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We are alone in a desert, pursued by a hungry lion. The only tool we have is a spherical,
adamantine cage. We enter the cage and lock it, securely. Next we perform an inversion
with respect to the cage. The lion is now in the cage and we are outside.

In this lecture we try to capture some geometric intuition. To this end, the first section
is a brief outline (by no means complete) of famous results in geometry. In the second, we
motivate some of their applications.

1 Factoids

First, we review the canonical notation. Let ABC be a triangle and let a = BC, b = CA, c =
AB. K denotes the area of ABC, while r and R are the inradius and circumradius of ABC
respectively. G, H, I, and O are the centroid, orthocenter, incenter, and circumcenter of
ABC respectively. Write rA, rB, rC for the respective radii of the excircles opposite A,B,
and C, and let s = (a + b + c)/2 be the semiperimeter of ABC.

1. Law of Sines:
a

sin(A)
=

b

sin(B)
=

c

sin(C)
= 2R

2. Law of Cosines:

c2 = a2 + b2 − 2ab cos(C) or cos(C) =
a2 + b2 − c2

2ab

3. Area (ha height from A):

K =
1

2
aha =

1

2
ab sin(C) =

1

2
ca sin(B) =

1

2
ab sin(C)

= 2R2 sin(A) sin(B) sin(C)

=
abc

4R
= rs = (s− a)rA = (s− b)rB = (s− c)rC
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=
√

s(s− a)(s− b)(s− c) =
1

4

√
2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

=
√

rrArBrC

4. R, r, rA, rB, rC :

4R + r = rA + rB + rC

1

r
=

1

rA

+
1

rB

+
1

rC

1 +
r

R
= cos(A) + cos(B) + cos(C)

5. G,H, I, O:

Euler Line OGH : ~OH = 3 ~OG = ~OA + ~OB + ~OC

3(GA2 + GB2 + GC2) = a2 + b2 + c2

HG2 = 4R2 − 4

9
(a2 + b2 + c2)

OH2 = 9R2 − (a2 + b2 + c2)

Euler : OI2 = R2 − 2rR

IG2 = r2 +
1

36

(
5(a2 + b2 + c2)− 6(ab + bc + ca)

)

AH = 2R cos(A)

Feuerbach : ~IH · ~IG = −2

3
r(R− 2r)

6. Trigonometric Identities (x, y, z arbitrary):

sin(x) + sin(y) + sin(z)− sin(x + y + z) = 4 sin

(
x + y

2

)
sin

(
y + z

2

)
sin

(
z + x

2

)

cos(x) + cos(y) + cos(z) + cos(x + y + z) = 4 cos

(
x + y

2

)
cos

(
y + z

2

)
cos

(
z + x

2

)

cos2(A) + cos2(B) + cos2(C) + 2 cos(A) cos(B) cos(C) = 1

tan(A) + tan(B) + tan(C) = tan(A) tan(B) tan(C)

7. Mass-point Geometry (D, E, and F are points on lines BC, CA, and AB respectively):

Ceva :
AF

FB
· BD

DC
· CE

EA
= 1 ⇐⇒ AD,BE, CF concurrent.

Menelaus :
AF

FB
· BD

DC
· CE

EA
= −1 ⇐⇒ D,E, F collinear
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8. Stewart’s Theorem (D on BC, AD = d,BD = m,DC = n):

ad2 + amn = b2m + c2n or man + dad = bmb + cnc

9. Power of a Point (Lines l1, l2 through P ; l1 intersects a circle ω at A1, B1; and l2
intersects ω at A2, B2):

PA1 · PB1 = PA2 · PB2 or 4PA1A2 ∼ 4PB2B1

10. Cyclic Quadrilaterals (A, B, C, D on a circle in that order; s = (a + b + c + d)/2):

Ptolemy : AB · CD + AD ·BC = AC ·BD

Brahmagupta : K =
√

(s− a)(s− b)(s− c)(s− d)

2 Selected Problems

The preceeding facts summarize a great many implications; understanding these implications
is fundamental to “intuition” in geometry. I will provide solutions to problems 1.3, 2.3, 2.4,
2.6, 3.2, 3.7, 3.8, and 4.8 from “A Geometry Problem Set,” breaking them down to my own
thought process.

