INSTITUT
POLYTECHN
PEPA POLYTHECHNIQUE
DEPARIS DEPARIS

Week 4: Functions: injectivity, surjectivity, bijectivity

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu) Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E,milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups $D \& F$, benoit.tran@polytechnique.edu).

1 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage. Exercise 1 . Give an example of a function:
a) which is one-to-one but not onto;
b) which is onto but not one-to-one;
c) which is bijective;
d) which is neither one-to-one, nor onto.

Exercise 2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ (recall that \mathbb{R}^{2} denotes the set of all ordered couples (x, y) with $x \in \mathbb{R}$ and $y \in \mathbb{R}$) be the function defined by $F(x, y)=(x+y, x-y)$ for every $(x, y) \in \mathbb{R}^{2}$. Is F a bijection?

Exercise 3. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be an increasing function. Show that f is one-to-one.
Exercise 4. Let A, B, C be sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.

1) Show that if $g \circ f$ is one-to-one, then f is one-to-one.
2) Show that if $g \circ f$ is onto, then g is onto.

Definition.

Let $f: X \rightarrow Y$ be a bijection. Recall that we define the function $f^{-1}: Y \rightarrow X$, called the inverse (bijection) of f, as follows. Fix $y \in Y$. Let x be the unique pre-image of y by f, and set $f^{-1}(y)=x$.

Exercise 5. Let $f: X \rightarrow Y$ be a bijection. Show that:
a) $\forall x \in X, f^{-1} \circ f(x)=x$
b) $\forall y \in Y, f \circ f^{-1}(y)=y$.

Exercise 6. Let $f:[0,+\infty) \rightarrow \mathbb{R}_{+}$be the function defined by $f(x)=\left(\sqrt{x^{2}+1}+2\right)^{2}$ for every $x \geq 0$. Show that f is a bijection between $[0,+\infty)$ and $[9,+\infty)$, and give a simple expression of its inverse bijection.

2 Homework exercises

You have to individually hand in the written solution of the next exercises to your TA on October, 21 th.
Exercise 7. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be the function defined by $f(x)=x^{2}+4 x+4$ for every $x \geq 0$.
a) Prove that f is bijection between $[0,+\infty)$ and $[4,+\infty)$.
b) Give a simple expression of its inverse.

Exercise 8. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Show that if $g \circ f$ is one-to-one and f is onto, then g is one-to-one. Is the converse always true? Justify your answer.

3 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 4.
Exercise 9. Let $n \geq 2$ and $k \geq 2$ be integers.
a) How many functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, k\}$ can one define?
b) How many functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2\}$ are onto?
c) How many functions $f:\{1,2,3\} \rightarrow\{1,2, \ldots, k\}$ are one-to-one?

Exercise 10. Set $\mathbb{N}=\{1,2, \ldots\}$ and recall that \mathbb{N}^{2} denotes the set of all ordered couples (x, y) with $x \in \mathbb{N}$ and $y \in \mathbb{N}$. Let $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be defined by $\phi(u, v)=2^{u-1} \times(2 v-1)$ for $u, v \in \mathbb{N}$. Prove that ϕ is a bijection.
(Hint: You can use the fact that any integer can be represented in exactly one way, up to the order of the factors, as a product of prime powers.)
Exercise 11. Recall that for a given point $M=(a, b)$ in the plane, the coordinates of the symmetric point to M with respect to the straight line with equation $y=x$ are (b, a).

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bijection. Prove that the two graphical representations of f and f^{-1} in the plane are symmetric with respect to the straight line $\{y=x\}$.

Exercise 12. If A and B are two sets, we denote by A^{B} the set of all functions from B to A.
a) Let E, F, G be sets with $E \neq \emptyset$, and $f: F \rightarrow G$ a function. Show that f is one-to-one if and only if

$$
\forall g, h \in F^{E}, \quad f \circ g=f \circ h \Longrightarrow g=h
$$

b) Let F, G, H be sets such that H has at least two different elements, and $f: F \rightarrow G$ a function. Show that f is onto if and only if

$$
\forall g, h \in H^{G}, \quad g \circ f=h \circ f \Longrightarrow g=h
$$

4 Fun exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 4.
Exercise 13. Does there exist a bijection between $(0,1)$ and $[0,1]$?
Exercise 14. It is clearly possible to cover an 8×8 chessboard with 32 dominos of size 2×1 (see the left picture below). Is it possible cover the chessboard on the right (in which two diagonally opposite corners have been removed) with 31 dominos?

