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Abstract

We study a variation of the SIR (Susceptible/Infected/Recovered) dynamics on the complete graph, in
which infected individuals may only spread to neighboring susceptible individuals at fixed rate λ > 0
while recovered individuals may only spread to neighboring infected individuals at fixed rate 1. This is
also a variant of the so-called chase–escape process introduced by Kordzakhia and then Bordenave. Our
work is the first study of this dynamics on complete graphs. Starting with one infected and one recovered
individuals on the complete graph with N+2 vertices, and stopping the process when one type of individuals
disappears, we study the asymptotic behavior of the probability that the infection spreads to the whole graph
as N → ∞ and show that for λ ∈ (0, 1) (resp. for λ > 1), the infection dies out (resp. does not die out)
with probability tending to one as N → ∞, and that the probability that the infection dies out tends to 1/2
for λ = 1. We also establish limit theorems concerning the final state of the system in all regimes and show
that two additional phase transitions occur in the subcritical phase λ ∈ (0, 1): at λ = 1/2 the behavior of
the expected number of remaining infected individuals changes, while at λ = (

√
5 − 1)/2 the behavior of

the expected number of remaining recovered individuals changes. We also study the outbreak sizes of the
infection, and show that the outbreak sizes are small (or self-limiting) if λ ∈ (0, 1/2], exhibit a power-law
behavior for 1/2 < λ < 1, and are pandemic for λ > 1. Our method relies on different couplings: we first
couple the dynamics with two independent Yule processes by using an Athreya–Karlin embedding, and then
we couple the Yule processes with Poisson processes thanks to Kendall’s representation of Yule processes.
c⃝ 2014 Elsevier B.V. All rights reserved.
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0. Introduction

We investigate the asymptotic behavior of a variation of the SIR (Susceptible/Infected/
Recovered) dynamics on the complete graph. It is a stochastic dynamics of two competing
species and may be informally defined as follows. Vertices can only be of three types: susceptible,
infected or recovered. At fixed rate λ > 0, infected individuals may only spread their infection to
neighbors who are susceptible (when an infected individual spreads its infection to a neighboring
susceptible individual, both of them are then infected), while at fixed rate 1 recovered individuals
may only spread their recovered state to infected neighbors (see below for a formal definition).
This dynamics is called the chase–escape process and appears in a work by Bordenave [7], who
analyzed its behavior on infinite trees (see also [16]).

Earlier, Kordzakhia [14] has introduced and studied the escape process on infinite trees,
in which infected individuals still may only spread their infection to neighboring susceptible
individuals at fixed rate λ > 0, but recovered individuals may spread at fixed rate 1 to neighbors
that are either infected or susceptible individuals. Later, Bordenave [6] introduced the rumor-
scotching process, in which infected individuals may only spread to neighboring susceptible
individuals at fixed rate λ > 0, and recovered individuals may spread at fixed rate 1 to infected
neighbors but only through edges that have already spread an infection: see [6] for a formal
definition, where infected individuals are individuals propagating a rumor while recovered
individuals are struggling to scotch it (see in particular [8], where the authors propose to use this
model to predict the activity of Facebook). One may also think of the susceptible individuals as
vacant vertices, infected individuals as prey, and recovered individuals as predators, and view the
chase–escape process as a random foodchain. The rumor-scotching process can be seen a directed
version of the chase–escape process. Under suitable initial conditions, the behavior of the escape,
chase–escape and rumor-scotching processes is the same on infinite trees. In [6], Bordenave
studied the rumor-scotching process on the complete graph, and showed that its scaling limit
is the birth-and-assassination process, which was introduced by Aldous and Krebs [1]. We
finally mention that the chase–escape process is a variant of the famous and extensively studied
Daley–Kendall model [9] for rumor propagation (in which, in addition, an infected individual
may become recovered if it enters in contact with another infected individual or, in other words,
when two individuals spreading the rumor meet, one of them stops spreading it).

In this work, we are interested in the asymptotic behavior of the chase–escape process on the
complete graph with N + 2 vertices as N → ∞, starting with one infected and one recovered
individual and stopped when either no susceptible or no infected individuals remain. To our
knowledge, this is the first study of the chase–escape process on graphs different from trees. We
will establish that the probability that no susceptible individual remains tends to 0 as N → ∞

if and only if λ > 1. We also establish limit theorems concerning the state of the system at its
absorbing state in all (subcritical, critical and supercritical) regimes.

The chase–escape process. We now give a formal definition of the chase–escape process
following Bordenave [7]. Let G = (V, E) be a locally finite connected graph. Set X = {S, I, R}

V

and for every v ∈ V , let Iv, Rv : X → X be the two maps defined by (Iv(x))u = (Rv(x))u = xu
if u ≠ v and (Iv(x))v = I and (Rv(x))v = R with x = (xu)u∈V . By definition, the chase–escape
process of infection intensity λ > 0 is the Markov process taking values in X with transition
rates

Q(x, Iv(x)) = λ · 1{xv=S} ·


{u,v}∈E

1{xu=I },
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Q(x, Rv(x)) = 1{xv=I } ·


{u,v}∈E

1{xu=R} (v ∈ V, x ∈ X).

