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Abstract We establish uniform sub-exponential tail bounds for the width, height and
maximal outdegree of critical Bienaymé–Galton–Watson trees conditioned on having
a large fixed size, whose offspring distribution belongs to the domain of attraction of
a stable law. This extends results obtained for the height and width by Addario-Berry,
Devroye and Janson in the finite variance case.
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1 Introduction

We are interested in the geometric structure of large Bienaymé–Galton–Watson trees,
which are an important well-studied class of random trees in probability theory. They
arise as building blocks of many different models of random graphs, such as Erdős–
Rényi random graphs or random maps, and appear in combinatorics under the term of
simply-generated trees. Addario-Berry et al. [2] established sub-Gaussian tail bounds
for the width and height of critical finite-variance Bienaymé–Galton–Watson trees
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2 I. Kortchemski

conditioned on having a fixed size, these bounds being uniform in the size. Such
uniform bounds are often challenging to prove, and are useful tools to establish scaling
limits for various families of random graphs, see for example [9,12,39,42,45]. Our
goal is to obtain similar sub-exponential bounds for thewidth, height and alsomaximal
outdegree of critical Bienaymé–Galton–Watson trees conditioned on having a fixed
size, but whose offspring distribution belongs to the domain of attraction of a stable
law andmay have infinite variance.We believe that our results should find applications
in the study of scaling limits of random graphs exhibiting heavy tail phenomena (see
e.g. [6]).

Bienaymé–Galton–Watson trees belonging to domains of attraction of stable laws
have recently appeared in a number of two-dimensional statistical physics models, in
connection with scaling limits of random maps with large faces [34], scaling limits of
critical site-percolation clusters on infinite random triangulations [15] via looptrees
[14] and Liouville quantum gravity [17].

1.1 Stable Bienaymé–Galton–Watson trees

Weconsider critical offspring distributions belonging to domains of attraction of stable
laws. Specifically, we fix a parameter α ∈ (1, 2] and let μ = (μ( j); j � 0) be
a probability distribution on the nonnegative integers satisfying the following two
conditions:

(i) μ is critical, meaning that
∑∞

j=0 jμ( j) = 1.
(ii) μ belongs to the domain of attraction of a stable law of index α ∈ (1, 2].
By [20, Theorem XVII.5.2], assertion (ii) means that if X is a random variable with
distribution μ, then Var(X · 1X�n) = n2−αL(n), where L : R+ → R+ is a function
such that limx→∞ L(t x)/L(x) = 1 for all t > 0 (such a function is called slowly
varying). Equivalently, either the variance of μ is finite, or nαμ([n,∞)) is another
slowly varying function (see [20, Eq. (5.16) and Theorem 2 in Sect. XVII.5]).

In addition, we always implicitly suppose thatμ(0)+μ(1) < 1 to avoid degenerate
cases, and always assume that μ is aperiodic, in the sense that the additive subgroup
of the integers Z spanned by { j;μ( j) �= 0} is Z. We let Pμ denote the law of a (plane,
rooted) Bienaymé–Galton–Watson tree with offspring distribution μ, and |τ | be total
number of vertices, or size, of a tree τ . For every n � 1 such that Pμ (|τ | = n) > 0,
tn will denote a BGWμ tree conditioned on having n vertices. The aperiodicity of μ

guarantees that Pμ (|τ | = n) > 0 for every n sufficiently large (our results carry out
to the periodic case with mild modifications, and we only focus on the aperiodic case
for simplicity).

1.2 Asymptotic behavior of stable Bienaymé–Galton–Watson trees

The asymptotic behavior of tn is well understood, in particular through scaling limits
of different functions coding tn . Specifically, if u(0), u(1), . . . , u(n − 1) denote the
vertices of tn listed in lexicographical order (see Sect. 3 for precise definitions), define
the height function (Hi (tn); 0 � i � n) by lettingHi (tn) be the generation of u(i) in tn
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Sub-exponential tail bounds for conditioned stable... 3

for 0 � i � n−1 and settingHn(tn) = 0 by convention. Define also the Łukasiewicz
path (Wi (tn); 0 � i � n) of tn by setting W0(tn) = 0 and, for 0 � i � n − 1,
Wi+1(tn)−Wi (tn)+1 tobe theoutdegree (i.e. number of children) ofu(i). Let (Bn)n�1
be an increasing sequence such that if (Xi )i�1 is a sequence of i.i.d. random variables
with distributionμ, (X1+X2+· · ·+Xn −n)/Bn converges in distribution as n → ∞
to a random variable Yα with Laplace exponent given by E

[
exp(−λYα)

] = exp(λα)

for every λ > 0 ([20, Sect. XVII.5] garanties its existence). Duquesne [18] (see also
[30]) showed that the convergence

(
1

Bn
· W�nt�(tn),

n

Bn
· H�nt�(tn)

)

0�t�1

(d)−→
n→∞

(
X exc
t , H exc

t

)
0�t�1 (1)

holds in distribution in D([0, 1], R)2, where D([0, 1], R) is the space of real-valued
càdlàg functions on [0, 1] equipped with the Skorokhod J1 topology, where X exc is the
normalized excursion of a spectrally positive strictly stableLévy process of indexα and
H exc its associated continuous height function (we refer to [18] for their construction
as we will not use them) which codes the α-stable Lévy tree introduced by Le Gall and
Le Jan [33]. In the particular case α = 2, we have (X exc, H exc) = (

√
2 · e,

√
2 · e),

where e is the normalized Brownian excursion. The scaling factor Bn is of order n1/α

(more precisely, Bn/n1/α is slowly varying), and one may take Bn = σ
√
n/2 when μ

has finite variance σ 2.

1.3 Uniform bounds on the width and height of stable
Bienaymé–Galton–Watson trees

If τ is a (plane, rooted) tree and k � 0, we denote by Zk(τ ) the number of vertices of
τ at generation k, and let

W (τ ) = sup{Zk(τ ); k � 0}, H(τ ) = sup{k; Zk(τ ) > 0}

be respectively the width and height of τ . We also denote by �(τ) the maximum
outdegree of τ . To simplify notation, we will sometimes write Zk,W, H instead of
respectively Zk(τ ),W (τ ) and H(τ ). Let �∗(X exc) = sup0<t�1(X

exc
t − X exc

t−) be
the maximum jump of X exc. Since the maximum jump ofW(tn) is equal to �(tn)− 1
and the largest jump is a continuous functional on D([0, 1], R) (see e.g. [23, Propo-
sition 2.4 in Chapter VI]; we emphasize that we are always working with the J1
topology), (1) immediately implies that

(
1

Bn
· �(tn),

n

Bn
· H(tn)

)
(d)−→

n→∞ (�∗(X exc), sup H exc).

It is also plausible that this convergence holds jointly with that of W (tn)/Bn to a
positive random variable, see [26] (unfortunately, we have not managed to found a
published reference of this fact). As a consequence, for every u � 0, the quantities
P (H(tn) � un/Bn),P (W (tn) � uBn) andP (�(tn) � uBn) should converge as n →

123



4 I. Kortchemski

∞ to functions of u that tend to 0 as u → ∞. It is therefore natural to ask if it is
possible to bound P (H(tn) � un/Bn), P (W (tn) � uBn) and P (�(tn) � uBn) by
functions of u which do not depend on n.

In the case where μ is critical and has finite positive variance, such bounds have
been established by Addario-Berry et al. [2, Theorems 1.1 and 1.2], who show the
existence of constants C1, c1 > 0 (depending only on μ) such that the inequalities

P
(
H(tn) � u

√
n
)

� C1e
−c1u2 , P

(
W (tn) � u

√
n
)

� C1e
−c1u2

hold for every n � 1 and u � 0. Addario-Berry [1] establishes similar bounds for
uniform random trees with a given outdegree sequence satisfying a “finite variance”
type condition. When μ is critical and belongs to the domain of attraction of a stable
law, Haas and Miermont [21, Lemma 33] show that for every p > 0, there exists a
constant Cp > 0 such that

P

(

H(tn) � un

Bn

)

� Cp

u p

for every n � 1 and u � 1 (this reference actually treats the more general case of
so-called Markov-branching trees).

We are now in position to state our main results. Recall that tn denotes a Bienaymé–
Galton–Watson tree with a critical offspring distribution in the domain of attraction
of a stable law of index α ∈ (1, 2], conditioned on having n vertices.

Theorem 1 (Bounds for the width) For every γ ∈ (0, α/(α −1)), there exist positive
constants C1,C2 > 0 such that for every u � 0 and every n � 1:

P (W (tn) � uBn) � C1 exp(−C2u
γ ).

The exponent α/(α − 1) is optimal. We will see this by explicitly calculating the
tail of the supremum of the stable bridge (Theorem 12) and evaluating its asymptotic
behavior (Corollary 13), which are results of independent interest. See also [46] for a
study of the width of (non-conditioned) stable Bienaymé–Galton–Watson trees.

Theorem 2 (Bounds for the height) For every δ ∈ (0, α), there exist positive constants
C1,C2 > 0 such that for every u � 0 and every n � 1:

P

(

H(tn) � u · n

Bn

)

� C1 exp(−C2u
δ).

Here, the exponent α is optimal. Indeed, for every u � 0, we have
P (H(tn) � un/Bn) → P (H exc � u) as n → ∞ by (1), and it is shown in [19,
Theorem 1.5] that

P
(
sup H exc > u

) ∼
u→∞ β · u1+ α

2 e−(α−1)
1

α−1 uα

, (2)

where β > 0 is a positive constant depending only on α.
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Sub-exponential tail bounds for conditioned stable... 5

As noted in [2], since H(tn)W (tn) � n − 1, the previous results also yield, for
every γ ∈ (0, α/(α − 1)) and δ ∈ (0, α), the existence of constants C1,C2 > 0 such
that

P

(

W (tn) � Bn
u

)

� C1 exp
(
−C2u

δ
)

and P

(

H(tn) � 1

u
· n

Bn

)

� C1 exp
(−C2u

γ
)

for every u > 0 and n � 1. We believe that the exponent α is optimal for the first
inequality. Also, the exponent α/(α − 1) is optimal for the second inequality, since,
by [19, Theorem 1.8],

P

(

sup H exc <
1

u

)

∼
u→∞ λ · 1

uα+2+ 1
α−1

exp

(

−
(

π/α

sin(π/α)

) α
α−1 · u α

α−1

)

, (3)

where λ > 0 is a positive constant depending only on α.

1.4 Application to the maximal outdegree of stable Bienaymé–Galton–Watson
forests

By using Theorem 1, we establish the following result.

Theorem 3 (Bounds for the maximal outdegree) For every δ ∈ (0, α/(α − 1)), there
exist positive constants C1,C2 > 0 such that for every u � 0 and every n � 1:

P (�(tn) � uBn) � C1 exp(−C2u
δ).

Here we believe that the exponent α/(α − 1) is also optimal. See [4,5,38,41]
for results concerning the maximal degree of stable Bienaymé–Galton–Watson trees
conditioned on non-extinction at high generation or for the maximal degree of forests.

In addition, we establish the following bounds, which are sharper when μ has
finite variance and which also apply to forests of Bienaymé–Galton–Watson trees. For
j � 1, denote by Pμ, j the law of j independent BGWμ trees.

