

Week 11: Modelling with graphs: the Tower of Hanoi

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu) Tutorial Assistants:

- Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups D&F, benoit.tran@polytechnique.edu).

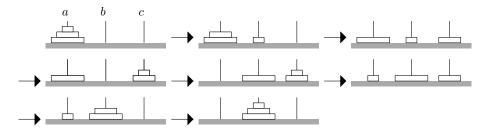
the Tower of Hanoi with 8 disks. (Credits: Wikipedia)

This exercise session is devoted to the study of the Tower of Hanoi, which is a puzzle invented by Édouard Lucas in 1883.

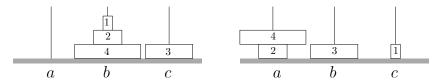
1 The puzzle

We are given a stack of n disks arranged from largest on the bottom to smallest on top placed on a rod a, together with two empty rods b, c. The Tower of Hanoi puzzle asks for the minimum number of moves required to move the entire stack, one disk at a time, from rod a to another (b or c). A move is allowed only if it moves a smaller disk on top of a larger one.

Here is an example which shows that the Tower of Hanoi with n = 3 disks is solvable in 7 moves:



Exercise 1. The graph point of view: n = 1, 2, 3, 4. We say that a configuration of n disks on the three rods a, b, c is admissible if on every rod, disks are arranged from largest to smallest.



Left: An admissible configuration of 4 disks. Right: A configuration which is not admissible.

Let \mathcal{H}_n be the set of admissible configurations of n disks. Let F be the function defined by

$$F: \mathcal{H}_n \to \{a, b, c\}^n$$

$$H \mapsto x_1 x_2 \cdots x_n,$$

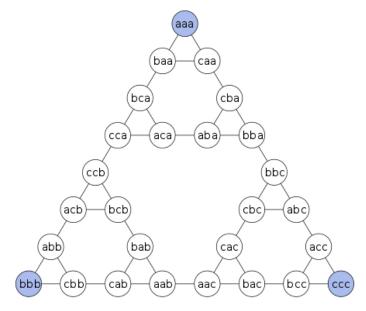
where $x_i \in \{a, b, c\}$ denotes the rod of the *i*-th smallest disk in configuration H. For example, if H is the left example on the figure above, then F(H) = bbcb.

1. Prove that F is a bijection. Deduce the cardinality of \mathcal{H}_n .

We define a graph Hanoi(n) as follows:

- The vertices of Hanoi(n) are given by all the admissible configurations of \mathcal{H}_n .
- We put an edge between *H* and *H'* if it is possible to go from configuration *H* to *H'* with exactly one (allowed) move.
- 2. Draw the graphs Hanoi(1) and Hanoi(2).
- 3. Justify briefly that, for every n, the construction of the graph $\mathsf{Hanoi}(n)$ is symmetric, it the sense that if it is possible to go from configuration H to H' with exactly one (allowed) move, then it is possible to go from configuration H' to H with exactly one (allowed) move.

Here is a drawing of Hanoi(3): (credits: Wikipedia)



- 4. For n = 3, is it possible to go from every configuration H to every configuration H'? JuStify your answer with the graph.
- 5. For n = 3, what is the quickest way to solve the Tower of Hanoi? Justify your answer with the graph.

- 7. For n = 3, what are the most distant configurations? (*i.e.* the pairs H,H' for which the minimal number of moves to go from H to H' is the greatest).
- 8. We return to the general case of $n \ge 1$ disks. For a vertex $H \in \{a, b, c\}^n$, degree(H) denotes the number of edges starting from H. Prove that degree $(H) \in \{2, 3\}$ and that degree(H) = 2 if and only if $H = a^n, b^n$ or c^n .
- 9. Can you explain why Hanoi(3) is composed of three copies of Hanoi(2)? Deduce from this observation a rough sketch of Hanoi(4).

Exercise 2. **Solving the puzzle: the general case.** We will now prove general results regarding the Tower of Hanoi, without using graphs.

- 1. Prove by induction that, for every *n*, the Tower of Hanoi with *n* disks is solvable.
- 2. Let m_n be the number of moves needed to solve the Tower of Hanoi with n disks, using this recursive strategy. Prove that $m_1 = 1$ and that for every $n \ge 1$,

$$m_{n+1} = 2m_n + 1$$
.

3. Compute m_2, m_3, m_4, m_5, m_6 . Guess and prove the general formula for m_n .

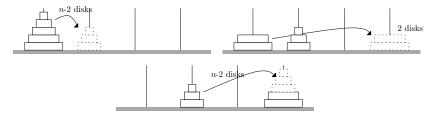
2 Homework exercises

There are no homework exercises this time \odot .

3 Fun exercise (optional)!

The solution of these exercises will be available on the course webpage at the end of week 11.

Exercise 3. We want to evaluate the number of moves of an algorithm to solve the n-disks Tower of Hanoi with 4 rods a, b, c, d. This algorithm is given as follows. If n = 1 or n = 2, use the algorithm of Exercise 2 to move the disk(s) to rod d. If $n \ge 3$, use the following recursion:



Let f_n be the number of moves required by this algorithm. Prove that $f_1 = 1$, $f_2 = 3$, and $f_n = 2f_{n-2} + 3$. Prove by induction that

$$f_n = \begin{cases} 2\sqrt{2}^{n+1} - 3 & \text{if } n \text{ is odd,} \\ 3\sqrt{2}^n - 3 & \text{if } n \text{ is even.} \end{cases}$$