Problem 1.3. Note that AC = AB + BC = 10,
so that triangle AEC is congruent to triangle BCF .
Now [ABDE] = [AEC]− [BDC] = [BCF ]− [BDC]
= [CDF ], so the desired ratio is 1

1
and the answer is 2. ¤

Basically, we have to notice that the two triangles are congruent - we need to locate D
somehow. The solution above proceeds about as cleanly as possible after making the required
observation. A less magical approach would be to use similar triangles ACE and BCD to
place D, then compute the ratios of the areas of the desired figures relative to [BCD]. An-
other bit of experience to gather from this problem is not to let goofy answers psyche you out.
This problem was inspired by an old ARML question, which asked for the same conversion
of 1/1.
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Problem 2.3. Because ABCD has an incircle, AD+
BC = AB + CD = 5. Suppose that AD : BC = 1 : γ.
Then 3 : 8 = BP : DP = (AB ·BC) : (CD ·DA) =
γ : 4. We obtain γ = 3

2
, which substituted into AD +

BC = 5 gives AD = 2, BC = 3. Now, the area of
ABCD can be obtained via Brahmagupta’s formula:
s = 1+2+3+4

2
= 5, K =

√
(s− a)(s− b)(s− c)(s− d)

=
√

24 and K = rs = 5r, where r is the inradius of
ABCD. Thus, r =

√
24
5

from which its area 24π
25

yields
the answer 24 + 25 = 49. ¤

One of the main ideas in this problem is that power of a point does not capture the full
strength of equal angles and similar triangles in circles. We have ∠ACB = ∠ADB, so trian-
gles PDA and PCB are similar. Thus, AP/PB = AD/BC. And since ∠BAC = ∠BDC,
triangles PAB and PDC are similar. Thus, PB/PC = AB/DC = 1/4. This allows us
to compute the sides of ABCD. Now to compute the inradius of ABCD, we use area as
an intermediary. We know little about the incircle except that it is tangent to every side of
ABCD, which means triangles AIB, BIC, CID, and DIA have equal heights from I, all
being a radius. Knowing the sides of ABCD and how to compute its area, we arrive at a
natural solution.

Problem 2.4. Draw in altitude CF and denote its intersection with BD by P . Since
ABC is isosceles, AF = FB. Now, since BAE and BFP are similar with a scale factor of
2, we have BP = 1

2
BE = 17

2
, which also yields PD = BD − BP = 15 − 17

2
= 13

2
. Now,

applying Menelaus to triangle ADB and collinear points C,P, and F , we obtain

AC

CD

DP

PB

BF

FA
=

AC

CD

DP

PB
= −1

=⇒ |CD| = AC · DP

PB
= 16 ·

(
13
2

)
(

17
2

) =
208

17

where the minus sign was a consequence of directed distances.1 The answer is therefore
208 + 17 = 225. ¤

1A system of linear measure in which for any points A and B, AB = −BA.
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The altitude CF is particularly attractive
because it is parallel to AE and bisects both
AB and BE. This allows us to compute
BP and PD easily, and from there we
recognize that any ratio along CDA
would allow us to compute the
desired length. We recognize
Menelaus as a convenient
choice, although mass
points would also suffice.
Alternatively, we could approach this problem with coordinates. Let B the the origin and
write A = (x, 0), E = (x, y). D is easily computed, and since C = (x

2
, z), we can obtain the

desired ratio easily.

Problem 2.6. Let E and F be the projections of P onto AD and BC respectively. Note
that the angle bisector condition is equivalent to PE = PF . It follows that AD

BC
= [APD]

[BPC]
=

AP ·DP
BP ·CP

= 13
33

so the answer is 46. ¤

One of the first observations we make is that due to congruent angles at P , we can eas-
ily find the ratio of the areas of triangles APD and BPC. Now a bit of wishful thinking:
AD/BC would be precisely this ratio if the heights from P were equal. This we immediately
recognize as a consequence of the angle bisector condition. The problem could also be done by
extending QP to BD and using the angle bisector theorem followed by numerous applications
of Ceva and Menelaus or mass point geometry.

Problem 3.2. Overlay the complex number system with O = 0 + 0i, A = 1 + 0i, and
P = 1 + i. The solutions to the equation z7 = 1 are precisely the seven vertices of the
heptagon. Letting a, b, c, d, e, f , and g denote the complex numbers for A,B,C, D,E, F ,
and G respectively, this equation rewrites as (z − a)(z − b)(z − c)(z − d)(z − e)(z − f)(z −
g) = z7 − 1 = 0. The magnitude of the factored product represents the product of the
distances from the arbitrary point represented by z. Thus, plugging in 1 + i, we have
AP ·BP ·CP ·DP ·EP ·FP ·GP = |(1+ i)7−1| = |8−8i−1| = |7−8i| = √

72 + 82 =
√

113.
It follows that the answer is 113. ¤
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The trigonometric functions evaluated at π/7 do
not have simple radical expressions, although the
symmetric polynomial identities can be derived by
expanding (cos(θ) + i sin(θ))7 = 0. Thus, a highly
computational trigonometric solution is possible.
However, the presence of regular heptagon, its [unit!]
circumcircle, and a product involving lengths of
segments ending at those vertices constitutes a
particularly strong reason to inspect for a complex
numbers solution. Indeed, the problem is solved
almost immediately after imposing the system.