This means that each infected vertex infects its susceptible neighbors at rate λ and that each
recovered individual spreads its recovered state to its infected neighbors at rate 1. In particular,
an infected individual who recovers then stays recovered indefinitely. Note that this dynamics
differs from the classical SIR epidemic model, where infected individuals recover at a fixed rate
(not depending on their neighborhood).

In the following, we will always consider the chase–escape process on the complete finite
graph KN+2 on N + 2 vertices, where N > 1 is an integer, starting with one infected individual,
one recovered individual and the other N individuals all being susceptible. In addition,

we stop the chase–escape process once either no infected or no susceptible individuals
remain.

Hence the absorbing states of this process are the states where no susceptible individuals are
present (which we interpret as the fact that the infection has spread to the entire population)
and where there are no infected individuals but where susceptible individuals remain (which we
interpret as the fact that the infection has died out). The motivation for stopping the process when
no susceptible individuals remain is to try understand the severity of the infection: the infection is
severe if at the time of absorption there are a lot of infected individuals and a few recovered ones,
while the infection is less severe if at the time of absorption there are a few infected individuals
and many recovered ones.

The critical value of λ. Let E N
ext be the event that there exists a (random) time when no suscep-

tible individuals remain. Hence P(E N
ext ) is the probability that the infection spreads to the whole

graph. Denote also by c E N
ext the complementary event where the infection dies out. We first iden-

tify λ = 1 as a critical value, and also give the limiting value of P(E N
ext ) as N → ∞ for λ = 1.

Theorem 1. We have:

P(E N
ext ) −−−−→

N→∞


0 if λ ∈ (0, 1)
1
2

if λ = 1

1 if λ > 1.

Here, note that ext refers to the extinction of susceptible individuals.

The number of remaining susceptible individuals. Denote by S(N ) the number of remaining sus-
ceptible individuals once the chase–escape process has reached an absorbing state. Our next con-
tribution describes the asymptotic behavior of S(N ) as N → ∞. Here and later, Exp(λ) denotes
an exponential random variable of parameter λ > 0, independent of all the other mentioned
random variables (in particular, different occurrences of Exp(1) denote different independent

random variables). The symbol
(d)
−→ denotes convergence in distribution for random variables.

Theorem 2. (i) Assume that λ ∈ (0, 1). Then

S(N )

N 1−λ

(d)
−−−−→
N→∞

Exp(1)λ. (1)
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(ii) Assume that λ = 1. Then for every i > 0, P

S(N )

= i


→ 1/2i+1 as N → ∞. In other
words, S(N ) converges in distribution to the random variable G such that P(G = i) =

1/2i+1 for i > 0.
(iii) Assume that λ > 1. Then S(N ) converges in probability to 0 as N → ∞.

We make several comments on these results:

(i) It is interesting to observe that for λ = 1, S(N ) converges in distribution as N → ∞ without
scaling.

(ii) When λ = 1, since S(N )
= 0 on the event E N

ext and P

E N

ext


→ 1/2, assertion (ii) may

be reformulated by saying that conditionally on c E N
ext , S(N ) converges in distribution to the

positive random variable G ′ whose law is given by P(G ′
= i) = 1/2i for i > 1. Hence, for

λ = 1, the number of non-infected individuals in a population which is not entirely infected
is asymptotically constant (meaning that limN→∞ P


S(N ) > K


tends to 0 as K → ∞).

The number of remaining recovered individuals. Denote by R(N ) the number of recovered indi-
viduals once the chase–escape process has reached an absorbing state. Recall that chase–escape
process is stopped once either no infected or no susceptible individuals remain. We are next
interested in the asymptotic behavior of R(N ) as N → ∞.

Theorem 3. The following assertions hold.

(i) Assume that λ ∈ (0, 1). Then

N − R(N )

N 1−λ

(d)
−−−−→
N→∞

Exp(1)λ. (2)

(ii) Assume that λ = 1. Then

R(N )

N
(d)

−−−−→
N→∞

1
2
δ1 +

1

(1 + x)21[0,1](x)dx, (3)

where δ1 is a Dirac measure at 1 and (1+x)−21[0,1](x)dx denotes the measure with density
(1 + x)−2 on [0, 1].

(iii) Assume that λ > 1. Then:

R(N )

N 1/λ

(d)
−−−−→
N→∞

Exp(Exp(1)1/λ), (4)

where Exp(Exp(1)1/λ) is an exponential random variable of independent random parame-
ter Exp(1)1/λ.

We make several comments on these results:

(i) When λ = 1, conditionally on c E N
ext , we have R(N )

+ S(N )
= N + 2. Hence, by remark

(ii) following Theorem 2, conditionally on c E N
ext , R(N )/N converges in probability to 1. In

particular, assertion (ii) of Theorem 3 may be reformulated by saying that conditionally on
E N

ext , the law of R(N )/N converges in distribution to the measure 2(1 + x)−21[0,1](x)dx as
N → ∞.

(ii) It is interesting to note the heavy-tail behavior of the limiting random variable appearing
in (iii); its moments are given by E


Exp(Exp(1)1/λ)s


= Γ (1 + s)/Γ (1 − s/λ) for

−1 < s < λ, and its tail by P

Exp(Exp(1)1/λ) > u


∼ Γ (λ + 1) · u−λ as u → ∞.
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(iii) Note also the dissymmetry in the asymptotic behavior of the system for λ = 1: when the
infection does not spread to the whole graph, only a few susceptible individuals remain
and almost every individual is recovered, while when the infection spreads to the whole
graph, the number of recovered individuals is a random proportion of the total number of
individuals.

