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Week : Modelling with graphs: the Tower of Hanoi

Inru�or: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assiants:

– Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
– Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
– Benoı̂t Tran (groups D&F, benoit.tran@polytechnique.edu).

the Tower of Hanoi with 8 disks. (Credits: Wikipedia)

This exercise session is devoted to the udy of the Tower of Hanoi, which is a puzzle invented by

Édouard Lucas in .

 The puzzle

We are given a ack of n disks arranged from large on the bottom to smalle on top placed on a rod a,

together with two empty rods b,c. The Tower of Hanoi puzzle asks for the minimum number of moves

required to move the entire ack, one disk at a time, from rod a to another (b or c). A move is allowed

only if it moves a smaller disk on top of a larger one.

Here is an example which shows that the Tower of Hanoi with n = 3 disks is solvable in 7 moves:

a b c

Exercise 1. The graph point of view: n = 1,2,3,4. We say that a configuration of n disks on the three

rods a,b,c is admissible if on every rod, disks are arranged from large to smalle.

a b c a b c
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Left: An admissible configuration of 4 disks. Right: A configuration which is not admissible.
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Let Hn be the set of admissible configurations of n disks. Let F be the fun�ion defined by

F : Hn → {a,b,c}n

H 7→ x1x2 · · ·xn,

where xi ∈ {a,b,c} denotes the rod of the i-th smalle disk in configuration H . For example, if H is the

left example on the figure above, then F(H) = bbcb.

. Prove that F is a bije�ion. Deduce the cardinality of Hn.

We define a graph Hanoi(n) as follows:

• The vertices of Hanoi(n) are given by all the admissible configurations of Hn.

• We put an edge between H and H ′ if it is possible to go from configuration H to H ′ with exa�ly

one (allowed) move.

. Draw the graphs Hanoi(1) and Hanoi(2).

. Juify briefly that, for every n, the conru�ion of the graph Hanoi(n) is symmetric, it the sense

that if it is possible to go from configuration H to H ′ with exa�ly one (allowed) move, then it is

possible to go from configuration H ′ to H with exa�ly one (allowed) move.

Here is a drawing of Hanoi(3): (credits: Wikipedia)

. For n = 3, is it possible to go from every configuration H to every configuration H ′? Juify your

answer with the graph.

. For n = 3, what is the quicke way to solve the Tower of Hanoi? Juify your answer with the

graph.

. How many moves are needed to go from configuration H1 =

a b c

to H2 =

a b c

?
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. For n = 3, what are the mo diant configurations? (i.e. the pairs H,H ′ for which the minimal

number of moves to go from H to H ′ is the greate).

. We return to the general case of n ≥ 1 disks. For a vertex H ∈ {a,b,c}n, degree(H) denotes the

number of edges arting from H . Prove that degree(H) ∈ {2,3} and that degree(H) = 2 if and only

if H = an,bn or cn.

. Can you explain why Hanoi(3) is composed of three copies of Hanoi(2)? Deduce from this obser-

vation a rough sketch of Hanoi(4).

Solution of exercise 1.

. F is onto. For every given element in {a,b,c}n, we can order the disks on rod a (resp. b,c) from

the large to the smalle. This gives an admissible configuration.

F is one-to-one. For an element in {a,b,c}n there is a unique way to order the disks on rod a

(resp.b,c) from the large to the smalle.

Finally,

card(Hn) = card({a,b,c}n) = 3n.

.

a

b c

aa

ba ca

bc

cc ac

ab

cb bb

. If it is allowed to move disk k from rod x to y, then it is allowed to move the disk k back to rod

x.

. We see that the graph is conne�ed: every vertex H is conne�ed to every vertex H ′, with a

suitable sequence of edges.

. The shorte path of allowed moves from aaa to bbb (or aaa to ccc) is 7 edges long. Therefore,

the Tower of Hanoi with n = 3 disks is solvable in 7 moves but no less.

. On the graph:
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. Many pairs H,H ′ are at diance 7 in this graph (for inance, aaa and ccc or bca and ccc).

. There are always at lea two legal moves: the disk 1 can be moved at either of the two remain-

ing rods. If another disk k > 1 is at the top of one rod (i.e. if H , an,bn, cn) then this second

large available disk can be moved at one rod.