Problem 3.7. Reflect A over BD to A′. Then m∠BDA′ = m∠ADB = π−m∠BCA =
π − m∠BDC. Therefore, A′ lies on line CD. It follows that CE = EA′ = ED + DA′ =
ED+DA. Thus, AD = CE−ED. Now Pythagoras gives AD =

√
2002 − 562−√652 − 562 =

192− 33 = 159. ¤

We have lots of information, perpendicular segments, an arc
midpoint, and a cyclic quadrilateral, but it is disorganized.
We seek a point which ties this information together in
a useful way. Opposite angles adding to 180◦ suggests
a line, and isosceles triangles together with a
perpendicular often lead to the foot of that
perpendicular serving as a midpoint. By a
gracious act of serendipity, reflecting A over
BD produces just the A′ we are looking
for. Another suitable point is D′ obtained by
reflecting D over BE. (Why?) The alternative
to this approach is computing just about everything:
use right triangles BED and BEC to compute
sin(∠BDE) and sin(∠BCE), from which one computes sin(∠DCA), and combine this with
the circumradius of ACBD (found via the area of ABC after computing AC) to obtain AD.
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Problem 3.8. Construct A′ on minor arc AE
such that A′E = 2 and A′B = 3. Now BE =
EC = CA′ = x because each intercepts the
same pair of arcs. Ptolemy on BCEA′ gives
x = 4. Now Ptolemy on BCEA gives AC = 7/2.
And, since AC = BD, a third Ptolemy on
ABCD gives AD = 33

8
for an answer of 41. ¤

Our key observation is that many of the given
pentagon’s sides are equal. This suggests that the
idea of equal segments could be useful. By inspection
BE = CE and AC = BD, so there are just 3 distinct
diagonal lengths. Next we ask how those diagonals of
ABCDE could be computed. Ptolemy comes to mind, but that applies only to quadrilat-
erals, and in our original picture Ptolemy leads only to a system of quadratic equations in
several variables each. Again, the information is not in a useful format, but if we could iso-
late one variable we would be set. The construction of A′ above was cooked up to introduce
A′C = CE = BE, allowing us to compute BE and CE in the original picture, from which
our solution follows easily.

Problem 4.8. Examining the Euler line, O lies on
line HG such that GO = 2. Now Stewart’s theorem on
G,H, I, O yields 4OI2 + 8 = 54 + 48 from which
OI2 = 47

2
. Another famous result of Euler is that

OI2 = R(R− 2r). Finally, a corollary of Feuerbach’s

theorem gives −2
3
r(R− 2r) = ~IG · ~IH = IG · IH cos(HIG) =

HG2−IG2−IH2

−2
= −3

2
. It follows that cos(A) + cos(B) + cos(C) = 1 + r

R
= 1 + 9

94
= 103

94
, so the

answer is 197. ¤

The main difficulty in this problem is overcoming the sheer befuddlement that one feels
being asked a question about triangle ABC about which one is told only the relative position of
three centers. Indeed, even drawing the complete diagram is extremely difficult. Thus, we re-
strict our attention to reasonable points and completely disregard ABC in our diagram. Now,
how could we possibly answer a question about ABC? The identity cos(A)+cos(B)+cos(C) =
1+ r

R
seems to be the only hope: we can look for the ratio r/R. What equations for the inradius

and circumradius in terms of G,H, and I do we know? The esoteric corollary of Feuerbach’s
theorem ~IG · ~IH = −2

3
r(R− 2r). But we need another equation. Maybe OI2 = R(R− 2r)?

We don’t know anything about O... until we construct the Euler line! The equations for r
and R even share a factor that cancels, and the solution is now evident. In hindsight, the
only point we could even reasonably have considered constructing is O: it too is a center of
ABC, and we happen to know where it is.
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†Generally, such magical exercises are never given on contests. Especially ones requiring
obscure theorems, as well as the insight to forgo the urge to even draw the triangle ABC,
the only triangle mentioned in the problem statement!

Over time, with good practice, one’s intuition for solving geometry problems increases.
Mustering insight from the formulae given in this lecture, however, is nontrivial. For this,
I have provided 32 homemade problems ranging from quite easy to monstrously difficult.
Their solutions, as well as everything else from this lecture, can be found at my website:

http://web.mit.edu/∼tmildorf/www/
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