Theorem 4 (Bounds for the maximal outdegree of a forest) For every M > 0, there
exist constants C1,C2 > 0 such that, for every n, k � 1,

sup
1� j�MBn

Pμ, j
(
�(F) � k

∣
∣ |F | = n

)
� C1 exp (−C2nμ([k + 1,∞))) (4)

and
sup

1� j�MBn
Pμ, j

(
�(F) � k

∣
∣ |F | = n

)
� C1nμ([k,∞)) (5)

As an application of these bounds, we obtain concentration inequalities for the maxi-
mum outdegree of a large uniform non-crossing tree (Theorem 20 below), improving
a result by Deutsch and Noy [16].
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6 I. Kortchemski

1.5 Sizes of generations in stable Bienaymé–Galton–Watson trees

Theorem 2 estimates the probability that tn has a large height, namely at least un/Bn .
One may then wonder: what is the size of the generation at level un/Bn , on the event
that tn has height at least un/Bn? In this direction, we establish the following bounds.

Theorem 5 For every γ ∈ (0, α − 1) and η > 0, there exists a positive constant
C1 > 0 such that for every u � η, v � 0 and every n � 1:

P

(
0 < Zu n

Bn
(tn) < vBn

)
� C1v

γ .

When u takes values in a compact subset of (0,∞), the exponent α − 1 is optimal
(see Remark 25). In proving this, we crucially rely on the following uniform estimate,
concerning the size Z∗

n at generation n of a BGWμ tree conditioned to survive (see
Sect. 4.1 for a definition), and which is of independent interest.

Proposition 6 Set pn = Pμ (H � n). For every β ∈ (0, α), there exists a constant
C > 0 such that

for every n � 1, x � 0, P
(
pn Z

∗
n � x

)
� C · xβ. (6)

Let us mention that using a different approach, Croydon and Kumagai [11, Propo-
sition 2.6] show the weaker result that for every β ∈ (0, α −1), there exists a constant
C > 0 such that (6) holds. However, in our case, it is important to be able to choose
β > α − 1. The exponent α is optimal, since by [37, Theorem 4], pn Z∗

n converges in
distribution to a random variable Z∗ with Laplace transform given by

E

[
e−λZ∗] = 1

(
1 + λα−1

) α
α−1

, λ � 0,

which shows that for every ε > 0, there exists C > 0 such that P (Z∗ � x) � Cxα+ε

for every 0 � x � 1. It would be interesting to know whether (6) holds for β = α.

Corollary 7 (i) For every γ ∈ (0, α/(α − 1)) and δ ∈ (0, α), there exist positive
constants C1,C2 > 0 such that for every u, v � 0 and every n � 1:

P

(
Zu n

Bn
(tn) > vBn

)
� C1 exp(−C2(u

δ + vγ )).

(ii) For every γ ∈ (0, (α − 1)/2) and δ ∈ (0, α), there exist positive constants
C1,C2 > 0 such that for every u � η, v � 0 and every n � 1:

P

(
0 < Zu n

Bn
(tn) < vBn

)
� C1v

γ exp(−C2u
δ)

The second assertion gives a better bound than Theorem 5 when u is large, but we
believe that the exponent (α − 1)/2 is not optimal here.
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Sub-exponential tail bounds for conditioned stable... 7

1.6 Techniques

We now comment on the main tools involved in the proof of the bounds for the width
and height, and in particular on their connections with [2]. The main tool, as in [2],
is the coding of conditioned Bienaymé–Galton–Watson trees by their Łukasiewicz
paths, which are, roughly speaking, nonnegative spectrally positive random walks
conditioned on a late return to 0. In order to establish the bounds on the width and
maximal outdegrees, we establish bounds on the supremum of such walks, following
the idea of [2] that since these walks are spectrally positive, reaching high values and
then returning to 0 has a sub-exponential cost. However, the implementation of this
idea is different, since [2] uses a bound that is only known to hold in the finite variance
case (see the discussion after the statement of Theorem 9). The starting observation
for proving the bounds for the height is the same as in [2]: if a conditioned Bienaymé–
Galton–Watson tree has a large height, then vertices at high generations will have a
lot of children branching off their ancestral line to the root, resulting in a large value
for the supremum of the Łukasiewicz path, which we already know to have an sub-
exponential cost. However, a major difference is that the proof of [2] crucially uses
the fact that the width and height of tn are of the same order

√
n, which breaks down

when μ has infinite variance, and the proof thus requires new ideas.

2 Estimates for random walks

Recall that μ is a critical offspring distribution belonging to the domain of attraction
of a stable law of index α ∈ (1, 2]. Let (Wn)n�0 be a random walk with starting point
W0 = 0 and jump distribution given by P (W1 = i) = μ(i + 1) for i � −1. Observe
that E [W1] = 0 since μ is critical.

In this section, we study statistics of the random walk (Wn)n�0 under different
types of conditioning. They will play an important role since we will later see that
Bienaymé–Galton–Watson related are coded by such walks. It may be useful to refer
to Table 1 to keep track of the main notation of this section.

2.1 Large deviations for left-continuous random walks

Recall from the Introduction that (Bn)n�1 is an increasing sequence such thatWn/Bn

converges in distribution as n → ∞ to the random variable Yα with Laplace expo-
nent given by E

[
exp(−λYα)

] = exp(λα) for every λ > 0. We let dα(x) denote the

density of Yα at x ∈ R. Note that d2(x) = e−x2/4/
√
4π is the density of a cen-

tered Gaussian distribution with variance 2, and that dα(0) = |(−1/α)|−1 (see [20,
Lemma XVII.6.1]).

In addition,
nL(Bn)

Bα
n

−→
n→∞

1

(2 − α)(−α)
, (7)

where we recall that L is the slowly varying function such that Var(X · 1X�n) =
n2−αL(n) with X a random variable distributed according to μ (by continuity, the
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8 I. Kortchemski

Table 1 Table of the main
notation and symbols appearing
in Sect. 2

μ Critical offspring distribution on Z+ in the
domain of attraction of a stable law of
index α ∈ (1, 2]

L(n) Slowly varying function such that
Var(X · 1X�n) = n2−αL(n), with X
distributed as μ

(Wn; n � 0) Random walk with W0 = 0 and jump
distribution P (W1 = i) = μ(i + 1) for
i � −1

ζ j is inf{n � 1 : Wn = − j}
Yα Stable random variable with Laplace

exponent given by
E
[
exp(−λYα)

] = exp(λα) for λ > 0

dα(x) Density of Yα at x ∈ R

(Bn)n�1 Increasing sequence such that Wn/Bn → Yα

in distribution

Xexc Normalized excursion of a spectrally positive
strictly stable Lévy process of index α

Xbr Bridge of a spectrally positive strictly stable
Lévy process of index α

quantity ((2 − α)(−α))−1 is interpreted as equal to 2 for α = 2). Indeed, in the
notation of [47, Sect. 4.5.1], Yα is the stable random variable Sα(| cos(πα/2)|1/α, 1, 0)
by [47, Eq. (5.17)]. First assume that 1 < α < 2. It follows from [20, Eq. (5.16)] that
P (|W1| � n) ∼ P (W1 � n) ∼ 2−α

α
L(n)n−α as n → ∞. Thus, by [47, Theorem

4.5.1],

nL(Bn)

Bα
n

−→
n→∞

α

2 − α
· 1 − α

(2 − α)
= 1

(2 − α)(−α)
.

If α = 2, we have E
[
W 2

11|W1|�n
] ∼ L(n)n2−α as n → ∞, since

∑n
i=0 i

2μ(i)− 1 ∼
L(n)n2−α by the definition of L . It then follows from [20, Theorem XVII.5.3] that
nL(Bn)/B2

n → 2.
The local limit theorem [22, Theorem 4.2.1] shows that

sup
k∈Z

∣
∣
∣
∣BnP (Wn = k) − dα

(
k

Bn

)∣
∣
∣
∣ −→

n→∞ 0. (8)

By the so-called representation theorem (see e.g. [7, Theorem 1.3.1]), we can write

L(x) = c(x) exp

(∫ x

1

η(u)

u
du

)

, x � 0,

where c is a non-negative measurable function having a finite positive limit at infin-
ity and η is a measurable function tending to 0 at infinity. It easily follows that if
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Sub-exponential tail bounds for conditioned stable... 9

(xn, yn)n�1 are two sequences tending to infinity, for every ε > 0, there exists a
constant C > 1 such that for every integer n sufficiently large:

C−1
(
max(xn, yn)

min(xn, yn)

)−ε

� L(yn)

L(xn)
� C

(
max(xn, yn)

min(xn, yn)

)ε

, (9)

Similar bounds hold with L(n) replaced by Bn/n1/α , since the latter quantity is
slowly varying. In the literature, these inequalities are known as the Potter bounds.

We shall establish the following estimate.

Proposition 8 For every δ ∈ (0, α/(α − 1)) there exists C1,C2 > 0 such that for
every u � 0 and every n � 1:

P

(

min
0�i�n

Wi � −uBn

)

� C1 exp(−C2u
δ).

Proof Here C will stand for a positive constant which may vary from expression to
expression (but that is independent of u and n). Note that P

(
min0�i�n Wi � −uBn

)

= 0 if uBn > n, so that we can suppose without loss of generality that 1 � u � n/Bn .
Write, for h > 0:

P

(

min
0�i�n

Wi � −uBn

)

= P

(

max
0�i�n

eh(−Wi ) � ehuBn
)

� e−huBnE

[
e−hWn

]
= e−huBnE

[
e−hW1

]n

(10)

where we have used Doob’s maximal inequality with the submartingale(
eh(−Wn); n � 0

)
for the inequality. Fix η ∈ (0, 1/(α − 1)) and note that ηα < 1+ η.

We shall apply the inequality (10) with h = hn(u) = uη/Bn . Observe that by the
Potter bounds, uη/Bn → 0 as n → ∞, uniformly in 1 � u � n/Bn . Therefore, by
the estimate (42) of the Appendix, for every n � 1 and 1 � u � n/Bn ,

E

[

e− uη

Bn
W1

]n
� exp

(

CnL

(
Bn

uη

)
uηα

Bα
n

)

Now choose ε > 0 such that 1 + η > η(α + ε). For every n sufficiently large and
u � 1, we have L(Bn/uη) � CuεηL(Bn) by the Potter bounds, so that

exp

(

CnL

(
Bn

uη

)
uηα

Bα
n

)

� exp

(

C
nL (Bn)

Bα
n

uη(α+ε′)
)

.

By (7), nL (Bn)/Bα
n is bounded as n varies. It follows that for n sufficiently large

and 1 � u � n/Bn ,

E

[

e− uη

Bn
W1

]n
� exp

(
Cuη(α+ε)

)
. (11)
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10 I. Kortchemski

Putting together (10) and (11), we get

P

(

min
0�i�n

Wi � −uBn

)

� exp
(
−u1+η + Cuη(α+ε)

)
.

Setting δ = 1 + η, the conclusion readily follows from the choice of ε. �

2.2 Conditioned random walks and cyclic shifts

In view of applications for Bienaymé–Galton–Watson trees, we will need estimates
on conditioned random walks. We establish in particular a conditioned version of
Proposition 8. For every j � 1, set ζ j = inf{n � 1 : Wn = − j}.
Theorem 9 For every δ ∈ (0, α/(α − 1)), there exist C1,C2 > 0 such that for every
u � 0 and every n � 1:

P

(

max
1�i�n

Wi � uBn
∣
∣ ζ1 = n

)

� C1 exp(−C2u
δ).

When σ 2 < ∞, this result is established in [2, Eq. (32)] by using a sub-exponential
upper bound due to Janson [24] on P (Wn = −m) valid for every n � 1 and m � 0.
In the infinite variance case, a similar bound has been established in [15, Lemma 6.6]
when μ(n) ∼ C · n−(1+α) as n → ∞, but is not known to hold in general. For this
reason, we combine Proposition 8 with results of [1] for the proof of Theorem 9.

