DEPARIS

Week 10: Permutations

Instructor: Igor Kortchemski (igor. kortchemski@polytechnique.edu)
Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups $D \& F$, benoit.tran@polytechnique.edu).

1 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.
Exercise 1. Consider the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1\end{array}\right)$
(1) Compute σ^{-1}.
(2) Write σ as a product of cycles with disjoint supports.
(3) Write σ^{2} in table notation and in cycle notation.
(4) Compute σ^{2019}.

Definition. Let $\sigma \in S_{n}$ be a permutation. For $1 \leq i, j \leq n$, we say that (i, j) is an inversion if $i<j$ and $\sigma(i)>\sigma(j)$. We denote by $I(\sigma)$ the total number of inversions of σ, and we define $\epsilon(\sigma)=(-1)^{I(\sigma)}$ to be the signature of σ. If $\epsilon(\sigma)=1$, we say that σ is an even permutation, and if $\epsilon(\sigma)=-1$, we say that σ is an odd permutation.

Theorem. If $\pi, \sigma \in S_{n}$ are two permutations, we have $\epsilon(\pi \sigma)=\epsilon(\pi) \epsilon(\sigma)$.
We say that ϵ is multiplicative. You should remember this result. See the course webpage for the (optional) proof, based on the identity $\epsilon(\pi)=\prod_{1 \leq i<j \leq n} \frac{\pi(j)-\pi(i)}{j-i}$.

Exercise 2. If σ is the permutation of exercise 1 , find $I(\sigma)$ and $\epsilon(\sigma)$.
The following exercise gives a way to compute the signature of a permutation by using its cycle decomposition.
Exercise 3. Fix an integer $n \geq 1$.

1. Let $\tau_{i, j}$ be the transposition which exchanges i and j (with $1 \leq i<j \leq n$). Show that $\varepsilon\left(\tau_{i, j}\right)=-1$.
2. If $\sigma=\tau_{1} \tau_{2} \cdots \tau_{N}$ is a product of transpositions, show that $\varepsilon(\sigma)=(-1)^{N}$ (you should remember this result).
3. Let $\tau=\left(x_{1}, \ldots, x_{p}\right)$ be a p-cycle (with $p \geq 2$).
a) Show that $\tau=\left(x_{1}, x_{p}\right) \circ\left(x_{1}, x_{p-1}\right) \circ \cdots\left(x_{1}, x_{3}\right) \circ\left(x_{1}, x_{2}\right)$.
b) Show that the signature of a p-cycle is $(-1)^{p-1}$ (you should remember this result).
4. Use the previous questions to find the signature of the permutation σ defined in exercise 1 .

Exercise 4. Fix an integer $n \geq 3$.

1. Find two permutations $\sigma, \tau \in \mathfrak{S}_{n}$ such that $\sigma \circ \tau=\tau \circ \sigma$.
2. Find two permutations $\sigma, \tau \in \mathfrak{S}_{n}$ such that $\sigma \circ \tau \neq \tau \circ \sigma$.

2 Homework exercise

You have to individually hand in the written solution of the next exercise to your TA on December, 9th.
Exercise 5. Consider the permutation $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 7 & 4 & 6 & 2\end{array}\right)$.
(1) Write σ^{2019} as a product of cycles with disjoint support. (2) What is the signature of σ^{2019} ? Justify your answers (you can use without proof the results of the previous exercises) : POLYTECHNIQ

3 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 10 .
Exercise 6. 1) List all the elements of \mathfrak{S}_{4} which are 3-cycles.
2) Fix two integers $2 \leq k \leq n$. How many different k-cycles of \mathfrak{S}_{n} are there? Justify your answer.

Exercise 7. Fix an integer $n \geq 1$ and a permutation $\pi \in \mathfrak{S}_{n}$. Show that the function $f: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ defined by $f(\sigma)=\sigma \circ \pi$ for every $\sigma \in \mathfrak{S}_{n}$ is a bijection.
Exercise 8. Fix an integer $n \geq 2$, a permutation $\sigma \in \mathfrak{S}_{n}$ and consider a p-cycle $c=\left(a_{1}, a_{2}, \ldots, a_{p}\right)$. Show that $\sigma \circ c \circ \sigma^{-1}=\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{p}\right)\right)$.
Exercise 9. Let $n \geq 3$ be an integer. For $1 \leq i \neq j \leq n$, denote by $\tau_{i, j}$ the transposition exchanging i and j.

1. Show that for every $2 \leq i<j \leq n, \tau_{i, j}=\tau_{1, i} \circ \tau_{1, j} \circ \tau_{1, i}$. Deduce that every permutation of \mathfrak{S}_{n} can be written as a product of transpositions of the form $\tau_{1, i}$ with $2 \leq i \leq n$.
2. Show that for every $2 \leq i<j \leq n,(1, i, j)=\tau_{1, j} \circ \tau_{1, i}$. Deduce that every even permutation can be written as a product of cycles of the form $\tau_{1, i, j}$ with $2 \leq i \neq j \leq n$.
Exercise 10. Fix an integer $n \geq 2$ and consider the circular permutation $c=(1,2, \ldots, n-1, n)$. Find all the permutations $\sigma \in \mathfrak{S}_{n}$ that commute with c (that is $\sigma \circ c=c \circ \sigma$).
Exercise 11. Fix integers $1 \leq k \leq n$. If $\sigma \in \mathfrak{S}_{n}$ is a permutation and $1 \leq k \leq n$, we say that k is a record of σ if for every $1 \leq i \leq k-1$ we have $\sigma(i)<\sigma(k)$. Show that the number of permutations of \mathfrak{S}_{n} having k cycles in their cycle decomposition is equal to the number of permutations of \mathfrak{S}_{n} having k records.

Hint. Try to find a bijection!
Exercise 12. Let n be an odd integer and $\sigma \in \mathfrak{S}_{n}$. Show that 4 divises $\prod_{i=1}^{n}\left(\sigma(i)^{2}-i^{2}\right)$.
Exercise 13. Fix an integer $n \geq 1$ and consider the sub-vector space $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}+x_{2}+\cdots+x_{n}=0\right\}$ of \mathbb{R}^{n}. Denote by $\left(e_{i}\right)_{1 \leq i \leq n}$ the canonical basis. For every $\sigma \in \mathfrak{S}_{n}$, let $f_{\sigma}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the endomorphism such that $f_{\sigma}\left(e_{i}\right)=e_{\sigma(i)}$ for every $1 \leq i \leq n$. Set $p=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} f_{\sigma}$.

1. Show that p is a projector, that is $p \circ p=p$ (hint: You may use the result of exercise 7).
2. Find $\operatorname{Im} p$ and $\operatorname{ker} p$.

4 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week 10 .
Exercise 14. The names of 100 mathematicians are placed in 100 wooden boxes, one name to a box, and the boxes are lined up on a table in a room. One by one, the mathematicians are led into the room; each may look in at most 50 boxes, but must leave the room exactly as she found it and is permitted no further communication with the others. The mathematicians have a chance to plot their strategy in advance, and they are going to need it, because unless every single mathematician finds her own name all will subsequently lose their funding. Find a strategy for them which has probability of success (mathematics survive) exceeding 30%.

Remark. If each mathematician examines a random set of 50 boxes, their probability of success is $\frac{1}{2^{100}}$ (each mathematician that opens 50 boxes at random among 100 has a probability $\frac{1}{2}$ to find her name), which is very very small.