The number of remaining infected individuals: Outbreak sizes. Denote by I (N ) the number of
infected individuals once the chase–escape process has reached an absorbing state. We are finally
interested in the asymptotic behavior of I (N ).

Theorem 4. The following assertions hold.

(i) If λ ∈ (0, 1), then I (N ) converges in probability to 0 as N → ∞.
(ii) If λ = 1, then

I (N )

N
(d)

−−−−→
N→∞

1

(2 − x)21[0,1](x)dx . (5)

(iii) If λ > 1,

N − I (N )

N 1/λ

(d)
−−−−→
N→∞

Exp(Exp(1)1/λ). (6)

Outbreak sizes. In the language of epidemiology, an outbreak is defined to be small, or self-
limiting, if the total average number of infected individuals at the absorption time does not scale
with N , and an outbreak is pandemic if the total average number of infected individuals at the
absorption time is a positive fraction of the population. In order to determine the nature of the
outbreak sizes in the chase–escape process, we investigate if the convergences appearing in Theo-
rems 2–4 hold in Lp. Our results (which we state below in Section 4 in order to shorten the Intro-
duction) establish in particular that the outbreak sizes are small if λ ∈ (0, 1/2] (they even tend to
0 for λ ∈ (0, 1/2) and tend to 1 for λ = 1/2), exhibit a power-law behavior for 1/2 < λ < 1, and
are pandemic for λ > 1 (however, for λ = 1, the mean fraction of non-infected individuals tends
to a positive number, while for λ > 1, the mean fraction of not-infected individuals tends to 0).

This contrasts heavily with the outbreak sizes in the SIR model on the complete graph, where
outbreaks are small in the subcritical case, pandemic in the supercritical case and exhibit a power-
law behavior in the critical case (see e.g. [4] for a study of the average outbreak sizes in the SIR
model).
Phase transitions. We have seen in Theorem 1 that λ = 1 is the critical value for the extinction of
susceptible individuals in the large population limit. Theorems 5–7 (stated in Section 4) also show
that the chase–escape process on large complete graphs exhibits two additional phase transitions
in the subcritical phase λ ∈ (0, 1). The first one is at λ = 1/2. Below this value, the expected
final number of infected individuals E


I (N )


tends to 0 as the size of the graph grows. At the

value λ = 1/2, E

I (N )


tends to 1 in the large population limit. For λ ∈ (1/2, 1), E


I (N )


grows

as a power of N with a positive exponent less than 1.
Note also that at λ = 1 the behavior of the growth of E


I (N )


also changes: for λ =

1, E

I (N )


/N converges to a positive constant which is less than 1, while for λ > 1, E


I (N )


is

asymptotic to N .
Another phase transition in the subcritical phase λ ∈ (0, 1) occurs at λ = (1 −

√
5)/2

when looking at the second order of the asymptotic behavior of E

R(N )


: for 0 < λ 6

(
√

5 − 1)/2, N − E

R(N )


is of order N 1−λ, while for (

√
5 − 1)/2 6 λ < 1, N − E


R(N )


is of
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order N 2−1/λ. This is explained by the fact that for 0 < λ < (
√

5−1)/2 the main contribution to
N − E


R(N )


comes from the remaining susceptible individuals, while for (

√
5 − 1)/2 < λ < 1

the main contribution to N − E

R(N )


comes from the remaining infected individuals. For

λ = (
√

5 − 1)/2, these contributions are of the same order.

Related models. Let us mention several other similar but different models which have appeared
in the literature. If no recovered individuals are present in the beginning, this dynamics is the
so-called Richardson’s model [19]. Also, Häggström and Pemantle [10] and Kordzakhia and
Lalley [15] have studied an extension of Richardson’s model with two species, in which infected
and recovered individuals may only spread to susceptible individuals.

Techniques. The main idea is to couple the dynamics with two independent Yule processes by
using an Athreya–Karlin embedding [2]. Recall that in a Yule process of parameter λ, each
individual lives a random independent time distributed as an exponential random variable of
parameter λ and produces two offspring at its death. Let (Yt )t>0 be a Yule process of parameter
λ starting with one individual and let (Zt )t>0 be a Yule process of parameter 1 starting with one
individual. Let Y be the process Y time-reversed at its N th jump. More precisely, if tN denotes the
N th jump of Y, then Yt = Y(tN −t)− for 0 6 t 6 tN . Then, informally, the chase–escape process
can be constructed in such a way that the discontinuities of Y are the times when a susceptible
vertex is infected and the discontinuities of Z are the times when a recovered vertex spreads to
an infected one. In particular, Yt represents the number of susceptible vertices at time t and Zt
represents the number of recovered vertices at time t . The absorption time is then the first time
t when either Yt = 0 or Yt + Zt = N + 2. See Theorem 1.1 for a precise statement. A useful
feature of this coupling is that the same process Y is used for different values of N .