A useful tool for the proof of Theorem 9 is the Vervaat transform, which we now
introduce. For x = (x1, . . . , xn) ∈ Z

n and i ∈ Z/nZ, denote by x(i) the i th cyclic
shift of x defined by x (i)

k = xi+k mod n for 1 � k � n. Let n � 1 be an integer and
let x = (x1, . . . , xn) ∈ Z

n . Set w j = x1 + · · · + x j for 1 � j � n and let the integer
i∗(x) be defined by i∗(x) = inf{ j � 1;w j = min1�i�n wi }. The Vervaat transform
of x, denoted by V(x), is defined to be x(i∗(x)). The following fact is well known (see
e.g. [40]):

Proposition 10 Under the conditional probability distribution P ( · |Wn = −1), the
vectorV(W1−W0, . . . ,Wn−Wn−1) has the same distribution as (W1−W0, . . . ,Wn−
Wn−1) under the conditional probability distribution P ( · | ζ1 = n).

Proof of Theorem 9 To simplify notation, set (X1, . . . , Xn) = V(W1−W0, . . . ,Wn−
Wn−1). Noting that

max
1�i�n

(
X1 + · · · + Xi

)
� max

1�i�n
Wi − min

1�i�n
Wi on the event Wn = −1,

Proposition 10 gives that

P

(

max
1�i�n

Wi � i + 3
∣
∣ ζ1 = n

)

� P

(

max
1�i�n

Wi − min
1�i�n

Wi � i + 3

∣
∣
∣
∣ Wn = −1

)

(12)
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Sub-exponential tail bounds for conditioned stable... 11

for every i � 1 and n � 1. Fix m � i . The proof of Eq. (3) in [1] shows that on
the event max1�i�n Wi − min1�i�n Wi = m + 3, at least one of the following three
events hold:

min
0�i��n/2�

(W�n/2� − W�n/2�−i ) � −(m + 3)/3,

min
0�i��n/2�

(Wn − Wn−i ) � −(m + 3)/3

or min0�i��n/2�(Wi − W�n/2�) � −(m + 3)/3 (a close inspection indicates that
condition d. in [1] should actually be max�n/2�<i�n Si > (m + 1)/3 instead of
max�n/2�<i�n Si > 2(m + 3)/3). As a consequence, by monotonicity,

P

(

max
1�i�n

Wi − min
1�i�n

Wi � m + 3

∣
∣
∣
∣ Wn = −1

)

� 3P

(

min
0�i��n/2�

Wi � −(m/3 + 1) |Wn = −1

)

.

Then, setting ϕn( j) = P (Wn = − j) to simplify notation, the Markov property for
the random walk W applied at time �n/2� entails that

P

(

min
0�i��n/2�

Wi � −
(m

3
+ 1

)
|Wn = −1

)

= E

[

1{min0�i��n/2� Wi�−(m3 +1)}
ϕn−�n/2�(W�n/2� + 1)

ϕn(1)

]

.

But the local limit theorem (8) yields the existence of a constant C > 0 such that
ϕn−�n/2�(k)/ϕn(1) � C for every n � 1 and k ∈ Z. Hence, by the previous estimates,

P

(

max
1�i�n

Wi � 3uBn
∣
∣ ζ1 = n

)

� 3CP

(

min
0�i��n/2�

Wi � −uBn

)

for every u � 0 and n � 1. The conclusion then follows by an application of Propo-
sition 8. �

Recall from the Introduction that X exc denotes the normalized excursion of a spec-
trally positive strictly stable Lévy process of index α. It is well known that the random
walkW , conditionally on ζ1 = n and appropriately rescaled, converges in distribution
to X exc for the Skorokhod topology on D([0, 1], R) (see e.g. [18, Proof of Theorem
3.1]):

(
1

Bn
W�nt�; 0 � t � 1

)

under P ( · | ζ1 = n)
(d)−→

n→∞ (X exc
t ; 0 � t � 1).

Since the supremum is a continuous function on D([0, 1], R), we then get from
Theorem 9 that for every δ ∈ (0, α/(α − 1)) there exists C1,C2 > 0 such that for

123



12 I. Kortchemski

every u � 0 and every n � 1:

P
(
sup X exc � u

)
� C1 exp(−C2u

δ).

It would be interesting to obtain an asymptotic expansion of P (sup X exc � u) as
u → ∞, similar to the one known for α = 2 (i.e. the Brownian excursion) involving
a Theta function.

Finally, we will need a well-known result in the folklore of exchangeability (see
[28, Sect. 1]), for which we give a proof for completeness. Fix n � 1. A function
F : R

n → R is said to be invariant under cyclic shifts if F(x) = F(x(i)) for every
x ∈ R

n and i ∈ Z/nZ. For n � 1, introduce Xn = Wn − Wn−1. Finally, recall that
ζ j = inf{n � 1 : Wn = − j}.

Lemma 11 Let F : R
n → R be a function invariant under cyclic shifts. Then

E
[
F(X1, . . . , Xn)1ζ j=n

] = j

n
E
[
F(X1, . . . , Xn)1Wn=− j

]
.

In particular,

F(X1, . . . , Xn) under P
( · | ζ j = n

) (d)= F(X1, . . . , Xn) under P ( · |Wn = − j) .

(13)

This result will be later used to study the maximal outdegree of (a forest of)
Bienaymé–Galton–Watson trees. Its proof uses the so-called Cyclic Lemma. Before
stating it, we need to introduce some notation. For j � 1, define:

S( j)
n =

{

(x1, . . . , xn) ∈ {−1, 0, 1, 2, . . .}n;
n∑

i=1

xi = − j

}

and

S( j)
n =

{

(x1, . . . , xn) ∈ S( j)
n ;

m∑

i=1

xi > − j for all m ∈ {0, 1, . . . , n − 1}
}

.

For x ∈ S( j)
n , finally set Ix = {i ∈ Z/nZ; x(i) ∈ S( j)

n }. The so-called Cyclic Lemma

states that we have Card(Ix) = j for every x ∈ S( j)
n (see [40, Lemma 6.1] for a proof).

Proof of Lemma 11 Set Xn = (X1, . . . , Xn), and note that Wn = − j if and only
if X(i)

n ∈ S( j)
n for a (or, equivalently, every) i ∈ Z/nZ, that ζ j = n if and only if

Xn ∈ S( j)
n and finally that X(i)

n has the same distribution as Xn for every i ∈ Z/nZ.
Then write
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Sub-exponential tail bounds for conditioned stable... 13

E
[
F (X1, . . . , Xn)1{ζ j=n}

] = E

[

F (Xn)1{Xn∈S( j)
n

}

]

= 1

n

n−1∑

i=0

E

[

F
(

X(i)
n

)
1{

X(i)
n ∈S( j)

n

}

]

= 1

n

n−1∑

i=0

E

[

F (Xn)1{X(i)
n ∈S( j)

n

}

]

= 1

n
E

[

F (Xn)

(
n−1∑

i=0

1{
X(i)
n ∈S( j)

n

}

)

1{
Xn∈S( j)

n

}

]

= 1

n
E

[

F (Xn) IXn1
{

Xn∈S( j)
n

}

]

= j

n
E

[

F (Xn)1{Xn∈S( j)
n

}

]

.

For the third equality,wehave used the fact that F is invariant under cyclic shifts, and
for the last equalitywe have used theCyclic Lemma,which tells us that Card(IXn ) = j

on the event Xn ∈ S( j)
n . This completes the proof of the first assertion.

The second one readily follows after noting that

P
(
ζ j = n

) = j

n
· P (Wn = − j) (14)

by taking F to be the constant function equal to 1. The identity (14) is often referred
to as Kemperman’s formula in the literature. �

2.3 Bridge estimates

We now establish a tail estimate for the supremum of a stable Lévy bridge, which will
allow us to see that the exponent α/(α − 1) is optimal in Theorem 9 and which is
also of independent interest. We will in addition see that this gives a tail bound for the
value of the stable excursion X exc evaluated at a uniform point.

Denote by (Xbr
s ; 0 � s � 1) the stable Lévy bridge of index α, which is roughly

speaking the α-stable Lévy process normalized such that its law at time 1 is Yα , and
conditioned to return to 0 at time 1 (see [10] or [3, Chapter VIII] for a rigorous
construction). Recall that dα denotes the density of Yα .

Theorem 12 For every u > 0, we have

P

(

sup
0�s�1

Xbr
s � u

)

= |(−1/α)| · u
∫ 1

0
ds

1

s1/α(1 − s)1+1/α dα

( u

s1/α

)

× dα

(

− u

(1 − s)1/α

)

.
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14 I. Kortchemski

For α = 2, we will see in Remark 14 below that this quantity is actually equal to
e−u2 . However, for α ∈ (1, 2) we have the following interesting asymptotic behavior:

Corollary 13 For α ∈ (1, 2), we have

P

(

sup
0�s�1

Xbr
s � u

)

∼
u→∞

|(−1/α)|
(−α)

· α(4α−1)/(2α−2)

√
2π(α − 1)

· u− (2+α)(2α−1)
2(α−1)

× e−(α−1)α−α/(α−1)uα/(α−1)
.

Proof For α ∈ (1, 2), it is known that

dα(x) ∼
x→∞

1

(−α)
· 1

x1+α
, dα(−x) ∼

x→∞
α−1/(2α−2)

√
2π(α − 1)

x−1+ α
2(α−1)

× e−(α−1)α−α/(α−1)xα/(α−1)
.

This follows from the first two terms of the asymptotic series [48, Eqs. (2.5.4)
and (2.5.17)], since in the notation of the latter reference dα(x) = g(x, α, 1) and
dα(−x) = g(x, α,−1) (see Sect. I.4. in [48] for the definition of g).

Since, for s ∈ (0, 1) we have u/s1/α > u and u/(1 − s)1/α > u, we can replace
dα(u/s1/α) and dα(−u/(1 − s)1/α) by their asymptotic equivalents and get that

P

(

sup
0�s�1

Xbr
s � u

)

∼
u→∞ |(−1/α)| · 1

(−α)
· α−1/(2α−2)

√
2π(α − 1)

· u α
2(α−1) −1−α

×
∫ 1

0
ds

s

(1 − s)
1

2(α−2) +1
e
−cα

uα/(α−1)

(1−s)1/(α−1) ,

(15)

where cα = (α−1)α−α/(α−1). By making the change of variable t = (1− s)−1/(α−1),
we see that

∫ 1

0
ds

s

(1 − s)
1

2(α−1) +1
e
−cα

uα/(α−1)

(1−s)1/(α−1)

= (α − 1)
∫ ∞

1
dt t−1/2

(

1 − 1

tα−1

)

e−cαuα/(α−1)t .

It is a simple matter to check that

∫ ∞

1
dt t−1/2

(

1 − 1

tα−1

)

e−xt ∼
x→∞ (α − 1)

e−x

x2
.
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Sub-exponential tail bounds for conditioned stable... 15

Hence, applying this with x = cαuα/(α−1),

∫ 1

0
ds

s

(1 − s)
1

2(α−1) +1
e
−cα

uα/(α−1)

(1−s)1/(α−1) ∼
u→∞ α2α/(α−1) · u−2α/(α−1) · e−cαuα/(α−1)

.

The desired estimate then follows from (15). �
Remark 14 Assume that α ∈ (1, 2]. For 0 � s � 1, set

Xbr,(s)
t =

{
Xbr
s+t − Xbr

s if 0 � t � 1 − s

Xbr
s+t−1 − Xbr

s if 1 − s � t � 1.

