## Week 8: Cardinality and combinatorics

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu) Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups $D \& F$, benoit.tran@polytechnique.edu).


## 1 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.

Exercise 1. How many integers $1 \leq a, b, c \leq 100$ such that $a<b$ and $a<c$ are there?
Exercise 2. In how many ways is it possible to arrange in a line 7 girls and 3 boys in the following cases:

1) When the 3 boys follow each other.
2) When the first and last person are girls, and when all the 3 boys do not follow each other.

Exercise 3. Let $n \geq 2$ be an integer, and set $E=\{1,2, \ldots, n\}$. Find the cardinalities of the following sets:

$$
F=\left\{(i, j) \in E^{2}\right\}, \quad G=\left\{(i, j) \in E^{2}, i \neq j\right\}, \quad H=\left\{(i, j) \in E^{2}, i<j\right\}, \quad I=\{A \subseteq E, \operatorname{Card}(A)=2\} .
$$

Exercise 4. How many onto functions from $\{1,2, \ldots, n\}$ to $\{1,2,3\}$ are there?
Exercise 5. Let $E$ and $F$ be finite sets having the same cardinality, and let $f: E \rightarrow F$ be a function. Show that the following three assertions are equivalent:
(1) $f$ is onto;
(2) $f$ is one-to-one;
(3) $f$ is a bijection.

## 2 Homework exercise

You have to individually hand in the written solution of the next exercise to your TA on Monday, November 25 th.
Exercise 6.

1) How many three-digit numbers $a b c$ have exactly one digit equal to 9 ? Justify your answer.
2) How many three-digit numbers $a b c$ have the property that $a \neq b$ or $b \neq c$ ? Justify your answer.
3) How many three-digit numbers $a b c$ have the property that $b>c$ ? Justify your answer.

Note. A three-digit numbers cannot start with a " 0 ", for instance 011 is not a three-digit number.

## 3 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 8.
Exercise 7. Fix an integer $n \geq 1$ and set $E=\{1,2, \ldots, n\}$. A function $f: E \rightarrow E$ is an involution if $f(f(x))=x$ for every $x \in E$. Let $u_{n}$ be the number of involutions of $E$.

1) Compute $u_{1}$ and $u_{2}$.
2) Show that for every $n \geq 1, u_{n+2}=u_{n+1}+(n+1) u_{n}$.

Exercise 8. (Shephard lemma or black sheep lemma) Let $E$ and $F$ be two finite sets and $f: E \rightarrow F$ a function. Assume that there exists an integer $p \geq 1$ such that for every $y \in F, \# f^{-1}(\{y\})=p$. Show that $\# E=p \cdot \# F$.

Exercise 9. (Inclusion-exclusion formula) Fix an integer $n \geq 2$ and let $A_{1}, \ldots, A_{n}$ be sets. Show that

$$
\#\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\substack{I \subseteq|1,2,2, n| \\ I \neq 0}}(-1)^{-1+|I|} \#\left(\bigcap_{i \in I} A_{i}\right) .
$$

Exercise 10. Fix an integer $n \geq 1$. A permutation $\left\{x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ of the elements $1,2, \ldots, 2 n$ is a rearragement of these $2 n$ numbers in a different order. It is said to have property $T$ if $\left|x_{i}-x_{i+1}\right|=n$ for at least one $i$ in $\{1,2, \ldots, 2 n-1\}$. Show that there are more permutations with property $T$ than without.

For example, for $n=2$, the permutations which do not have the property $T$ are
$\{1234,1432,2143,2341,3214,3412,4123,4321\}$
and the permutations which have the property $T$ are
$\{1234,1324,1342,1423,2134,2314,2413,2431,3124,3142,3241,4132,4213,4231,4312\}$.

Hint. If $\left(x_{1}, \ldots, x_{2 n}\right)$ is a permutation which does not have the property $T$, you may consider a function $f$ defined by $f\left(\left(x_{1}, \ldots, x_{2 n}\right)\right)=\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}, x_{k+1}, \ldots, x_{2 n}\right)$ where $k$ is the unique index such that $\left|x_{1}-x_{k}\right|=$ $n$. For example, $f(4321)=3241$.

## 4 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week 8.
Exercise 11. Consider an equilateral triangle with side $n$, subdivised in small unit triangles as in Fig. 1. A capybara starts from the top triangle and wants to go down. He can only move to adjacent triangles, without going back to a visited triangle and cannot go upwards. He stops when reaching the bottom row. See Figure 1 for an example with $n=5$. In how many ways can the capybara reach the bottom row when $n=2017$ ?


Figure 1: Example of a path reaching the bottom row .