In particular, the dynamics can be viewed as a generalized non-conservative Pólya urn process
with two urns (see e.g. [12,17] for a study of Pólya urns using branching processes). The first
urn has N balls in the beginning (and represents susceptible individuals) and the second one has
1 ball in the beginning (and represents recovered individuals). Balls are selected uniformly at
random, with an activity (or weight) λ for balls of the first bin, and activity 1 for balls of the
second bin. When a ball from the first bin is selected, it is removed. However, when a ball from
the second bin is selected, it is replaced in the second bin, and one additional ball is added to the
second bin. The process is stopped at the first time when either the first bin is empty or the two
bins contain N + 2 balls together. Due to this very particular stopping time, we may not apply
known results on Pólya urns in our case.

In order to analyze the chase–escape process with this coupling, we use Kendall’s represen-
tation of Yule processes, which states that if (Pt )t>0 is a Poisson process of parameter λ and
E an independent exponential random variable of parameter 1, then (PE(et −1) + 1)t>0 is a Yule
process of parameter λ with terminal value E (see Section 1.2 for details and the definition of the
terminal value). This device allows us to transfer calculations on Yule processes to more tractable
calculations on Poisson processes.

Finally, we mention that since S(N )
+ I (N )

+ R(N )
= N + 2, it is sufficient to establish one

of the two Theorems 2, 3 and 4, 7 to get the other one.

1. Decoupling in continuous time and Yule processes

1.1. A pure birth and a pure death chain

Recall from the Introduction that the chase–escape process is run on the complete graph with
N + 2 vertices, where N > 1 is an integer, starting with one infected individual, one recovered
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individual and the other N individuals being susceptible. The process is stopped at the first time
T when either no infected or no susceptible individuals remain. For every t > 0, let S(t), I (t)
and resp. R(t) be the number of susceptible, infected and resp. recovered individuals at time t
(we forget the dependence in N to simplify notation). In particular, note that

T = inf{t > 0; S(t) = 0 or S(t) + R(t) = N + 2}

and notice that S(t) + I (t) + R(t) = N + 2 for 0 6 t 6 T . Let (Tn)16n6ζ be the increasing
sequence of discontinuity times of the process (S(t), R(t))06t6T and set T0 = 0 by convention.

We now introduce a two-type Markov branching process (SN (t), R(t))t>0 such that
(SN (t))t>0 is a pure death chain and (R(t))t>0 is an independent pure birth chain. More pre-
cisely, the chain SN starts with N individuals (here we keep the subscript N to emphasize the
dependence in N ). Each individual dies after an exponential time of parameter λ, all indepen-
dently. Finally, the independent chain R starts with one individual and each individual gives birth
after an exponential time of parameter 1, all independently. Set

T = inf{t > 0; SN (t) = 0 or R(t) + SN (t) = N + 2}

and let (Ti )16i6ξ be the increasing sequence of discontinuity times of the process (SN (t),
R(t))06t6T and set T0 = 0 by convention.

Theorem 1.1. For every integer N > 1, we have:

(S(Ti ), R(Ti ))06i6ζ
(d)
= (SN (Ti ), R(Ti ))06i6ξ .

Proof. Fix i > 0. Since at a fixed time t ∈ (0, T ) the total rate of infection of the susceptible
individuals by the infected ones is λS(t)I (t) and since the rate at which recovered individuals
spread to infected ones is R(t)I (t), we get

P

S(Ti+1) = S(Ti ) − 1

 Ti < T, S(Ti ), R(Ti )


=
λ · S(Ti )I (Ti )

λ · S(Ti )I (Ti ) + R(Ti )I (Ti )

=
λ · S(Ti )

λ · S(Ti ) + R(Ti )
(7)

and similarly

P

R(Ti+1) = R(Ti ) + 1

 Ti < T0, S(Ti ), R(Ti )


=
R(Ti )

λ · S(Ti ) + R(Ti )
. (8)

In addition, by construction note that

P

SN (Ti+1) = SN (Ti ) − 1

Ti < T, SN (Ti ), RTi


=

λ · SN (Ti )

λ · SN (Ti ) + RTi

= 1 − P

R(Ti+1) = RTi + 1

Ti < T0, SN (Ti ), RTi


.

Since (S(0), R(0)) = (SN (0), R(0)) = (N , 1), Theorem 1.1 immediately follows. �

Observe that it is the particular form of the transition probabilities (7) and (8) (obtained by
the disappearance of I (Ti ) in (7)) that has allowed to decouple the infections and the spreading
of recovered individuals.

Thanks to Theorem 1.1, we may and will replace the chase–escape process (S(Ti ), R(Ti ))06i6ζ

by the process (SN (Ti ), R(Ti ))06i6ξ . In particular, with a slight abuse, we shall say that the jump
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Fig. 1. Illustration of the two events E N
ext and c E N

ext for N = 7. The bold crosses represent the jump times of SN and
the dashed crosses represent the jump times of R.

times of SN are the times when a susceptible individual is infected and that the jump times of R

are the times when a recovered individual spreads to an infected one.

We shall also say that SN (t) (resp. R(t)) is the number of susceptible (resp. recovered)
individuals at time t.