Set also T ∗ = inf{t ∈ [0, 1] : Xbr
t = inf Xbr}. It is well known that for every fixed

s ∈ [0, 1], Xbr,(s) has the same law as Xbr and that Xbr,(T ∗) has the same law as X exc.
In addition, if U is a uniform random variable on [0, 1], independent of Xbr, then the
random variable defined by

[T ∗ +U ] = (T ∗ +U )1{T ∗+U�1} + (T ∗ +U − 1)1T ∗+U>1

is uniform on [0, 1] and independent of Xbr. Hence

X exc
U

(d)= Xbr,(T ∗)
U = Xbr[T ∗+U ] − inf Xbr (d)= Xbr

U − inf Xbr

= − inf Xbr,(U ) (d)= − inf Xbr (d)= sup Xbr.

As a consequence, Theorem 12 and Corollary 13 hold with sup0�s�1 X
br
s replaced

by X exc
U .

Also, in the case α = 2, we have X exc = √
2e, where e is the normalized Brownian

excursion. It is well known that 2eU is distributed as a Rayleigh random variable.
Specifically, P (2eU � x) = e−x2/2 for x � 0. In particular, for α = 2,

P
(
X exc
U � u

) = P

(

sup
0�s�1

Xbr
s � u

)

= e−u2 .

It is possible to check that Theorem 12 gives indeed this expression for α = 2.
Finally, since Xbr,(T ∗) has the same law as X exc and clearly sup Xbr,(T ∗) � sup Xbr,

we have the inequality P
(
sup Xbr � u

)
� P (sup X exc � u) for every u � 0. Corol-

lary 13 thus implies that the exponent α/(α − 1) is optimal in Theorem 9.

Proof of Theorem 12 Fix u > 0. We will prove the result by a discrete approximation
of the stable Lévy bridge. It is well-known that (see e.g. [18, Proposition 4.3])

(
1

Bn
W�nt�; 0 � t � 1

)

under P ( · |Wn = −1)
(d)−→

n→∞ (Xbr
t ; 0 � t � 1). (16)
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16 I. Kortchemski

It is therefore enough to estimate P
(
max0�i�n Wi � uBn

∣
∣ Wn = −1

)
for u > 0

and n � 1. To this end, fix η ∈ (0, 1), set T (n) = max{i � 0;Wi = �uBn�}.
If 1 � j � n − 1, note that conditionally on the event {T (n) = j,Wn = −1}, the
sequence (Wn−Wn−i ; 1 � i � n− j) has the same distribution as (Wi ; 1 � i � n− j)
conditionally on the event {ζ�uBn�+1 = n − j}. Hence, using also (14), we can write

P

(

max
0�i�n

Wi � uBn, ηn � T (n) � (1 − η)n
∣
∣ Wn = −1

)

= 1

P (Wn = −1)

(1−η)n∑

j=ηn

P
(
Wj = �uBn�

) 1 + �uBn�
n − j

P
(
Wn− j = −1 − �uBn�

)
.

Leaving details to the reader (see e.g. the proof of Theorem 3.1 in [29] for sim-
ilar arguments), the dominated convergence theorem combined with the local limit
theorem (8) yields

P

(

max
0�i�n

Wi � uBn, ηn � T (n) � (1 − η)n
∣
∣ Wn = −1

)

−→
n→∞

u

dα(0)

∫ 1−η

η

ds
1

s1/α(1 − s)1+1/α dα

( u

s1/α

)
dα

(

− u

(1 − s)1/α

)

.

In addition, by (16),

P

(

max
0�i�n

Wi � uBn, T
(n) /∈ [ηn, (1 − η)n] ∣∣ Wn = −1

)

−→
n→∞ P

(
sup Xbr � u, sup{s ∈ [0, 1]; Xbr

s = u} /∈ [ηn, (1 − η)n]
)

.

By monotone convergence, the last probability tends to 0 as η → 1. Therefore, for
every fixed ε > 0, one may find η ∈ (0, 1) such that for every n sufficiently large,

∣
∣
∣
∣P

(

max
0�i�n

Wi � uBn
∣
∣ Wn = −1

)

−P

(

max
0�i�n

Wi � uBn, ηn � T (n) � (1 − η)n
∣
∣ Wn = −1

)∣
∣
∣
∣ � ε

and

u

dα(0)

∫

[0,1]\[η,1−η]
ds

1

s1/α(1 − s)1+1/α dα

( u

s1/α

)
dα

(

− u

(1 − s)1/α

)

� ε.

Recalling that dα(0) = |(−1/α)|−1, the conclusion readily follows. �
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Sub-exponential tail bounds for conditioned stable... 17

3 Random walks and Bienaymé–Galton–Watson trees

We now explain how trees can be coded by different functions that allow to establish
tail bounds for different statistics of large Bienaymé–Galton–Watson trees. In addition
to Table 1, it may be useful to refer to Table 2 to keep track of the main notation of
this section.

3.1 Definitions

Denote by N = {1, 2, . . .} the set of the positive integers, set N
0 = {∅} and let

U =
⋃

n≥0

N
n .

For u = (u1, . . . , un) ∈ U , we denote by |u| = n the length of u; if n ≥ 1, we
define pr(u) = (u1, . . . , un−1) and for i ≥ 1, we let ui = (u1, . . . , un, i); more
generally, for v = (v1, . . . , vm) ∈ U , we let uv = (u1, . . . , un, v1, . . . , vm) ∈ U be
the concatenation of u and v. A plane rooted tree is a nonempty, finite subset τ ⊂ U
such that: (i) ∅ ∈ τ , (ii) if u ∈ τ with |u| ≥ 1, then pr(u) ∈ τ , (iii) if u ∈ τ , then
there exists an integer ku ≥ 0 such that ui ∈ τ if and only if 1 ≤ i ≤ ku . In the sequel,
by tree we always mean plane rooted tree.

We will view each vertex u of a tree τ as an individual of a population whose τ is
the genealogical tree. The vertex ∅ is called the root of the tree and for every u ∈ τ ,
ku = ku(τ ) is the number of children (or outdegree) of u, |u| is its generation, pr(u)

is its parent and more generally, the vertices u, pr(u), pr ◦ pr(u), . . . , pr |u|(u) = ∅

are its ancestors. If u is an ancestor of v, we let �u, v� be the shortest path between u
and v. The size |τ | of a tree is its total number of vertices. If τ is a tree and u ∈ τ , we
define the shift of τ at u by θuτ = {v ∈ U ; uv ∈ τ }, which is itself a tree.

Since μ is critical, the law of the Bienaymé–Galton–Watson tree with offspring
distribution μ is the unique probability measure Pμ on the set of all finite plane
trees such that for every j � 0, Pμ (k∅ = j) = μ( j), and for every j � 1 with
μ( j) > 0, the shifted trees θ1τ, . . . , θ jτ are independent under the conditional prob-
ability Pμ ( · | k∅ = j) and their conditional distribution is Pμ. A random tree whose
distribution is Pμ will be called a Bienaymé–Galton–Watson tree with offspring dis-
tribution μ, or in short a BGWμ tree.

Table 2 Table of the main notation and symbols appearing in Sect. 3

W∗(τ ) for ∗ ∈ {lex, rev, bfs} The coding path of a tree τ obtained by using respectively
the lexicographical, reverse-lexicographical and
breadth-first search ordering of the vertices of τ

W (τ ) Width of a tree τ

�(τ) Maximum outdegree of a vertex of tree τ

�∗(Xexc) Maximum jump of Xexc
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18 I. Kortchemski

3.2 Coding trees by left-continuous paths

We associate with every ordering u(0) ≺ u(1) ≺ · · · ≺ u(|τ |−1) of the vertices of τ a
pathW(τ ) = (Wn(τ ), 0 � n � |τ |) defined byW0(τ ) = 0 and for 0 � n � |τ | − 1:

Wn+1(τ ) = Wn(τ ) + ku(n)(τ ) − 1.

Note that necessarilyW|τ |(τ ) = −1. As in [2], we will use three different orderings
of the vertices of a tree:

(i) the lexicographical ordering, where v ≺ w if there exists z ∈ U such that v =
z(v1, . . . , vn), w = z(w1, . . . , wm) and v1 < w1;

(ii) the reverse-lexicographical ordering, where v ≺ w if there exists z ∈ U such that
v = z(v1, . . . , vn), w = z(w1, . . . , wm) and v1 > w1;

(iii) the breadth-first search ordering, where v ≺ w if |v| < |w| or v = z(v1, . . . , vm)

and w = z(w1, . . . , wm) with v1 < w1.

Denote byW lex(τ ),W rev(τ ),Wbfs(τ ) the paths constructed by using respectively
the lexicographical, reverse-lexicographical and breadth-first search ordering of the
vertices of τ . The path W lex(τ ) is commonly called the Łukasiewicz path of τ .

We mention several useful elementary properties of these codings, which are left
as an exercise to the reader.

Lemma 15 Let τ be a tree of size n.

(i) For every 0 � i � n − 1, W lex
i (τ ) is equal to the number of children of vertices

of �∅, u(i)� branching to the right of �∅, u(i)�.
(ii) For every 0 � i � n − 1, W rev

i (τ ) is equal to the number of children of vertices
of �∅, u(i)� branching to the left of �∅, u(i)�.

(iii) For every 1 � i � n, setting k = |u(i − 1)|,Wbfs
i (τ ) + 1 is equal to the number

of children of vertices at generation k less than or equal to u(i − 1) plus the
number of vertices at generation k greater than u(i − 1) (for the breadth-first
search order).

In particular, for every ∗ ∈ {lex, rev,bfs}, W∗
k (τ ) � 0 for every 0 � k � |τ | − 1.

Also, recalling that W (τ ) is the width of τ , an immediate consequence of (iii) is that

W (τ ) � maxWbfs(τ ) + 1 � 2W (τ ). (17)

Indeed, of u(i) is the largest (for the breadth-first ordering) vertex at generation
k of τ , then Wbfs

i+1(τ ) + 1 = Zk+1(τ ), and if |u(i)| = k, then Wbfs
i+1(τ ) + 1 �

Zk(τ ) + Zk+1(τ ).
It is straightforward to adapt these codings to forests. By definition, a forest F is

a finite ordered collection of trees (τ1, . . . , τk). One naturally extends the different
orderings to F , by declaring that u ≺ v if u ∈ τi , v ∈ τ j and 1 � i < j � k, and the
codingpathsW∗(F) are obtainedby concatenating the jumpsofW∗(τ1), . . . ,W∗(τk).

Recall the definition of the random walk (Wn)n�0, the notation ζ j = inf{n �
0; Wn = − j} for j � 1, and that Pμ, j denotes the law of a forest of j indepen-
dent BGWμ trees. The following proposition explains the importance of the different
codings.
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Sub-exponential tail bounds for conditioned stable... 19

Proposition 16 Fix 1 � j � n. For every ∗ ∈ {lex, rev,bfs}, under Pμ, j , W∗ has
the same distribution as (W0,W1, . . . ,Wζ j ). In particular, the total progeny of a Pμ, j

forest has the same law as ζ j .

We leave the proof to the reader (see [32, Proposition 1.5] for the case of the
lexicographical ordering).

3.3 Bounds on the supremum of coding paths

Recall that tn is a BGWμ tree conditioned on having n vertices, withμ being a critical
offspring distribution belonging to the domain of attraction of a stable law of index
α ∈ (1, 2].

Since for every ∗ ∈ {lex, rev,bfs}, W∗(tn) has the same distribution as
(W0,W1, . . . ,Wn) under the conditional probability distribution P ( · | ζ1 = n), the
following tail bound on the maximum of W∗(tn) is an immediate consequence of
Theorem 9.

Theorem 17 For every δ ∈ (0, α/(α − 1)), there exist C1,C2 > 0 such that for every
∗ ∈ {lex, rev,bfs}, for every u � 0 and every n � 1:

P

(

max
1�i�n

W∗
i (tn) � uBn

)

� C1 exp(−C2u
δ).

