Week 11: Combinatorics: additional exercises

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups D\&F, benoit.tran@polytechnique.edu).

Exercise 1.

1. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the first number is less than the second number?
2. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the three numbers are in increasing order?

Solution of exercise 1.

1. We view the filling of squares as a permutation $\sigma \in S_{6}$ as follows:

$\sigma(1)$	$\sigma(2)$	$\sigma(3)$

$\sigma(4)$	$\sigma(5)$	$\sigma(6)$

We want to find the number of permutations $\sigma \in S_{6}$ such that $\sigma(1)<\sigma(4)$:

- there are $\binom{6}{2}$ choices for the subset A of the images of 1 et 4 (there is only one ordering when these two integers are chosen, since we require $\sigma(1)<\sigma(4))$;
- once these two integers chosen, there are 4 ! bijections between $\{2,3,5,6\}$ and $\{1, \ldots, 6\} \backslash A$ in order to fix the images of $2,3,4,5$ by σ.

The answer is therefore

$$
\binom{6}{2} 4!=360
$$

2. Similarly, we get the number of permutations $\sigma \in S_{6}$ such that $\sigma(1)<\sigma(3)<\sigma(5)$ is

\[
\binom{6}{3} 3!=120 .

\] | POLYTECHNIQUE |
| :--- |
| DE PARIS | . de paris (

Pourtichenimu
-

Exercise 2. Let $1 \leq n \leq p$ be integers. How many (strictly) increasing functions from $\{1,2, \ldots, n\} \rightarrow$ $\{1,2, \ldots, p\}$ are there?

Solution of exercise 2. Such a function is entirely defined by its image, which is a subset of $\{1,2, \ldots, p\}$ having n elements. The answer is therefore $\binom{p}{n}$.

Exercise 3. Let $n \geq 2$ be an integer and let us consider a deck of n cards numbered from 1 to n.

1. In how many ways is it possible to shuffle the deck so that the card with number 1 is further in the deck than the card 2 ?
2. In how many ways is it possible to shuffle the deck so that the cards with numbers 1 and 2 are neighbours?

Solution of exercise 3. We may view a shuffling of the deck as a permutation $\sigma \in S_{n}$.

1. We want to count the number of elements of the set $A=\left\{\sigma \in S_{n}, \sigma(1)>\sigma(2)\right\}$. To this end, we partition A according to the value of $k=\sigma(1)$. Once this $k \geq 2$ has been chose, we have to chose:

- the value of $\sigma(2)$, with $k-1$ choices (positive integers less that k),
- then a bijection between $\{3,4, \ldots, n\}$ and $\{1,2, \ldots, n\} \backslash\{\sigma(1), \sigma(2)\}$, with $(n-2)$! choices.

Therefore

$$
\operatorname{Card}(A)=\sum_{k=2}^{n}(k-1)(n-2)!=(n-2)!\frac{(n-1) n}{2}=\frac{n!}{2} .
$$

2. We want to count the number of elements of the set $B=\left\{\sigma \in S_{n},|\sigma(1)-\sigma(2)|=1\right\}$. To this end, we partition B according to the value of $k=\sigma(1)$ and then according to the value of $\sigma(2)$ (only one choice if $k=1$ or $k=n$, two choices otherwise); it then remains to choose a bijection between $\{3,4, \ldots, n\}$ and $\{1,2, \ldots, n\} \backslash\{\sigma(1), \sigma(2)\}$. Therefore

$$
\operatorname{Card}(B)=(n-2)!+\sum_{k=2}^{n-1} 2(n-2)!+(n-2)!=(n-2)!(2 n-2)=2(n-1)!.
$$

Exercise 4. Let $1 \leq p \leq n$ be integers. Let E be a set with n elements and A a subset of E with p elements.

1) How many subsets X of E such that $A \subset X$ are there?
2) If $p \leq m \leq m$, how many subsets X of E such that $A \subset X$ are there?
3) How many couples (X, Y) of subsets of E such that $X \cap Y=A$ are there?

Solution of exercise 4.

1) As many as the number of subsets of $E \backslash A$ (which correspond to the elements we add to A to obtain X), that is 2^{n-p}.
2) As many as the number of subsets of $E \backslash A$ having $m-p$ elements, that is $\binom{n-p}{m-p}$.
3) Once we have chosen a subset X of E such that $A \subset X$ and $\operatorname{Card}(X)=m\left(\binom{n-p}{m-p}\right.$ choices $)$, we have to choose for Y a subset of $E \backslash A$ (2^{n-m} choices). The answer is therefore

$$
\sum_{m=p}^{n}\binom{n-p}{m-p} 2^{n-m}=\sum_{k=0}^{n-p}\binom{n-p}{k} 2^{n-p-k}=(1+2)^{n-p}=3^{n-p},
$$

where we have used the Binomial theorem for the second equality.

Exercise 5. Let $n \geq 2$ be an integer. Find the number of permutations $\sigma \in S_{n}$ such that 1 and n belong to the same orbit of σ (that is, such that there exists an integer $k \geq 1$ with $\sigma^{k}(1)=n$).

Solution of exercise 5. Let us partition the set depending on the size ℓ of the orbit \mathcal{O} of 1 and n. Once $2 \leq \ell \leq n$ is fixed, we have to choose:

- the $\ell-2$ other elements belonging to this orbit \mathcal{O}, that is $\binom{n-2}{\ell-2}$ choices,
- the circular permutation of these ℓ elements, that is $(\ell-1)$! choices,
- then a permutation of $\{1,2, \ldots, n\} \backslash \mathcal{O}$, that is $(n-\ell)$! choices.

Therefore the answer is

$$
\sum_{\ell=2}^{n}\binom{n-2}{\ell-2}(\ell-1)!(n-\ell)!=(n-2)!\sum_{\ell=2}^{n}(\ell-1)=\frac{n!}{2}
$$

