Week 5: Functions (images and preimages of sets)

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique. edu) Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups $D \& F$, benoit.tran@polytechnique.edu).

1 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.

Exercise 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=|x-2|$ for $x \in \mathbb{R}$.

1) Find $f((1,6)), f((0,4]), f(\mathbb{Q})$.
2) Find $f^{-1}(\{5\}), f^{-1}([1,+\infty))$.

Exercise 2. If U is a set, recall that $\operatorname{card}(U)$ denotes the number of its elements and that $\mathcal{P}(U)$ denotes the set of all subsets of U. Let f be the function defined by

$$
\begin{array}{ccc}
f: \mathcal{P}(\{1,2,3\}) & \longrightarrow\{0,1,2,3\} \\
X & \longmapsto \operatorname{card}(X)
\end{array}
$$

1) Is f onto? Is f one-to-one?
2) Find $f^{-1}(1), f^{-1}(\{1\}), f^{-1}(\{0\})$ and $f^{-1}(\emptyset)$.

Exercise 3. Let $f: E \rightarrow F$ be a function and $B \subseteq F$.

1) Show that $f\left(f^{-1}(B)\right) \subseteq B$.
2) Do we always have $f\left(f^{-1}(B)\right)=B$?
3) Show that if f is onto, then $f\left(f^{-1}(B)\right)=B$.

2 Homework exercises

You have to individually hand in the written solution of the next exercises to your TA on November, 4th.
Exercise 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{x}{2+x^{2}}$. Find $f^{-1}(\mathbb{R})$ and $f(\mathbb{R})$.
Exercise 5. Let $f: E \rightarrow F$ be a function. Let $A \subseteq E$.

1) Show that $A \subseteq f^{-1}(f(A))$.
2) Do we always have $f^{-1}(f(A)) \subseteq A$?
3) Show that if f is one-to-one, then $A=f^{-1}(f(A))$.

3 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 5 .
Exercise 6. Let $f: E \rightarrow F$ be a function and $B \subseteq F$. Show that $f^{-1}(F \backslash B)=E \backslash f^{-1}(B)$.
Exercise 7 . Let X be a set and $f: X \rightarrow \mathcal{P}(X)$ a function, where we recall that $\mathcal{P}(X)$ denotes the set of all subsets of X. Show that f is not onto.

Hint. You may consider the set $A=\{x \in X: x \notin f(x)\}$.
Exercise 8 . Let $K \geq 1$ be a fixed integer and let f be a one-to-one correspondence from $\{1,2, \ldots, K\}$ to itself. We set $f^{(0)}=\operatorname{Id}$, where Id is the identity function defined by $\operatorname{Id}(x)=x$ for every $x \in\{1,2, \ldots, K\}$, and, for every $n \geq 0, f^{(n+1)}=f \circ f^{(n)}$.

1) Explain briefly why $f^{(n)}$ is also a one-to-one correspondence.
2) How many one-to-one correspondences from $\{1,2, \ldots, K\}$ to itself are there?
3) Prove that there exist two integers $i \neq j$ such that $f^{(i)}=f^{(j)}$.
4) Deduce from the above that there exists $n \geq 1$ such that $f^{(n)}=\mathrm{Id}$.

Exercise 9. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be two functions.

1) Show that for every $A \subseteq X, g \circ f(A)=g(f(A))$.
2) Show that for every $B \subseteq Z$, $(g \circ f)^{-1}(B)=f^{-1} \circ g^{-1}(B)$.

Exercise 10. Let E, F be sets and $f: E \rightarrow F$ a function. Show that for every $u, v \in F$, if $u \neq v$, then $f^{-1}(\{u\}) \cap f^{-1}(\{v\})=\emptyset$.

Exercise 11. Let E, F be two sets and $f: E \rightarrow F, g: F \rightarrow E$ be two functions such that $f \circ g(x)=x$ for every $x \in F$. Show that $(g \circ f)(E)=g(F)$.

Exercise 12. If A, B are two subsets of a set E, recall that $A \Delta B$ is the subset of E defined by $A \Delta B=$ $(A \cap \bar{B}) \cup(\bar{A} \cap B)$, where, to simplify notation, we denote by \bar{C} the complement of C in E. When $A^{\prime}, B^{\prime} \subseteq F$, we define $A^{\prime} \Delta B^{\prime}$ in a similar way (and also denote by $\overline{C^{\prime}}$ the complement of C^{\prime} in F when $C^{\prime} \subseteq F$). Let E, F be two sets and let $f: E \rightarrow F$ be a function.

1) Show that for every $A^{\prime}, B^{\prime} \subseteq F$, we have $f^{-1}\left(A^{\prime} \Delta B^{\prime}\right)=f^{-1}\left(A^{\prime}\right) \Delta f^{-1}\left(B^{\prime}\right)$.
2) Show that f is one-to-one if and only if for every $A, B \subseteq E$ we have $f(A \Delta B)=f(A) \Delta f(B)$.

Exercise 13. Let E be a set. Let $A, B \subseteq E$ be two subsets of E. Let f be the function defined by

$$
\begin{aligned}
f: \mathcal{P}(E) & \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B) \\
X & \longmapsto(X \cap A, X \cap B) .
\end{aligned}
$$

1) Find a necessary and sufficient condition on A and B for f to be one-to-one (recall that an assertion Q is a necessary and sufficient condition for P when $P \Leftrightarrow Q$ is true).
2) Find a necessary and sufficient condition on A and B for f to be onto.
3) Find a necessary and sufficient condition on A and B for f to be a bijection.

4 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week 5 .
Exercise 14. Chicken McNuggets are sold by boxes of 4, 6,9 or 20 pieces. We say that $n \geq 1$ is a McNugget number if one can make an order of exactly n McNuggets.

Find all the positive integers which are not McNugget numbers.