In particular, Theorem 1 follows from this result, since W (tn) � Wbfs(tn) + 1 by
(17). Also note that (1) entails that, for every ∗ ∈ {lex, rev,bfs},

(
W∗�nt�(tn)

Bn
; 0 � t � 1

)
(d)−→

n→∞ X exc. (18)

In addition, by (17), limn→∞ P (W (tn) � uBn) � P (sup X exc � 2u) for every
u � 0, which, combined with the last part of Remark 14 shows that the exponent
α/(α − 1) is optimal in Theorem 1.

3.4 Bounds on the maximum outdegree of Bienaymé–Galton–Watson trees

We are now interested in the maximum outdegree�(tn) of tn , and establish Theorems
3 and 4. The first one is a corollary of the results we have just established. Indeed, it
is clear that �(tn) � max1�i�n Wi (tn) + 1, so Theorem 9 entails Theorem 3.

In the case α < 2, since the maximum jump �∗(X exc) of X exc is almost surely
positive, we in addition get:

Proposition 18 Assume that α ∈ (1, 2). Then, for every p � 1,

E

[
�(tn)

p

B p
n

]

−→
n→∞ E

[
�∗(X exc)p

]
.
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20 I. Kortchemski

Proof Observe that�(tn)−1 is equal to themaximum jumpofW(tn). Since the largest
jump of a càdlàg function is a continuous functional on D([0, 1], R), the convergence
(18) implies

�(tn)

Bn

(d)−→
n→∞ �∗(X exc). (19)

The claim then follows from Theorem 3. �
For p = 1, it is known [14, Proposition 3.10] that E

[
�∗(X exc)

] = 
(
1 − 1

α

)
β,

where β > 0 is the unique solution to the equation

∞∑

n=0

(−1)nβn

(n − α)n! = 0.

It would be interesting to calculate the value of E
[
�∗(X exc)p

]
for p > 1 and

also to obtain asymptotic expansions of P (�∗(X exc) > u) and P (�∗(X exc) < 1/u)

as u → ∞.
We now establish Theorem 4.

Proof of Theorem 4 In this proof, C > 0 will denote a constant which may change
from line to line (but does not dependonn or k). Fix 1 � j � n. Forx = (x1, . . . , xn) ∈
Z
n , set max(x) = max1�i�n xi and note that max is invariant under cyclic shifts.

Recall that Xn = Wn − Wn−1 for n � 1. Finally, to simplify notation, set M j
i =

max(Xi , Xi+1, . . . , X j ) for every 1 � i � j � n. If F is a forest, observe that
�(F) − 1 is equal to the maximum jump of the associated path W∗(F) with ∗ ∈
{lex, rev,bfs}. It follows from by (13) and Proposition 16 that

Eμ, j
[
G(�(F))

∣
∣ |F | = n

] = E
[
G
(
Mn

1 + 1
) ∣
∣Wn = − j

]
(20)

for every measurable function G : R → R+.
We start by proving (4). Note that P

(
Mn

1 � k − 1 |Wn = − j
)

�
P

(
M�n/2�

1 � k − 1 |Wn = − j
)
. Recalling that ϕn( j) = P (Wn = − j), the Markov

property for the random walk W applied at time �n/2� yields:

Pμ, j (�(F) � k | |F | = n) � P

(
M�n/2�

1 � k − 1 |Wn = − j
)

= E

[

1{M�n/2�
1 �k−1}

ϕn−�n/2�(W�n/2� + j)

ϕn( j)

]

.

By the local limit theorem (8), there exists a constant C > 0 such that

sup
1� j�MBn

ϕn−�n/2�(W�n/2� + j)

ϕn( j)
� C. (21)

Hence

sup
1� j�MBn

Pμ, j (�(F) � k | |F | = n) � CP

(
M�n/2�

1 � k − 1
)
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= CP (X1 � k − 1)�n/2�

= C1(1 − μ([k + 1,∞)))�n/2�.

The inequality (1 − x)a � exp(−ax) valid for every a � 0 and x ∈ [0, 1] yields
(4).

To check (5), write:

P
(
Mn

1 � k − 1 |Wn = − j
)

� P

(
M�n/2�

1 � k − 1 |Wn = − j
)

+P

(
Mn�n/2�+1 � k − 1 |Wn = − j

)

� 2P

(
M�n/2�+1

1 � k − 1 |Wn = − j
)

As before, using the Markov property for the random walk W applied at time
�n/2� + 1 combined with (21), we get that

sup
1� j�MBn

Pμ, j (�(F) � k | |F | = n) � CP

(
M�n/2�+1

1 � k − 1
)

= C
(
1 − (1 − μ([k,∞)))�n/2�+1

)
.

The inequality 1 − (1 − x)a � ax valid for every x ∈ [0, 1] and a � 1 shows (5).
This completes the proof. �
Corollary 19 Let (pn)n�1 and (qn)n�1 and be two sequence of real numbers such
that nμ([pn,∞)) → ∞ and nμ([qn,∞)) → 0 as n → ∞. Then:

P (pn � �(tn) � qn) −→
n→∞ 1

This partially answers [25, Problem19.30]. Note also that (19) is stronger than
Corollary 19. Indeed, using the Potter bounds, it is possible to verify that if (pn)n�1
and (qn)n�1 are two sequences of positive real numbers such that nμ([pn,∞)) → ∞
and nμ([qn,∞)) → 0 as n → ∞, then Bn/pn → ∞ and Bn/qn → 0 as n → ∞.
By (19), this indeed implies that P (pn � �(tn) � qn) → 1.

3.5 Application to non-crossing trees

Let Pn be the convex polygon inscribed in the unit disk of the complex plane whose
vertices are the nth roots of unity. By definition, a non-crossing tree of Pn is a tree
drawn on the plane whose vertices are the of Pn and whose edges are non-crossing
line segments. See Fig. 1 for an example.

Different combinatorial properties of non-crossing trees have been studied in
the literature. Let Tn be uniformly distributed over the set of all non-crossing
trees of Pn . Deutsch and Noy [16] have established that, for every c > 0,
P
(|�(Tn) − log3 n| � (1 + c) log3 log3 n

)
tends to 1 as n → ∞. Using Theorem

3, we improve these bounds:
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22 I. Kortchemski

Fig. 1 A non-crossing tree of
P12

Theorem 20 For every c > 0, there exists constants C1,C2 > 0 such that for every
n � 1,

P
(
�(Tn) � log3 n + log3 log3 n + c log3 log3 n

)
� C1

(log3 n)c

and

P
(
�(Tn) � log3 n + log3 log3 n − c log3 log3 n

)
� C1e

−C2(log3 n)c .

In particular, for every c > 0, we have

P
(|�(Tn) − log3 n − log3 log3 n| � c log3 log3 n

) −→
n→∞ 1.

Proof In this proof, C > 0 will denote a constant that may change from expression
to expression (and which may only depend on c). By [36], Tn , viewed as a plane tree
rooted at vertex 1, is a modified Bienaymé–Galton–Watson tree T̃ , conditioned on
having n vertices, where the root has offspring distribution λ(k) = 2/3k for k � 1,
and all the other vertices have offspring distribution μ(k) = 4(k + 1)/3k+2 for k � 0.
Note that μ([k,∞)) = (3+ 2k)/31+k with the notation of Theorem 4. Also, by [36],
P
(|T̃ | = n

) ∼ √
3/(4π) · n−3/2 as n → ∞. Hence, for every k � 1,

P
(
k∅(T̃ ) � k

∣
∣ |T̃ | = n

) = 1

P
(|T̃ | = n

)
∑

j�k

λ( j)Pμ, j (|F | = n − 1)

=
∑

j�k

λ( j) · j

n − 1

P (Wn−1 = − j)

P
(|T̃ | = n

)

� C
∞∑

j=k

jλ( j) � C
k

3k
. (22)

For the secondequality,wehaveused thewell-known fact thatPμ, j (|F | = n − 1) =
j/(n − 1) · P (Wn−1 = − j), which is for instance a consequence of Proposition
16 and (14), and the first inequality uses the bound P (Wn−1 = − j) � C/

√
n
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Sub-exponential tail bounds for conditioned stable... 23

which is a consequence of the local limit theorem. Also, conditionally on the event
{k∅(T̃ ) = j, |T̃ | = n} the forest of trees grafted on the root of T̃ is a Pμ, j forest
conditioned on having n − 1 vertices. Therefore, for every nonnegative measurable
function f , we have

E
[
f (�(T̃ )), k∅(T̃ ) � k

∣
∣ |T̃ | = n

]
� sup

1� j�k
Pμ, j ( f (�(F)) | |F | = n − 1) .

To prove the first inequality in Theorem 20, set bn = log3 n + log3 log3 n +
c log3 log3 n to simplify notation, and take k = √

n. Then, on one hand, by Theo-
rem 4 (which we may apply because Bn/

√
n converges to a finite positive value since

μ has finite variance),

sup
1� j�√

n
Pμ, j (�(F) � bn | |F | = n − 1) � Cnμ([an,∞)) � C

(log3 n)c
,

and, on the other hand, P
(
k∅(T̃ ) � √

n
∣
∣ |T̃ | = n

) = o
(
(log3 n)−c

)
by (14).

Similarly, for the second inequality, set an = log3 n + log3 log3 n − c log3 log3 n
and also take k = √

n. Then, on one hand, by Theorem 4

sup
1� j�√

n
Pμ, j (�(F)�an | |F | = n − 1) � C1e

−C2nμ([an+1,∞)) �C1e
−C2(log3 n)c ,

and, on the other hand, P
(
k∅(T̃ ) � √

n
∣
∣ |T̃ | = n

) = o
(
e−C2(log3 n)c

)
by (14). This

completes the proof. �
See also [13,31] for a study of geometric properties of random non-crossing trees.

4 Sub-exponential bounds on the height of BGW trees

Our goal is now to establish Theorem 2. Recall that tn denotes a Bienaymé–Galton–
Watson tree with a critical offspring distribution μ in the domain of attraction of a
stable law of index α ∈ (1, 2], conditioned on having n vertices.

Fix δ ∈ (1, α). Since P (H(tn) � u · n/Bn) = 0 for u > Bn , we shall implicitly
always restrict our attention to values of u such that 2 � u � Bn . In addition, by
monotonicity of x �→ Pμ (H � x), we may and will always assume without loss of
generality that un/Bn and un/(2Bn) are both integers.

In addition to Tables 1 and 2, it may be useful to refer to Table 3 to keep track of
the main notation used and introduced in this section.

4.1 Preliminary observations

We first introduce some notation. If τ is a tree and z ∈ τ , as in [2], a key quantity will
be M(z), the number of vertices branching off �∅, z�, that is the number of children
of vertices of �∅, z� that do not belong to �∅, z� (the dependence in τ is implicit).

123



24 I. Kortchemski

Table 3 Table of the main
notation and symbols appearing
in Sect. 4

H(τ ) Height of a tree τ

M(z) Number of vertices branching off �∅, z� for
z ∈ τ

Cutz(τ ) Tree obtained by keeping only z and its
descendance in τ

Zk = Zk (τ ) Number of vertices of height k in τ

Uk = Uk (τ ) Vertex chosen uniformly at random at height k
in τ when Zk (τ ) > 0

tn BGWμ tree conditioned on having n vertices

T ∗ BGWμ tree conditioned to survive

U∗
n Vertex of the spine of T ∗ at generation n

Z∗
k Number of vertices of height k in T ∗

M∗
k Number of children branching off the spine of

T ∗ up to generation k − 1

(B′
n)n�1 An increasing scaling sequence such that

B′
Bn

∼ BB′
n

∼ n as n → ∞

Observe that by Lemma 15, for every z ∈ τ , M(z) � maxW lex(τ ) + maxW rev(τ ).
In addition, by Theorem 17,

P
(
maxW lex(tn) + maxW rev(tn) � uδ−1Bn

)
� 2P

(
maxW lex(tn) � uδ−1Bn/2

)

� C1 exp(−C2u
δ).