Before stating several useful features of this coupling, we need to introduce some notation. Set
σN (0) = 0 and for every 1 6 i 6 N , let σN (i) be time of the i th jump time of SN . Note that the
random variables (σN (i + 1) − σN (i), 0 6 i 6 N − 1) are independent and σN (i + 1) − σN (i)
is distributed according to Exp(λ(N − i)) for 0 6 i 6 N − 1. Observe that SN (t) = 0 for
t > σN (N ). Set also ρ(0) = 0 and for every i > 1, let ρ(i) be time of the i th jump of R, and
note that the random variables (ρ(i) − ρ(i − 1), i > 1) are independent and that ρ(i) − ρ(i − 1)

has the same distribution as Exp(i). A moment’s thought shows that

T = σN (N ) ∧ ρ(min{i > 1; ρ(i) < σN (i)}).

Indeed, if 1 6 i < N and ρ(i) < σN (i), since i susceptible vertices have been infected for
the first time at time σN (i), while i infected vertices have recovered at time ρ(i), this means
that there are no more infected individuals at time ρ(i). Finally, let SN (t) = N − SN (t) be the
number of jumps of SN on the interval [0, t], for 0 6 t 6 σN (N ), and note that T is the smallest
of the two quantities σN (N ) and inf{0 6 t 6 σN (N ); SN (t) < R(t) − 1} (with the convention
inf ∅ = ∞). See Fig. 1 for an illustration.

Recall that E N
ext is the event that there exists a (random) time when no susceptible individuals

remain and that c E N
ext is the complementary event. We list some important features of our

coupling which we will extensively use in the sequel:

Proposition 1.2. (i) The events E N
ext and {SN (t) > R(t)−1 for every 0 6 t 6 σN (N )} are the

same. In particular,

P


E N
ext


= P


SN (t) > R(t) − 1 for every 0 6 t 6 σN (N )


.

(ii) On the event E N
ext , the last susceptible individual is infected at time σN (N ). In addition, on

the event E N
ext , we have S(N )

= 0, I (N )
= N + 2 − R(σN (N )) and R(N )

= R(σN (N )).
(iii) On the event c E N

ext , the last infected individual recovers at time T = inf{t > 0; SN (t) <

R(t)− 1}. In addition, on the event c E N
ext , we have S(N )

= SN (T) = N + 2 −R(T), I (N )
=

0, R(N )
= R(T) = N +2−S(T). In particular, if we have T > t , then SN (ρ(N )) 6 S(N ) 6

SN (t).
(iv) We always have R(N ) 6 R(σN (N )).

In the following section, we introduce some background on Yule processes, which we will see
to be very closely related to both the evolution of SN and of R.
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1.2. Background on Yule processes

A Yule process of parameter λ > 0 describes the growth of a population in which each individ-
ual dies after an exponential time of parameter λ by giving birth to two offspring, independently,
starting from one individual. In this section, (Yt )t>0 is a Yule process of fixed parameter λ > 0.
We now state some useful well-known results (see e.g. [18, Section 2.5] and [3, Theorem 1 in
Section III.7] for proofs).

Proposition 1.3. (i) Set J0 = 0 and let (Ji )i>1 be the increasing birth times of Y . The random
variables (Ji − Ji−1; i > 1) are independent and Ji − Ji−1 has the same distribution as
Exp(λi).

(ii) For every t > 0 and k > 1 we have P(Yt = k) = e−λt (1 − e−λt )k−1.
(iii) The following convergence holds almost surely:

e−λt Yt
a.s.

−−−→
t→∞

E,

where E is an exponential random variable of parameter one which we call the terminal
value of Y .

We write f (t−) for the left limit at t ∈ R of a function f : R → R, when it exists. Keeping the
notation introduced in the previous section, assertion (i) entails that (R(t))t>0 is a Yule process
of parameter 1 and that (SN ((σN (N ) − t)−))06t<σN is a Yule process of parameter λ stopped
just before its N th jump time. This explains why Yule processes play an important role in the
study of our model.

We will also need the description of the Yule process conditioned on its terminal value, due
to Kendall (see e.g. [3, Section 11 in Chapter III, Theorem 2] or [13, Theorem 1]), which will
allow us to couple Yule processes with Poisson processes.

Proposition 1.4. Let E be the terminal value of Y . Then, conditionally on E, the process
(Y 1

λ
log(1+

t
E
)
−1; t > 0) is a Poisson process on R+ of intensity 1 starting from 0. More precisely,

for every 0 < t1 < · · · < tk < ∞ and integers ni > 1, 1 6 i 6 k, and for every Borel subset
B ⊂ [0, ∞],

P


Y 1
λ

log(1+
ti
E

)
= ni for every 1 6 i 6 k, E ∈ B


= P (E ∈ B) P


Pti = ni − 1 for every 1 6 i 6 k


,

where (Pt )t>0 is a Poisson process with parameter 1 and such that P0 = 0.

In other words, if (Pt )t>0 is a Poisson process with unit rate starting from 0 and E is an
independent exponentially distributed random variable, then the process (Z t )t>0 defined by
Z t = PE(eλt −1) + 1 is a Yule process of parameter λ with terminal value E. This result will
be used by transferring calculations for Yule processes to more tractable calculations involving
Poisson processes.

We now introduce some important notation that will be used in the sequel. Let E and E be
two independent exponential random variables of parameter 1, and (Pt )t>0 and (Pt )t>0 be two
independent Poisson processes with unit rate starting from 0 (all defined on the same probability
space). By convention, we set P0− = P0− = −1. For every t > 0, set Z t = PE(et −1) + 1 and
Z t = PE(eλt −1)

+ 1. In particular, Z (resp. Z ) is a Yule process with rate 1 (resp. with rate λ)
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Fig. 2. Illustration of the coupling between P and R, and between P and SN .

with initial value 1. For n > 0, let τn (resp. τ n) be the nth jump time of P (resp. P). Note that τn
and τ n have both the same distribution as the sum of n i.i.d. Exp(1) random variables.

