 3.

(b) For fixed A1 and A3, determine the locus of P as A2 varies.

5. Persons A1, . . . , An (n ≥ 3) are seated in a circle in that order, and
each person Ai holds a number ai of objects, such that (a1 + · · · +
an)/n is an integer. It is desired to redistribute the objects so that
each person holds the same number; objects may only be passed
from one person to either of her two neighbors. How should the
redistribution take place so as to minimize the number of passes?
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4.2 Austrian-Polish Mathematical Competition

1. Let P be the intersection of lines l1 and l2. Let S1 and S2 be two
circles externally tangent at P and both tangent to l1, and let T1

and T2 be two circles externally tangent at P and both tangent to l2.
Let A be the second intersection of S1 and T1, B that of S1 and T2,
C that of S2 and T1, and D that of S2 and T2. Show that the points
A,B,C,D are concyclic if and only if l1 and l2 are perpendicular.

2. Letm,n, p, q be positive integers, and consider anm×n checkerboard
with a checker on each of its mn squares. A piece can be moved from
(x, y) to (x′, y′) if and only if |x−x′| = p and |y−y′| = q. How many
ways can all of the pieces be moved simultaneously so that one piece
ends up on each square?

3. On a blackbroad are written the numbers 48/k with k = 1, 2, . . . , 97.
At each step, two numbers a, b are erased and 2ab − a − b + 1 is
written in their place. After 96 steps, a single number remains on
the blackboard. Determine all possible such numbers.

4. In a convex quadrilateral ABCD, the sides AB and CD are parallel,
the diagonals AC and BD intersect at E, and the triangles EBC
and EAD have respective orthocenters F and G. Prove that the
midpoint of GF lies on the line through E perpendicular to AB.

5. Let p1, p2, p3, p4 be distinct primes. Prove there does not exist a
cubic polynomial Q(x) with integer coefficients such that

|Q(p1)| = |Q(p2)| = |Q(p3)| = |Q(p4)| = 3.

6. Prove there does not exist f : Z→ Z such that f(x+f(y)) = f(x)−y
for all integers x, y.

7. (a) Prove that for all p, q ∈ R, p2 + q2 + 1 > p(q + 1).
(b) Determine the largest real number x such that p2 + q2 + 1 >

bp(q + 1) for all p, q ∈ R.
(c) Determine the largest real number x such that p2 + q2 + 1 >

bp(q + 1) for all p, q ∈ Z.

8. Let n be a natural number and M a set with n elements. Find
the biggest integer k such that there exists a k-element family of
three-element subsets of M , no two of which are disjoint.
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9. Let P be a parallelepiped with volume V and surface area S, and
let L be the sum of the lengths of the edges of P . For t ≥ 0, let Pt
be the set of points which lie at distance at most t from some point
of P . Prove that the volume of Pt is

V + St+
π

4
Lt2 +

4π
3
t3.
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4.3 Czech-Slovak Match

1. An equilateral triangle ABC is given. Points K and L are chosen
on its sides AB and AC, respectively, such that |BK| = |AL|. Let
P be the intersection of the segmentns BL and CK. Determine the
ratio |AK| : |KB| if it is known that the segments AP and CK are
perpendicular.

2. In a community of more than six people, each member exchanges
letters with precisely three other members of the community. Prove
that the community can be divided into two nonempty groups so
that each member exchanges letters with at least two members of
the group he belongs to.

3. Find all functions f : R→ R such that the equality

f(f(x) + y) = f(x2 − y) + 4f(x)y

holds for all pairs of real numbers x, y.

4. Is it possible to place 100 solid balls in space so that no two of them
have a common interior point, and each of them touches at least
one-third of the others?

5. Several integers are given (some of them may be equal) whose sum
is equal to 1492. Decide whether the sum of their seventh powers
can equal

(a) 1996;

(b) 1998.

6. In a certain language there are only two letters, A and B. The words
of this language obey the following rules:

(a) The only word of length 1 is A.

(b) A sequence of letters X1X2 · · ·XnXn+1, where Xi ∈ {A,B} for
each i, is a word if and only if it contains at least one A but is
not of the form X1X2 · · ·XnA where X1X2 · · ·Xn is a word.

Show that there are precisely
(

3995
1997

)
− 1 words which do not begin

with AA and which are composed of 1998 A’s and 1998 B’s.
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4.4 Hungary-Israel Mathematics Competition

1. Is there an integer N such that

(
√

1997−
√

1996)1998 =
√
N −

√
N − 1?

2. Find all real numbers α with the following property: for any positive
integer n, there exists an integer m such that∣∣∣α− m

n

∣∣∣ < 1
3n
.

3. The acute triangle ABC has circumcenter O. Let A1, B1, C1 be the
points where the diameters of the circumcircle through A,B,C meet
the sides BC,CA,AB, respectively. Suppose the circumradius of
ABC is 2p for some prime number p, and the lengths OA1, OB1, OC1

are integers. What are the lengths of the sides of the triangle?