To establish Theorem 2, it is therefore enough to show the existence of C1,C2 > 0
such that

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)

� C1 exp(−C2u
δ)

for every n � 1 and 2 � u � Bn .

4.2 Size-biasing

Akey ingredient will be the notion of size-biasing.We denote by T ∗ a random variable
having the law of the BGWμ tree conditioned to survive, which we will also call the
size-biased tree. This tree was introduced by Kesten [27], and may informally be
described as follows. Let X be a random variable with distribution μ, and let X∗ be
a random variable with the size-biased distribution P (X∗ = i) = iμ(i) for i � 1.
In the tree T ∗, vertices are either normal, or mutant, and the root is a mutant vertex.
Normal nodes have outdegree distributed according to independent copies of X , while
mutant nodes have outdegree distributed according to independent copies of X∗. All
children of a normal vertex are normal, while for each mutant node, all of its children
are normal, except one, selected uniformly at random, which is mutant. In particular,
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Sub-exponential tail bounds for conditioned stable... 25

the tree T ∗ has a unique infinite simple path starting from the root, called the spine.
Vertices on the spine have outdegree distributed according to X∗, while all the other
vertices have outdegree distributed according to μ. For every n � 0, we let U∗

n be the
vertex of the spine of T ∗ at generation n.

We now introduce some notation. Let τ be a tree and z ∈ τ . Recall that θzτ =
{w ∈ U ; zw ∈ τ }. Set Cutz(τ ) = τ\{zw;w ∈ θzτ\{∅}}, which is a tree such that
z ∈ Cutz(τ ). If n � 0 is such that Zn(τ ) > 0, we let Un be a vertex chosen uniformly
at random among all those at generation n of τ . The term size-biasing comes from the
following result, see [35]: for any nonnegative functions G1,G2:

Eμ

[
1Zn>0F(Zn)G1(CutUn (τ ),Un)G2(θUnτ)

]

= E

[
F(Zn(T ∗))
Zn(T ∗)

G1(CutU∗
n
(T ∗),U∗

n)

]

· Eμ [G2(T )] . (23)

This identity is usually written and used with F replaced by x �→ xF(x), but we
have written it in this form in view of future use.

4.3 Two technical estimates

We first establish an estimate describing the asymptotic behavior of Bn .

Lemma 21 We have Bn · Pμ

(
Zn/Bn > 0

) → (α − 1)−1/(α−1) as n → ∞.

Proof By (41) and [44, Lemma 2],

Pμ (Zn > 0)α−1 L
(
Pμ (Zn > 0)−1

)
∼

n→∞
α

(3 − α)n
. (24)

To simplify notation, in this proof we set Rn = Pμ

(
Zn/Bn > 0

)−1, so that Rn →
∞, and we aim at showing that Bn/Rn → (α − 1)−1/(α−1) as n → ∞. By replacing
n with n/Bn in (24) and using (7), we get that

(
Bn

Rn

)α−1

∼
n→∞(α − 1)−1 · L(Bn)

L(Rn)
. (25)

Since Rn and Bn tend to∞ as n → ∞, this implies that (Bn/Rn)
α−1 → (α−1)−1.

Indeed, if (Bn/Rn)
α−1 converges to a positive limit along a subsequence, then

L(Bn)/L(Rn) → 1 along this subsequence by properties of slowly varying func-
tions. If Bn/Rn → ∞ along a subsequence, then it is a simple matter to see that
a contradiction arises from (25) by the Potter bounds. One similarly treats the case
Bn/Rn → 0 along a subsequence, and this completes the proof. �

Let (Si )i�1 be a sequence of i.i.d. random variables having the distribution of the
total size of a BGWμ tree. Recall that dα is the density of a random variable Yα with
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26 I. Kortchemski

Laplace exponent given byE
[
exp(−λYα)

] = exp(λα) for every λ > 0. It is a standard
fact that

Pμ (|τ | = n) ∼
n→∞

dα(0)

nBn
. (26)

This can for instance be seen by combining the equality Pμ (|τ | = n) =
P (Wn = −1) /n with the local limit theorem. In particular, Pμ (|τ | � n) ∼
αdα(0)/Bn as n → ∞. Hence under Pμ, |τ | belongs to the domain of attraction
of a stable law of index 1/α. Therefore, setting

B ′
n = inf

{

x � 0; Pμ (|τ | � x) � αdα(0)

n

}

, (27)

the proof of Theorem 2.6.1 in [22] (in particular, our B ′
n plays the role of Bn that is

defined in [22, Eq. (2.6.6)]) shows that (S1 + · · · + Sn)/B ′
n converges in distribution

to a stable law of index 1/α as n → ∞ (since 1/α < 1, by [20, Theorem 3 (i)
in Chapter XVII.5] no centering procedure is required). Hence, if we set �n(k) =
P (S1 + · · · + Sn = k), by the local limit theorem [22, Theorem 4.2.1],

lim
n→∞ sup

k∈Z

∣
∣
∣
∣B

′
n�n(k) − g

(
k

B ′
n

)∣
∣
∣
∣ = 0,

where g is the density of a stable random variable with index 1/α. By [48, Eq. (I.20)]),
g is bounded. As a consequence, there exists a constant C > 0 such that

for every n � 1, for every k � 1, �n(k) � C

B ′
n
. (28)

We will also later use the following asymptotic estimate involving both Bn and B ′
n :

B ′
Bn ∼

n→∞ n. (29)

To see this, note that, by (27), we have Pμ

(|τ | � B ′
n

) ∼ αdα(0)/n as n → ∞.
Since Pμ (|τ | � m) ∼ αdα(0)/Bm as m → ∞, we also get that Pμ

(|τ | � B ′
n

) ∼
αdα(0)/BB′

n
as n → ∞. This implies that BB′

n
∼ n as n → ∞. The estimate (29)

then immediately follows from [43, p. 21].

4.4 Proof of Theorem 2

We start by explaining the main steps for proving Theorem 2. Recall that we assume
that un/Bn and un/(2Bn) are both integers. First, let Z∗

k = Zk(T ∗) be the size of
the k-th generation of the size biased tree, let also M∗

k = M(U∗
k) be the number of

children branching off the spine of T ∗ up to generation k − 1. By using a cutting and
size-biasing argument, we shall prove the following bound.
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Lemma 22 For every n � 1 and 2 � u � Bn, we have

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)

� 1

Pμ (|τ | = n)
· E

[
1

Z∗
un/(2Bn)

]

· E

⎡

⎣ 1

B ′
M∗

un/(2Bn )

1M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦ .

(30)

The most technical part of the proof consists in bounding the second expectation
appearing in (30):

Lemma 23 There exist C1,C2 > 0 such that

n · E

⎡

⎣ 1

B ′
M∗

un/(2Bn )

1M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦ � C1 exp(−C2u
δ).

for every n � 1 and 2 � u � Bn.

We now explain how Theorem 2 follows from these two results.

Proof of Theorem 2 Recall that it is enough to show the existence of C1,C2 > 0 such
that

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)

� C1 exp(−C2u
δ). (31)

for every n � 1 and 2 � u � Bn . By (23), E

[
1/Z∗

un/(2Bn)

]
= Pμ

(
Zun/(2Bn) > 0

)

� Pμ

(
Zn/Bn > 0

)
since u � 2. Hence, by Lemmas 22 and 23,

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)

�
Pμ

(
Zn/Bn > 0

)

n · Pμ (|τ | = n)
· C1 exp(−C2u

δ).

But by (26) and Lemma 21, the quantityPμ

(
Zn/Bn > 0

)
/(n ·Pμ (|τ | = n)) converges

to a positive limit as n → ∞. The conclusion follows. �
We now prove Lemma 22.

Proof of Lemma 22 By using the size-biasing relation (23), write

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)
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� P

(

H(tn) � u · n

Bn
and M(Uun/Bn ) � uδ−1Bn

)

= 1

Pμ (|τ | = n)
E

[
1

Z∗
un/Bn

1M∗
un/Bn

�uδ−1Bn1|CutU∗
un/Bn

(T ∗)|+|T |=n+1

]

,

where T is an independent BGWμ tree. Observe that the random variables Z∗
un/Bn

and M∗
un/Bn

are of course not independent, which is a major issue. Also, forgetting the
other terms, note that one should find a good number of independent trees in order to

bound P

(
|CutU∗

un/Bn
(T ∗)| + |T | = n + 1

)
by using (28).

The main idea is to introduce independence: roughly speaking, we cut the spine
up to generation un/Bn in half and, denoting by respectively S↓ and S↑ its lower
and upper part, we bound from below Z∗

un/Bn
by the number of vertices at generation

un/Bn in T ∗ that have an ancestor belonging to S↑, we bound from below M∗
un/Bn

by the number of children branching off S↓, and the collection of independent trees
we use for applying the local limit theorem are those branching off S↓.

Specifically, define T ∗↓ = CutU∗
un/(2Bn )

(T ∗) and T ∗↑ = θU∗
un/(2Bn )

CutU∗
un/Bn

(T ∗) (to
simplify notation, we keep the dependence in u and n implicit). Note that T ∗↓ and T ∗↑
are independent and have same distribution, and also that M∗

un/(2Bn)
is a measurable

function of T ∗↓ . Finally, note that

∣
∣
∣CutU∗

un/Bn
(T ∗)

∣
∣
∣ = |T ∗↓ | + |T ∗↑ | − 1

and that |T ∗↓ | is equal to 1 + un/(2Bn) plus the total size of a forest of M∗
un/(2Bn)

independent BGWμ trees. Observing that Z∗
un/Bn

� Zun/(2Bn)(T ∗↑ ) and M∗
un/Bn

�
M∗

un/(2Bn)
, we therefore have

E

[
1

Z∗
un/Bn

1M∗
un/Bn

�uδ−1Bn1|CutU∗
un/Bn

(T ∗)|+|T |=n+1

]

�E

[
1

Zun/(2Bn )(T ∗↑ )
1M∗

un/(2Bn )
�uδ−1Bn �M∗

un/(2Bn )
(n+1 − |T ∗↑ |−|T | − un/(2Bn))

]

,

where we recall that �n(k) be the probability that a forest of n independent BGWμ

trees has total size k. The desired result then follows by using (28) and noting that
Zun/(2Bn)(T ∗↑ ) is independent of M∗

un/(2Bn)
and has the same distribution as Z∗

un/(2Bn)
.

�
At this point, we make several comments concerning Lemma 22. First, in its proof,

we chose to use (28) with the forest of trees branching off the lower half of the spine.
It would perhaps been more natural to choose the forest of trees above generation
un/(2Bn) in the tree T ∗↑ , and in this way get that for every n � 1 and 2 � u � Bn ,

P

(

H(tn) � u · n

Bn
and max

z∈tn
M(z) � uδ−1Bn

)
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� 1

Pμ (|τ | = n)
· E

⎡

⎣ 1

Z∗
un/(2Bn)

B ′
Z∗
un/(2Bn )

⎤

⎦ · P

(
M∗

un/(2Bn) � uδ−1Bn

)
.

Unfortunately, this does not allow to conclude, since

E

⎡

⎣ nBn

Z∗
un/(2Bn)

B ′
Z∗
un/(2Bn )

⎤

⎦ −→
n→∞ ∞.