By Proposition 1.4, without loss of generality, we may and will assume that the processes
(S, R) and (Z , Z) are coupled as follows:

R(t) = Z t (t > 0), SN (t) = Z (σN (N )−t)−, (0 6 t 6 σN (N )), (9)

and, for every 0 6 i 6 N ,

ρ(i) = ln


1 +
τi

E


, σN (i) =

1
λ

ln


1 +
τ N

E


−

1
λ

ln


1 +
τ N−i

E


. (10)

See Fig. 2 for an illustration. In particular, σN (N ) = λ−1 ln


1 + τ N /E


, and by Proposition 1.3

(iii), we have

λσN (N ) − ln(N )
a.s.

−−−−→
N→∞

− ln(E), ρ(N ) − ln(N )
a.s.

−−−−→
N→∞

− ln(E), (11)

where the convergence holds almost surely. Note also that it is the same process Z that appears
in the definition of SN for different values of N . This is an important feature of this coupling.

Recall that SN (t) = N − SN (t) is the number of jumps of SN on the interval [0, t], for
0 6 t 6 σN (N ). By (10) and (9), we have

SN (t) = N − 1 − PE(eλ(σN (N )−t)
−1)−

= N − 1 − P
(τ N −(τ N +E)(1−e−λt))−

for 0 6 t 6
1
λ

ln


1 +
τ N

E


.

By the time-reversal property of Poisson processes, (Pt ; 0 6 t 6 τ N ) has the same distribution
as (N − 1 − P(τ N −t)−; 0 6 t 6 τ N ). Indeed, conditionally on τ N , the jump times of these
processes are distributed as N − 1 i.i.d. points on [0, τ N ]. Hence

(SN (t); 0 6 t 6 σN (N ))
(d)
=


P

(τ N +E)(1−e−λt); 0 6 t 6
1
λ

ln


1 +
τ N

E


. (12)

In addition, by (9),

(R(t); t > 0) = (PE(et −1) + 1; t > 0). (13)

2. Critical value for extinction probabilities

The goal of this section is to provide a proof of Theorem 1 by relying on the following
result.
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Fig. 3. Illustration of Lemma 2.1.

Lemma 2.1. For every λ > 0 we have

P

σN (N ) < ρ(N ) and there exists 0 6 t 6 σN (N ) such that SN (t) < R(t) − 1


−−−−→
N→∞

0.

Since {SN (t) > R(t) − 1 for every 0 6 t 6 σN (N )} ⊂ {σN (N ) < ρ(N )}, in view of
Proposition 1.2(i), Lemma 2.1 entails

P (σN (N ) < ρ(N )) − P


E N
ext


−−−−→
N→∞

0.

This result comes intuitively from the fact that up to time σN (N ), the jumps of S are concentrated
around 0, while the jumps of R are concentrated around σN (N ) (see Fig. 3), implying that with
probability tending to one, SN (t) > R(t) − 1 holds for every 0 6 t 6 σN (N ) if and only if it
holds for t = σN (N ). However, its proof is technical and postponed to Section 5.1.

Proof of Theorem 1. We have already seen that P(E N
ext )−P (σN (N ) < ρ(N )) converges to 0 as

N → ∞. When λ ≠ 1, by (11), σN (N )/ρ(N ) converges almost surely to 1/λ, and the conclusion
follows. When λ = 1, again by (11), σN (N ) − ρ(N ) converges almost surely to ln(E/E) and the
conclusion follows as well since P(ln(E/E) < 0) = 1/2. �

3. Large population limit: convergence in distribution

The goal of this section is to study the asymptotic behavior of S(N ), I (N ) and R(N ) with
respect to weak convergence, and to prove in particular Theorems 2–4.

3.1. A technical lemma

We first make some useful observations. If ρ(1) < σN (1), then the recovered individual
starts by spreading to the infected one, so that the chase–escape processes terminates with N
susceptible individuals and 2 recovered individuals. Observe that this happens with probability

P (ρ(1) < σN (1)) =
1

λN + 1
, (14)

and that

{ρ(1) > σN (1)} ∩ {SN (t) > R(t) − 1 for every ρ(2) 6 t 6 σN (N )}

= {SN (t) > R(t) − 1 for every 0 6 t 6 σN (N )}

= E N
ext . (15)
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Fig. 4. Illustration of Lemma 3.1: there exists t such that SN (t) < R(t) − 1 in the interval delimited by the arrows with
probability less than C/N 2. In other words the probability that there exists t in the interval delimited by the arrows, such
that the number of dashed crosses is greater than the number of bold crosses on [0, t], is less than C/N 2.

We will need the following result (see Fig. 4 for an illustration).

Lemma 3.1. For every λ > 0, there exists a constant C > 0 such that, for every integer N > 1,

P


there exists t ∈ [ρ(2), min(ρ(N ) − 1/ ln(N ), σN (N ))] such that SN (t) < R(t) − 1


6
C

N 2 .