. We have the following pi�ure:

The graph Hanoi(3) is composed of three components:

• A subgraph given by configurations ? ? a for which the disk 3 is at rod a. If we only move

disks 1,2 on these configurations, we recover the legal moves in Hanoi(2). This is why

this subgraph is identical to Hanoi(2) (we say isomorphic).
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• A subgraph given by configurations ? ? b for which the disk 3 is at rod b.

• A subgraph given by configurations ? ? c for which the disk 3 is at rod c.

Now, there is only one way to move from ? ? a to ? ? b : the disk 3 has to be available, and

the rod b has to be empty. This is the configuration cca. Therefore, there is only one edge

(cca→ ccb) to go from ? ? a to ? ? b.

Similarly, there is only one edge ? ? a to ? ? c and ? ? b to ? ? c.

All these arguments remain true for every n and allow us to build Hanoi(4) from Hanoi(3):

• Draw 3 graphs isomorphic to Hanoi(3).

• Draw three edges ccca→ cccb, aaab→ aaac and bbba→ bbbc.

Exercise 2. Solving the puzzle: the general case. We will now prove general results regarding the

Tower of Hanoi, without using graphs.

. Prove by indu�ion that, for every n, the Tower of Hanoi with n disks is solvable.

. Let mn be the number of moves needed to solve the Tower of Hanoi with n disks, using this recur-

sive rategy. Prove that m1 = 1 and that for every n ≥ 1,

mn+1 = 2mn + 1.

. Compute m2,m3,m4,m5,m6. Guess and prove the general formula for mn.

Solution of exercise 2.

. For n = 1 the property P1 = ”the Tower of Hanoi with n disks is solvable” is true. To prove that

Pn⇒ Pn+1, fir look at the following pi�ure:

The rategy is the following:

(a) Move disks 1 to n from rod a to rod b (this is doable thanks to the indu�ion hypothesis

Pn).

(b) Move disk n+ 1 from rod a to rod c.

(c) Move disk 1 to n from rod b to rod c (this is doable thanks to the indu�ion hypothesis

Pn).
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. In the previous rategy, each eps uses respe�ively mn,1,mn moves. Therefore mn+1 = 2mn +

1.

. We find
n 1 2 3 4 5 6

mn 1 3 7 15 31 63

We guess mn = 2n − 1, which is corre� for n ≤ 6. We prove our guess by indu�ion:

mn+1 = 2mn + 1 = 2(2n − 1) + 1 = 2n+1 − 1.

 Homework exercises

There are no homework exercises this time§.

 Fun exercise (optional)!

The solution of these exercises will be available on the course webpage at the end of week .

Exercise 3. We want to evaluate the number of moves of an algorithm to solve the n-disks Tower of

Hanoi with 4 rods a,b,c,d. This algorithm is given as follows. If n = 1 or n = 2, use the algorithm of

Exercise 2 to move the disk(s) to rod d. If n ≥ 3, use the following recursion:

2 disks

n-2 disks

n-2 disks

Let fn be the number of moves required by this algorithm. Prove that f1 = 1, f2 = 3, and fn = 2fn−2 + 3.

Prove by indu�ion that

fn =

2
√

2
n+1 − 3 if n is odd,

3
√

2
n − 3 if n is even.

Solution of exercise 3. The relation fn = 2fn−2 + 3. In the pi�ure above, the three eps require

respe�ively

• fn−2 moves (we use rods a,b,c,d to move the n− 2 disks),

• 3 moves (a→ c, a→ d, c→ d) to move the two disks from a to d,

• fn−2 moves (we use rods a,b,c,d to move the n− 2 disks).
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Therefore this rategy requires 2fn−2 + 3 moves.

The formula. We prove the formula by indu�ion. Since fn depends on fn−2 we have to prove the

formula for even and odd integers separately.

• The formula is true for n odd. For n = 1 we have

2
√

2
n+1
− 3 = 2

√
2

1+1
− 3 = 2× 2− 3 = 1 = f1.

Now we prove that for odd n, {formula true for n} ⇒ {formula true for n+ 2}.

fn+2 = 2fn + 3

= 2×
(
2
√

2
n+1
− 3

)
+ 3

= 2
√

2
(n+2)+1

− 3,

and the formula is true for n+ 2.

• The formula is true for n even. For n = 2 we have

3
√

2
2
− 3 = 6− 3 = 3 = f2.

Now we prove that for even n, {formula true for n} ⇒ {formula true for n+ 2}.

fn+2 = 2fn + 3

= 2×
(
3
√

2
n
− 3

)
+ 3

= 3
√

2
n+2
− 3

and the formula is true for n+ 2.
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