4. How many distinct sequences of length 1997 can be formed using
each of the letters A,B,C an odd number of times (and no others)?

5. The three squares ACC1A
′′, ABB′1A

′, BCDE are constructed exter-
nally on the sides of a triangle ABC. Let P be the center of BCDE.
Prove that the lines A′C,A′′B,PA are concurrent.
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4.5 Iberoamerican Mathematical Olympiad

1. Let r ≥ 1 be a real number such that for all m,n such that m divides
n, bmrc divides bnrc. Prove that r is an integer.

2. Let ABC be a triangle with incenter I. A circle centered at I meets
the segment BC at D and P (with D closer to B), CA at E and
Q (with E closer to C), and AB at F and R (with F closer to A).
Let S, T, U be the intersections of the diagonals of the quadrilaterals
EQFR, FRDP,DPEQ, respectively. Show that the circumcircles
of the triangles FRT,DPU,EQS pass through a common point.

3. Let n ≥ 2 be an integer and Dn the set of points (x, y) in the plane
such that x, y are integers with |x|, |y| ≤ n.

(a) Prove that if each of the points in Dn is colored in one of three
colors, there exist two points of Dn in the same color such that
the line through them passes through no other point of Dn.

(b) Show that the points of Dn can be colored in four colors so that
if a line contains exactly two points of Dn, those two points have
different colors.

4. Let n be a positive integer. Let On be the number of 2n-tuples
(x1, . . . , xn, y1, . . . , yn) with values in 0 or 1 for which the sum x1y1+
· · ·+ xnyn is odd, and let En be the number of 2n-tuples for which
the sum is even. Prove that

On
En

=
2n − 1
2n + 1

.

5. Let AE and BF be altitudes, and H the orthocenter, of acute tri-
angle ABC. The reflection of AE across the interior angle bisector
of A meets the reflection of BF across the interior angle bisector of
B meet in a point O. The lines AE and AO meet the circumcircle
of ABC again at M and N , respectively. Let P,Q,R be the inter-
section of BC with HN , BC with OM , HR with OP , respectively.
Show that AHSO is a parallelogram.

6. Let P = {P1, P2, . . . , P1997} be a set of 1997 points in the interior
of a circle of radius 1, with P1 the center of the circle. For k =
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1, . . . , 1997, let xk be the distance from Pk to the point of P closest
to Pk. Prove that

x2
1 + x2

2 + · · ·+ x2
1997 ≤ 9.

176



4.6 Nordic Mathematical Contest

1. For any set A of positive integers, let nA denote the number of triples
(x, y, z) of elements of A such that x < y and x + y = z. Find the
maximum value of nA given that A contains seven distinct elements.

2. Let ABCD be a convex quadrilateral. Assume that there exists
an internal point P of ABCD such that the areas of the triangles
ABP,BCP,CDP,DAP are all equal. Prove that at least one of the
diagonals of the quadrilateral bisects the other.

3. Assume that A,B,C,D are four distinct points in the plane. Three
of the segments AB,AC,AD,BC,BD,CD have length a. The other
three have length b > a. Find all possible values of the ratio b/a.

4. Let f be a function defined on {0, 1, 2, . . .} such that

f(2x) = 2f(x), f(4x+ 1) = 4f(x) + 3, f(4x− 1) = 2f(2x− 1)− 1.

Prove that f is injective (if f(x) = f(y), then x = y).
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4.7 Rio Plata Mathematical Olympiad

1. Around a circle are written 1996 zeroes and and one 1. The only
permitted operation is to choose a number and change its two neigh-
bors, from 0 to 1 and vice versa. Is it possible to change all of the
numbers to 1? And what if we started with 1997 zeroes?

2. Show that one cannot draw two triangles of area 1 inside a circle of
radius 1 so that the triangles have no common point.

3. A benefit concert is attended by 1997 people from Peru, Bolivia,
Paraguay and Venezuela. Each person paid for his ticket an integer
number of dollars between 1 and 499, inclusive.

(a) Prove that at least two people of the same nationality paid the
same price.

(b) It is known that each possible price was paid at least once, that
the maximum number of times a price was repeated was 10, and
that subject to these conditions, the smallest amount of money
was collected. How many tickets were sold at each price?

4. A 4 × 4 square is divided into 1 × 1 squares. A secret number is
written into each small square. All that is known is that the sum
of the numbers in each row, each column, and each of the diagonals
equals 1. Is it possible to determine from this information the sum
of the numbers in the four corners, and the sum of the numbers in
the four central squares? And if so, what are these sums?

5. What is the smallest multiple of 99 whose digits sum to 99 and which
begins and ends with 97?

6. A tourist takes a trip through a city in stages. Each stage consist of
three segments of length 100 meters separated by right turns of 60◦.
Between the last segment of one stage and the first segment of the
next stage, the tourist makes a left turn of 60◦. At what distance
will the tourist be from his initial position after 1997 stages?
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4.8 St. Petersburg City Mathematical Olympiad (Rus-
sia)

1. The incircle of a triangle is projected onto each of the sides. Prove
that the six endpoints of the projections are concyclic.