By Proposition 1.2(iii), this means that with probability tending to one, the process has not
yet reached its absorbing state just before time min(ρ(N ) − 1/ ln(N ), σN (N )). Notice also that

{ρ(1) > σN (1)} ∩ {SN (t) > R(t) − 1 for t ∈ [ρ(2), ρ(N ) − 1/ ln(N )]}

= {SN (t) > R(t) − 1 for t ∈ [0, ρ(N ) − 1/ ln(N )]}.

Finally, we mention that for the proof of Theorem 2, we only need to know that

P


there exists t ∈ [ρ(2), min(ρ(N ) − 1/ ln(N ), σN (N ))] such that SN (t) < R(t) − 1


−−−−→
N→∞

0.

However, we will need a bound on its speed of convergence to 0 to establish Theorem 5. The
additional term 1/ ln(N ) which brings us away from σN (N ) plays an important role: indeed, it
is not true that P(there exists ρ(2) 6 t 6 σN (N ) such that SN (t) < R(t) − 1) 6 C/N 2.

3.2. Susceptible vertices in the final state

In this section, we prove Theorem 2 concerning the asymptotic behavior of S(N ) with respect
to weak convergence.

Proof of Theorem 2. Assume for the moment that 0 < λ 6 1. Conditionally on E N
ext , we have

S(N )
= 0. It is thus enough to study the behavior of S(N ) conditionally on c E N

ext . By Lemma 2.1,
conditionally on c E N

ext , P (σN (N ) > ρ(N )) → 1. Hence, by Lemma 3.1, (15) and (14), we
have

P


there exists t ∈ [0, ρ(N ) − 1/ ln(N )] such that SN (t) < R(t) − 1|
c E N

ext


−−−−→
N→∞

0.

This means that conditionally on the fact that the infection does not spread to the whole graph,
the time when the last infected individual recovers belongs to the interval [ρ(N ) − 1/ ln(N ),



898 I. Kortchemski / Stochastic Processes and their Applications 125 (2015) 886–917

ρ(N )] with probability tending to one as N → ∞. By Proposition 1.2(iii), this implies that
SN (ρ(N )) 6 S(N ) 6 SN (ρ(N ) − ln(N )−1), or, using (9),

ZσN (N )−ρ(N ) 6 S(N ) 6 ZσN (N )−ρ(N )+ln(N )−1 . (16)

Notice that, for u > 0,

ZσN (N )−ρ(N )+u = PE(eλσN (N )e−λρ(N )eλu−1)
+ 1 = P

(E+τ N ) Eλ

(E+τN )λ
eλu−E

+ 1

(0 6 u 6 ρ(N )), (17)

and in particular, for u = 0, we have

ZσN (N )−ρ(N ) = P
(E+τ N )· Eλ

(E+τN )λ
−E

+ 1. (18)

Now assume that λ = 1. Since {σN (N ) > ρ(N )} ⊂
c E N

ext , we have

P(c E N
ext ∆ {E > E}) 6 P


c E N

ext ∆ {σN (N ) > ρ(N )}


+ P

{σN (N ) > ρ(N )} ∆ {E > E}


= P


c E N

ext , σN (N ) < ρ(N )


+ P

{σN (N ) > ρ(N )} ∆ {E > E}


,

where we write A ∆ B = (A ∪ B) \ A ∩ B for two sets A and B. By Lemma 2.1, P


c E N
ext ,

σN (N ) < ρ(N )


→ 0 and P

{σN (N ) > ρ(N )} ∆ {E > E}


→ 0 as N → ∞, since

σN (N ) − ρ(N ) converges almost surely to ln(E/E). We conclude that P(c E N
ext ∆ {E > E}) → 0

as N → ∞. Hence it suffices to check that conditionally on E > E, S(N ) converges in distribution
to G ′, where we recall that G ′ is the random variable defined in the second remark following the
statement of Theorem 2.

By (16), it is enough to check that, conditionally on E > E, ZσN (N )−ρ(N ) converges in
distribution to G ′ and that ZσN (N )−ρ(N )+ln(N )−1 − ZσN (N )−ρ(N ) converges in probability to 0.
To this end, we first show that

conditionally on E > E, P
E·

E+τ N
E+τN

−E
+ 1

(d)
−−−−→
N→∞

G ′. (19)

As N → ∞, E · (E + τ N )/(E + τN ) − E converges almost surely to E − E as N → ∞. To
simplify notation, we denote by L(X) the law of a random variable X and by L(X |A) the law of
X conditionally on an event A. Hence

L

PE·(E+τ N )/(E+τN )−E

E > E


(d)
−−−−→
N→∞

L

PE−E

E > E


.

But L(E − E |E > E) is Exp(1), and PExp(1) + 1 has the same distribution as G ′. This entails
(19). We next claim that

ZσN (N )−ρ(N )+1/ ln(N ) − ZσN (N )−ρ(N )
(P)

−−−−→
N→∞

0. (20)

Since the Poisson process P has stationary increments, from (17) we get that

ZσN (N )−ρ(N )+1/ ln(N ) − ZσN (N )−ρ(N )
(d)
= P

E·
E+τ N
E+τN

(eln(N )−1
−1)

.
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Our claim (20) then follows from the fact that E ·
E+τ N
E+τN

(eln(N )−1
− 1) converges almost surely to

0 as N → ∞. Theorem 2(ii) then follows.
Now assume that λ ∈ (0, 1). By the functional law of large numbers, as N → ∞, the

càdlàg process (Pt N /N ; t > 0) converges in probability for the Skorokhod J1 topology to the
deterministic process t → t (see e.g [5, Chap. 3], [11, Chap. VI] for background on càdlàg
processes and the Skorokhod topology). Since

1

N 1−λ
·


(E + τ N ) ·

Eλ

(E + τN )λ
− E


a.s.