The reason is that Z∗
n/Bn

/Bn converges in distribution to a positive random variable
whose density has polynomial decay near 0 (see the discussion after Proposition 6),
whileM∗

n/Bn
/Bn converges in distribution to a positive random variable whose density

has exponential decay near 0.
Also, it would have been slightly simpler to bound from below M∗

un/(2Bn)
+1 by the

maximal outdegree of a vertex of the lower half of the spine. One may indeed follow
this path when α ∈ (1, 2). However, in the case α = 2, these two quantities are not of
the same order.

It thus remains to establish Lemma 23. Themain technical estimate is the following.

Lemma 24 Fix c0,C0 > 0 and α1 > α. There exist γ > 0 and constants C1,C2 > 0
such that

P

(

M∗
un/(2Bn) � C0

uδ−1Bn

t1/α1

)

� C1e
−C2uδ tγ

for every n � 1, 2 � u � Bn such that c0un/Bn � uδ−1Bn and 1 � t �
B ′
uδ−1Bn

/B ′
c0un/Bn

.

We postpone its proof and explain how Lemma 23 follows from Lemma 24.

Proof of Lemma 23 We start with a preliminary result. We claim that there exists
c0,C1,C2 > 0 such that

nP

(
M∗

un/(2Bn) � c0un/Bn

)
� C1e

−C2uδ

for every n � 1 and 2 � u � Bn . To show this, we will use the following sim-
ple fact, which follows from Markov’s exponential inequality. Let Sn be a sum
of n i.i.d Bernoulli random variables of parameter p ∈ (0, 1). Then, for every
p0 ∈ (0, p/2), there exists a constant C > 0 such that P (Sn � 2p0n) � exp(−Cn)

for every n � 1.
Now write M∗

un/(2Bn)
= ∑un/(2Bn)

i=1 (X∗
i − 1), where (X∗

i )i�1 are i.i.d. random
variables having the same distribution as the size-biased random variable X∗, so that
S∗
n = #{1 � i � n; X∗

i > 1}, which is a sum of n i.i.d. Bernoulli random variables
of parameter 1 − μ(1), and note that M∗

un/(2Bn)
� S∗

un/(2Bn)
. Therefore, choosing
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c0 ∈ (0, (1 − μ(1))/2), by the previous discussion we get

P

(
M∗

un/(2Bn) � c0un/Bn

)
� P

(
S∗
un/(2Bn) � c0un/Bn

)
� exp(−Cun/Bn)

Then observe that

n exp(−Cun/Bn) � C1 exp(−uδ),

for a certainC1 > 0, for every n � 1 and 2 � u � Bn . Indeed, set fn(u) = Cun/Bn−
uδ − ln(n). Since δ ∈ (1, α), fn is concave so that inf [2,Bn ] fn � min( fn(2), fn(Bn)).
An application of the Potter bounds show that fn(2) and fn(Bn) both tend to infinity
as n → ∞. This completes the proof of the claim.

As a consequence, Lemma 23 will follow if we manage to show the existence of
C1,C2 > 0 such that

E

⎡

⎣ n

B ′
M∗

un/(2Bn )

1c0un/Bn�M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦ � C1 exp(−C2u
δ).

for every n � 1 and 2 � u � Bn such that c0un/Bn � uδ−1Bn . To this end, using the
formula

E

[
1

X
1x�X�y

]

= 1

y

∫ y/x

1
dt P (x � X � y/t) + 1

y
· P (x � X � y)

valid for every 0 � x � y and every nonnegative real valued random variable X ,
write

E

⎡

⎣ n

B ′
M∗

un/(2Bn )

1c0un/Bn�M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦

� n

B ′
uδ−1Bn

·
∫

B′
uδ−1Bn

B′
c0un/Bn

1
dt P

(

B ′
M∗

un/(2Bn )
�

B ′
uδ−1Bn

t

)

+ n

B ′
uδ−1Bn

P

(
M∗

un/(2Bn) � uδ−1Bn

)

If α1 > α is fixed, by the Potter bounds there exists a constant C > 0 such that
t−1 · B ′

uδ−1Bn
� B ′

Cuδ−1Bn ·t−1/α1
for every t � 1, n � 1 and 2 � u � Bn such that

c0un/Bn � uδ−1Bn . Therefore, using the fact that B ′ is increasing, we get that

P

(
B ′
M∗

un/(2Bn )
� t−1 · B ′

uδ−1Bn

)
� P

(

M∗
un/(2Bn) � C

uδ−1Bn

t1/α1

)

.
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In addition, by (29) and the Potter bounds, there exist C, η > 0 such that n ·
(B ′

uδ−1Bn
)−1 � Cuη for every n � 1 and u � 2. Therefore, by Lemma 24,

E

⎡

⎣ n

B ′
M∗

un/(2Bn )

1c0un/Bn�M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦

� Cuη

(∫ ∞

1
dt e−C2uδ tγ + e−C2uδ

)

.

Finally note that, for every A > 0,

∫ ∞

1
dt e−Atγ �

∫ ∞

1
dt

Aγ tγ−1

γ A
e−Atγ = 1

γ A

[
−e−Atγ

]∞
1

= e−A

γ A
.

Therefore

E

⎡

⎣ n

B ′
M∗

un/(2Bn )

1c0un/Bn�M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦ � Cuη−δe−C2uδ

,

and the proof is complete. �

It remains to establish Lemma 24.

Proof of Lemma 24 In this proof, C denotes a positive constant that may change from
line to line (and that does not depend on u and n). We mention that the condition
c0un/Bn � uδ−1Bn restricts u to take smaller values than possible and will play a
crucial role.

First, fixα+ ∈ (α, α1) so that by the Potter bounds, ifan � bn are positive sequences
tending to infinity, B ′

bn
/B ′

an � C(bn/an)α+ for every n � 1. Then let γ > 0 be such
that

0 < γ < min

(
1

α+(2 − δ)
,

1

α1(2 − α)

)

.

Since we may write M∗
un/(2Bn)

= ∑un/(2Bn)
i=1 (X∗

i −1), where (X∗
i )i�1 are i.i.d. ran-

dom variables having the same distribution as the size-biased random variable X∗, by
Markov’s exponential inequality, for λ > 0,

P

(

M∗
un/(2Bn) � C0

uδ−1Bn

t1/α1

)

�exp

(

λC0
uδ−1Bn

t1/α1
+ un

2Bn
lnE

[
e−λ(X∗−1)

])

.

We take λ = utγ /Bn (the dependence in n and u of λ is implicit).

123



32 I. Kortchemski

We check that λ → 0. First, since c0un/Bn � uδ−1Bn and t � B ′
uδ−1Bn

·
(B ′

c0un/Bn
)−1, we have

2 � u � C
B2/(2−δ)
n

n1/(2−δ)
, 1 � t � B2α+

n

uα+(2−δ)nα+ . (32)

By combining the previous two estimates, we get that

utγ

Bn
� u1−α+(2−δ)γ · B

2α+γ−1
n

nα+γ
�
(

C
B2/(2−δ)
n

n1/(2−δ)

)1−α+(2−δ)γ

× B2α+γ−1
n

nα+γ
= C

(
Bδ
n

n

) 1
2−δ

,

where we have used the fact that 1−α+(2− δ)γ > 0 for the second inequality. Since
δ < α, Bδ

n/n → 0 as n → ∞ by the Potter bounds. This shows that λ → 0. Note
that the convergence λ → 0 does not hold without the restriction c0un/Bn � uδ−1Bn

(take e.g. u = Bn and t = 1).
Now let ε > 0 be such that δ + ε < α and γ (α − 1) − εγ > γ − 1/α1. By the

Potter bounds, L(Bn/(utγ )) � CL(Bn)(utγ )−ε . Thus, using (46) and (7),

un

2Bn
lnE

[
e−λ(X∗−1)

]
� −Cuαtγ (α−1) n

Bα
n

· L
(

Bn

utγ

)

= −Cuαtγ (α−1) nL(Bn)

Bα
n

·
L
(

Bn
utγ

)

L(Bn)

� −Cuα−ε tγ (α−1)−εγ .

Hence

P

(

M∗
un/(2Bn) � C

uδ−1Bn

t1/α1

)

� exp
(
Cuδtγ−1/α1 − Cuα−ε tγ (α−1)−εγ

)
.

Since α − ε > δ and γ (α − 1) − εγ > γ − 1/α1, the proof is complete. �

4.5 Bounds on generation sizes

Our goal is now to establish Theorem 5 by using Proposition 6, whose proof is post-
poned to the end of this section. We will use the following simple consequence of
Proposition 6: for every β ∈ (0, α), there exists a constant C > 0 such that

for every n � 1, x � 0, E

[
1

pn Z∗
n
1pn Z∗

n�x

]

� C · xβ−1. (33)
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Proof of Theorem 5 Fix γ ∈ (0, α − 1) and η > 0. The same size-biasing argument
that led us to Lemma 22 shows that

P

(
0 < Zu n

Bn
(tn) < vBn

)
� 1

Pμ (|τ | = n)
E

[
1Z∗

un/(2Bn )
�vBn

Z∗
un/(2Bn)

]

· E

⎡

⎣ 1

B′
M∗

un/(2Bn )

⎤

⎦ .

Lemma 21 combined with (33) shows that the first expectation in the previous
product is bounded above by Cvγ /Bn (for every v � 0, u � η and n � 1). Also,
using (29), observe that

E

⎡

⎣ 1

B ′
M∗

un/(2Bn )

1M∗
un/(2Bn )

�uδ−1Bn

⎤

⎦ � 1

B ′
ηδ−1Bn

� C

n

for every v � 0, u � η and n � 1. Hence, by Lemma 23, E

[

1/B ′
M∗

un/(2Bn )

]

�
C/n for every v � 0, u � η and n � 1 (actually Lemma 23 is stated for u � 2,
but the arguments carry through). The conclusion the follows since nBnPμ (|τ | = n)

converges to a positive limit as n → ∞. �
By adapting the arguments of this proof in order to control the estimates for small

values of u, it is possible to establish an upper bound for P

(
0 < Zu n

Bn
(tn) < vBn

)

valid for every u, v � 0. For brevity, we shall not enter such considerations.

Proof of Corollary 7 For the first assertion, note that

P

(
Zu n

Bn
(tn) > vBn

)
� P (H(tn) � un/Bn) ,

P

(
Zu n

Bn
(tn) > vBn

)
� P (W (tn) � vBn) .

Hence

P

(
Zu n

Bn
(tn) > vBn

)
�
√

P (H(tn) � un/Bn) · P (W (tn) � vBn).

The desired result then follows from Theorems 1 and 2.
The second assertion is established similarly, by combining Theorem 5 with the

observation that

P

(
0 < Zu n

Bn
(tn) < vBn

)
� P (H(tn) � un/Bn) .

This completes the proof. �
Remark 25 There is an analog of Proposition 6 for Zn instead of Z∗

n . In the proof of
Proposition 2.6 in [11], Croydon and Kumagai show that for every β ∈ (0, α − 1),
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there exists a constant C > 0 such that Eμ

[
pn Zn � x

∣
∣ Zn > 0

]
� xβ for every

n � 1, x � 0. In this case, the exponent α − 1 is optimal. Indeed, by [44, Theorem 1],

Eμ

[
e−λpn Zn

∣
∣ Zn > 0

]
−→
n→∞ 1 − λ

(
1 + λα−1

) 1
α−1

, λ � 0. (34)

As before, if Z is a random variable having this Laplace transform, for every ε > 0,
there existsC > 0 such thatP (Z � x) � Cxα−1+ε for every 0 � x � 1. In particular,
combined with Lemma 21, this shows that the exponent α − 1 is optimal in Theorem
5 when u takes there values in a compact subset of (0,∞).

We finally establish Proposition 6.