2. Let a and b be integers. Prove that∣∣∣∣a+ b

a− b

∣∣∣∣ab ≥ 1.

3. Prove that every positive integer has at least as many (positive)
divisors whose last decimal digit is 1 or 9 as divisors whose last digit
is 3 or 7.

4. Prove that opposite vertices of a 142 × 857 rectangle with vertices
at lattice points cannot be joined by a five-edge broken line with
vertices at lattice points such that the ratio of the lengths of the
edges is 2 : 3 : 4 : 5 : 6.

5. Do there exist 100 positive integers such that the sum of the fourth
powers of every four of the integers is divisible by the product of the
four numbers?

6. Let B′ be the antipode of B on the circumcircle of triangle ABC, let
I be the incenter of ABC, and let M be the point where the incircle
touches AC. The points K and L are chosen on the sides AB and
BC, respectively, so that KB = MC, LB = AM . Prove that the
lines B′I and KL are perpendicular.

7. Can a 1997×1997 square be dissected into squares whose side lengths
are integers greater than 30?

8. At each vertex of a regular 1997-gon is written a positive integer.
One may add 2 to any of the numbers and subtract 1 from the num-
bers k away from it in either direction, for some k ∈ {1, 2, . . . , 1998};
the number k is then written on a blackboard. After some number
of operations, the original numbers reappear at all of the vertices.
Prove that at this time, the sum of the squares of the numbers writ-
ten on the blackboard is divisible by 1997.
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9. The positive integers x, y, z satisfy the equation 2xx+yy = zz. Prove
that x = y = z.

10. The number N is the product of k diferent primes (k ≥ 3). Two
players play the following game. In turn, they write composite divi-
sors of N on a blackboard. One may not write N . Also, there may
never appear two coprime numbers or two numbers, one of which
divides the other. The first player unable to move loses. Does the
first player or the second player have a winning strategy?

11. Let K,L,M,N be the midpoints of sides AB,BC,CD,DA, respec-
tively, of a cyclic quadrilateral ABCD. Prove that the orthocentres
of triangles AKN,BKL,CLM,DMN are the vertices of a parallel-
ogram.

12. A 100×100 square grid is folded several times along grid lines. Two
straight cuts are also made along grid lines. What is the maximum
number of pieces the square can be cut into?

13. The sides of a convex polyhedron are all triangles. At least 5 edges
meet at each vertex, and no two vertices of degree 5 are connected
by an edge. Prove that this polyhedron has a side whose vertices
have degrees 5, 6, 6, respectively.

14. Given 2n+ 1 lines in the plane, prove that there are at most n(n+
1)(2n+ 1)/6 acute triangles with sides on the lines.

15. Prove that the set of all 12-digit numbers cannot be divided into
groups of 4 numbers so that the numbers in each group have the
same digits in 11 places and four consecutive digits in the remaining
place.

16. A circle is divided into equal arcs by 360 points. The points are
joined by 180 nonintersecting chords. Consider also the 180 chords
obtained from these by a rotation of 38◦ about the center of the
circle. Prove that the union of these 360 chords cannot be a closed
(self-intersecting) polygon.

17. Can a 75× 75 table be partitioned into dominoes (1× 2 rectangles)
and crosses (five-square figures consisting of a square and its four
neighbors)?
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18. Prove that for x, y, z ≥ 2, (y3 + x)(z3 + y)(x3 + z) ≥ 125xyz.

19. The circles S1, S2 intersect at A and B. Let Q be a point on S1.
The lines QA and QB meet S2 at C and D, respectively, while the
tangents to S1 at A and B meet at P . Assume that Q lies outside
S2, and that C and D lie outside S1. Prove that the line QP goes
through the midpoint of CD.

20. Given a convex 50-gon with vertices at lattice points, what is the
maximum number of diagonals which can lie on grid lines?

21. The number 99 · · · 99 (with 1997 nines) is written on a blackboard.
Each minute, one number written on the blackboard is factored into
two factors and erased, each factor is (independently) increased or
diminished by 2, and the resulting two numbers are written. Is it
possible that at some point all of the numbers on the blackboard
equal 9?

22. A device consists of 4n elements, any two of which are joined by
either a red or a blue wire. The numbers of red and blue wires are
the same. The device is disabled by removing two wires of the same
color connecting four different elements. Prove that the number of
ways to disable the device by removing two blue wires is the same
as the number of ways by removing two red wires.

23. An Aztec diamond of rank n is a figure consisting of those squares of
a gridded coordinate plane lying entirely inside the diamond {(x, y) :
|x|+|y| ≤ n+1}. For any covering of an Aztec diamond by dominoes
(1×2 rectangles), we may rotate by 90◦ any 2×2 square covered by
exactly two dominoes. Prove that at most n(n+ 1)(2n+ 1)/6 rota-
tions are needed to transform an arbitrary covering into the covering
consisting only of horizontal dominoes.
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