Proof of Proposition 6 Note that pn = Pμ (Zn > 0). It is clear that we may assume
that x � pn . In turn, it is sufficient to check the existence of λ0 > 0, N = N (λ0) and
a constant C = C(λ0) > 0 such that

E

[
e−λpn Z∗

n

]
� C

λβ
(35)

holds for every λ0 � λ � 1/pn and n � N . Indeed, if (35) holds, then we have, for
every x ∈ [pn, 1/λ0] and n � N ,

P
(
pn Z

∗
n � x

) = P

(
e−pn Z∗

n/x � 1
)

� E

[
e−pn Z∗

n/x
]

� Cxβ.

From now on, we assume that 0 � λ � 1/pn .

By definition of Z∗
n , if fm(s) = Eμ

[
sZm

]
, we have E

[
sZ

∗
n

]
= s f ′

n(s) =
s
∏n−1

i=0 f ′
1( fi (s)). In particular,

E

[
e−λpn Z∗

n

]
= e−λpn

n−1∏

i=0

F̂
(
Eμ

[
e−λpn Zi

])

� exp

(∫ 1

2/n
du n ln

(
F̂
(
Eμ

[
e−λpn Z�un�

])))

, (36)

where we set F̂(s) = ∑∞
i=1 iμ(i)si−1.

Fix ε ∈ (0, 1) and choose λ0 > 0 such that 1 − λ0(1 + λα−1
0 )−1/(α−1) < ε. By

(34) and since λ �→ Eμ

[
e−λpn Zn

∣
∣ Zn > 0

]
is decreasing, there exists N = N (λ0)

such that
for every n � N , λ � λ0, Eμ

[
e−λpn Zn

∣
∣ Zn > 0

]
� ε. (37)

From now on, we assume that λ0 � λ � 1/pn � Cn
1

α−1+ε , where the last
inequality follows from (24) and the Potter bounds. To simplify notation, we set
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γ = 1/
(

1
α−1 + 2ε

)
. In particular, notice that n/λγ → ∞ as n → ∞. Indeed, since

λ � Cn
1

α−1+ε , we have

n

λγ
� C−γ · n · n−γ

(
1

α−1+ε
)

−→
n→∞ ∞ (38)

because γ (1/(α − 1) + ε) < 1.
Again by (24) and the Potter bounds, there exist two constants a constant C1 =

C1(ε),C2 = C2(ε) > 0 such that

λ
pn

p�un�
� C1λ

(�un�
n

) 1
α−1+2ε

� C2λu
1

α−1+2ε .

for every 2/n � u � 1 and n � 2. Set C3 = (λ0/C2)
γ , so that in particular by (37),

for every n sufficiently large,

u � C3

λγ
�⇒ λ

pn
p�un�

� λ0 �⇒ Eμ

[

e
−λ

pn
p�un� ·p�un�Z�un�

∣
∣
∣
∣ Z�un� > 0

]

� ε.

Thus, by observing that Eμ

[
e−cZi

] = 1 − Pμ (Zi > 0) + Pμ (Zi > 0) ·
Eμ

[
e−cZi |Zi > 0

]
for every c > 0 and i � 0, for every n sufficiently large and

for every u ∈ [C3λ
−γ , 1], we get that

Eμ

[
e−λpn Z�un�

]
= 1 − p�un�

(

1 − Eμ

[

e
−λ

pn
p�un� ·p�un�Z�un�

∣
∣
∣
∣ Z�un� > 0

])

� 1 − p�un�(1 − ε). (39)

For every n sufficiently large, we have C3λ
−γ � 2/n by (38), so that (36) and (39)

yield

E

[
e−λpn Z∗

n

]
� exp

(∫ 1

C3λ−γ

du n ln
(
F̂
(
1 − p�un�(1 − ε))

))
)

. (40)

Now, if X∗ is a random variable with distribution given by P (X∗ = i) = iμ(i) for

i � 0, we have F̂(s) = E

[
sX

∗−1
]
. Hence, by (46),

1 − F̂(1 − s) ∼
s↓0

(3 − α)

α − 1
· sα−1L(1/s),

so that

ln
(
F̂ (1 − s)

) ∼
s↓0 −(3 − α)

α − 1
· sα−1L(1/s).

In particular, we may choose η > 0 sufficiently small in such a way that

s ∈ (0, η) �⇒ ln
(
F̂ (1 − s)

)
� −(1 − ε)

(3 − α)

α − 1
· sα−1L(1/s).
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For every n sufficiently large and for every u ∈ [C3λ
−γ , 1], we have p�un� � η by

(38), so (40) implies that

E

[
e−λpn Z∗

n

]

�exp

(

−(1 − ε)
(3 − α)

α − 1
·
∫ 1

C3λ−γ

du n
(
p�un�(1 − ε)

)α−1
L
((

p�un�(1 − ε)
)−1
))

.

By (24), we have

L
((

p�un�(1 − ε)
)−1
)

∼
n→∞

α

(3 − α) �un� pα−1
�un�

,

and by (38) this estimate is uniform inC3λ
−γ � u � 1. Hence, for every n sufficiently

large,

E

[
e−λpn Z∗

n

]
� exp

(

−(1 − ε)α+1 α

α − 1
·
∫ 1

C3λ−γ

du
n

�un�
)

� exp

(

−(1 − ε)α+1 α

α − 1
·
∫ 1

C3λ−γ

du
1

u

)

= exp

(

(1 − ε)α+1 α

α − 1
· ln (C3λ

−γ
)
)

= C4 · λ−(1−ε)α+1· α
α−1 ·γ

with C4 = exp
(
(1 − ε)α+1 α

α−1 · ln(C3)
)
. Finally, observe that

(1 − ε)α+1 · α

α − 1
· γ = α · (1 − ε)α+1

1 + 2ε(α − 1)
.

This completes the proof of (35), since by choosing ε ∈ (0, 1) small enough, the
quantity ((1 − ε)α+1)/(1 + 2ε(α − 1)) will be as close to 1 as desired. �

5 Tail estimates for the stable excursion

Recall that the tail behavior of the supremum of the associated height process H exc

has been obtained by Duquesne and Wang [19], see (2) and (3). Recall also that we
evaluated the asymptotic behavior of the supremum of the stable bridge (Corollary
13). Here we gather several open questions concerning tail estimates for statistics of
the stable bridge Xbr and stable excursion X exc which have appeared throughout the
text:

What is the asymptotic behavior of P
(
sup Xbr � 1/u

)
, P (sup X exc � u),

P (sup X exc � 1/u), P (�(X∗) � u), and P (�(X∗) � 1/u) as u → ∞? What are
the values E

[
(sup Xbr)p

]
, E
[
(sup X exc)p

]
and E

[
�(X∗)p

]
for p � 1? In the case

α = 2, X exc and H exc are multiples of the normalized Brownian excursion, and such
estimates are well known (see e.g. Eq. (5) and Sect. 1.1 in [2]).
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There also seems to be a duality between the behavior of sup X exc at∞ (resp. 0) and
the behavior of sup H exc at 0 (resp.∞): indeed, the exponent governing the exponential
decay should by α/(α − 1) for P (sup X exc � u) and P (sup H exc � 1/u), and should
by α for P (sup X exc � 1/u) and P (sup H exc � u). Can this be seen in a simple way
directly in the continuous world?
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Appendix

In this appendix, we prove several useful results concerning the asymptotic behav-
ior of Laplace transforms of critical offspring distributions belonging to domains of
attractions of stable laws and of their associated size-biased distributions. As before,
assume that μ is a critical offspring distribution belonging to the domain of attraction
of a stable law of index α ∈ (1, 2]. Let σ 2 ∈ (0,∞] be the variance of μ and let X is
a random variable with law μ. Recall from the Introduction that L is a slowly varying
function such that Var(X ·1X�n) = n2−αL(n). Note that L(n) → σ 2 when σ 2 < ∞,
and that L(n) → ∞ when σ 2 = ∞ and α = 2. Hence, if X is a random variable with
law μ, we have

E

[
X21X�n

]
∼

n→∞ n2−αL(n) + 1.

since E
[
X1X�n

] → 1 as n → ∞. The term “+1” is not negligible only when
σ 2 < ∞ (in which case α = 2).

Offspring distributions. Set G(s) = ∑
i�0 μ(i)si for 0 � s � 1. Then by e.g. [8,

Lemma 4.7]

G(s) − s ∼
s↑1

(3 − α)

α(α − 1)
· (1 − s)αL((1 − s)−1). (41)

We stress that this holds in the both cases σ 2 < ∞ and σ 2 = ∞.
Also, ifW is a random variable with distribution P (W = i) = μ(i+1) for i � −1,

since E
[
e−λW

] = eλG(e−λ) for λ > 0, we have

E

[
e−λW

]
− 1 ∼

λ↓0
(3 − α)

α(α − 1)
· λαL(1/λ). (42)

Again, this holds in the both cases σ 2 < ∞ and σ 2 = ∞.
Size-biased offspring distributions. Let μ∗ be the so-called size-biased probability
distribution on Z+ defined by μ∗(i) = iμ(i) for i � 0. Note that μ∗ is indeed a
probability distribution since μ is critical. Let X∗ be a random variable having law
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μ∗. When μ has finite variance, we claim that

1 − E

[
sX

∗] ∼
s↑1 (1 − s)(σ 2 + 1), (43)

and when μ has infinite variance, we claim that

1 − E

[
sX

∗] ∼
s↑1

(3 − α)

α − 1
· (1 − s)α−1L((1 − s)−1),

1 − E

[
e−λX∗] ∼

λ↓0
(3 − α)

α − 1
· λα−1L(1/λ). (44)

Whenμhasfinite variance the claim (43) simply follows from the fact thatE
[
X∗] =

σ 2 + 1.
Now assume thatμ has infinite variance. Then there exists a slowly varying function

L1 such that P (X � n) = μ([n,∞)) = L1(n)/nα (see [20, Corollary XVII.5.2 and
(5.16)]) when α < 2, we have L1(n) = 2−α

α
L(n), and L1(n)/L(n) → 0 as n → ∞

when α = 2. As a consequence, μ∗ belongs to the domain of attraction of a stable law
of index α − 1, because

μ∗([n,∞)) ∼
n→∞

α

α − 1
· L1(n)

nα−1 (45)

since we can write μ∗([n,∞)) = (n − 1)μ([n,∞) +∑∞
j=n μ([ j,∞)).

If α < 2, (45) and [20, Corollary XVII.5.2 and (5.16)] give that

E

[
(X∗)21X∗�n

]
∼

n→∞ n3−α · 2 − α

3 − α
L(n),

and (44) result follows e.g. by [8, Lemma 4.6].
Now assume that α = 2 and set q∗

i = P (X∗ > i) for i � 0. Then

n∑

i=0

q∗
i = E

[
X21X�n

]
+ (n + 1)μ∗([n + 1,∞)) ∼

n→∞ L(n).

Indeed, we know that L1(n)/L(n) → 0 as n → ∞. Hence, by [20, Theorem
XIII.5.5], we have

∑∞
i=0 q

∗
i s

i ∼ L((1 − s)−1) as s ↑ 1. Then

1 − E

[
sX

∗] = (1 − s)
∞∑

i=0

q∗
i s

i ∼
s↑1 (1 − s)L((1 − s)−1).

Our claim (44) then follows by taking s = e−λ.
Finally, from (43) and (44) it is a simple matter to see that the estimates

1 − E

[
sX

∗−1
]

∼
s↑1

(3 − α)

α − 1
· (1 − s)α−1L((1 − s)−1),
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1 − E

[
e−λ(X∗−1)

]
∼
λ↓0

(3 − α)

α − 1
· λα−1L(1/λ) (46)

hold in both the cases σ 2 < ∞ and σ 2 = ∞ (when μ has infinite variance and α = 2
we use the fact that L(n) → ∞ as n → ∞).
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