−−−−→
N→∞

Eλ,

it follows that P
(E+τ N )·Eλ·(E+τN )−λ−E/N 1−λ converges in probability to Eλ as N → ∞, meaning

that ZσN (N )−ρ(N )/N 1−λ converges in probability to Eλ as N → ∞.
In addition, as above,

ZσN (N )−ρ(N )+1/ ln(N ) − ZσN (N )−ρ(N )
(d)
= P

(E+τ N ) Eλ

(E+τN )λ
(eλ ln(N )−1

−1)
,

so that N−(1−λ)
·

ZσN (N )−ρ(N )+1/ ln(N ) − ZσN (N )−ρ(N )


→ 0 in probability as N → ∞. As

above, this establishes Theorem 2(i).
For the third assertion, it suffices to note that P


S(N ) > 0


= P


c E N

ext


, which, by Theorem 1,

tends to 0 as N → ∞ when λ > 1. �

3.3. Recovered individuals in the final state

In this section, we prove Theorem 3.

Proof of Theorem 3. First assume that λ > 1. Then P (σN (N ) < ρ(N )) → 1 as N → ∞, so
that by Lemma 2.1 and Proposition 1.2(i), with probability tending to one as N → ∞, σN (N )

is the moment when the last susceptible individual is infected. At that moment, the number of
recovered individuals is R(σN (N )) by Proposition 1.2(ii).

It is thus sufficient to establish that, for every t ∈ R,

E

ei tR(σN (N ))/N 1/λ


−−−−→
N→∞

E


ei tExp(E
1/λ

)


. (21)

To this end, using Proposition 1.3(ii), since E

ei tR(s)


= (1 − es(1 − e−i t ))−1 for s > 0 and

t ∈ R, we have for every t ∈ R

E

ei tR(σN (N ))/N 1/λ


= E

 1

1 − eσN (N )


1 − e−i t/N 1/λ

 .

Since λσN (N ) − ln(N ) → − ln(E) a.s. as N → ∞, a straightforward computation entails that

1

1 − eσN (N )


1 − e−i t/N 1/λ
 a.s.

−−−−→
N→∞

E
1/λ

E
1/λ

− i t
= E


ei tExp(E

1/λ
)
E .

Then (21) readily follows from the dominated convergence theorem after noting that

∀s > 0, ∀t ∈ R,

 1
1 − es(1 − e−i t )

 6 1.

This shows (iii).
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Now assume that λ = 1. By remark (ii) following Theorem 2, conditionally on c E N
ext , N −

R(N ) converges in distribution to a positive random variable as N → ∞. Hence, conditionally on
c E N

ext , R(N )/N converges in distribution to 1. It is thus sufficient to establish that, conditionally
on E N

ext , R(N )/N converges in distribution to 2(1 + x)−21[0,1](x)dx .
On the event E N

ext , we have R(N )
= R(σN (N )) = PE(eσN (N )

−1) + 1. Hence it is sufficient to
check that

conditionally on E N
ext ,

PE(eσN (N )
−1)

N
(d)

−−−−→
N→∞

2

(1 + x)21[0,1](x)dx . (22)

Since σN (N )−ρ(N ) converges almost surely to ln(E/E), it follows that P(E N
ext ∆ {E > E}) → 0

by Lemma 2.1. Therefore (22) will follow if we establish that

conditionally on E > E,
PE(eσN (N )

−1)

N
(d)

−−−−→
N→∞

2

(1 + x)21[0,1](x)dx . (23)

Since Ps is a Poisson random variable of parameter s and since P is independent of (E, E,

σN (N )), using the explicit formula for the characteristic function of a Poisson random variable,
we get that

E

e

i tP
E(eσN (N )

−1)
/N E > E


= E


eE(eσN (N )

−1)(ei t/N
−1)
E > E


, t ∈ R.

Since σN (N ) − ln(N ) → − ln(E) a.s. as N → ∞, a straightforward computation entails that

eE(eσN (N )
−1)(ei t/N

−1) a.s.
−−−−→
N→∞

e
E

E
i t
.

Then, by the dominated convergence theorem

E

eE(eσN (N )

−1)(ei t/N
−1)
E > E


−−−−→
N→∞

E


e
E

E
i t E > E


. (24)

Indeed, we have the domination exp

E(eσN (N )

− 1)(ei t/N
− 1)

 = exp

τ N · (cos(t/N ) − 1) · E/E


6 1.

It then suffices to notice that the density of the random variable E/E, conditionally on E > E, is
2/(1 + x)2 on [0, 1] and the proof of (ii) is complete.

The first assertion of Theorem 3 easily follows from Theorem 2 and the fact that we have
R(N )

+ S(N )
= N + 2 on the event c E N

ext and that P


c E N
ext


→ 1 as N → ∞ when

λ < 1. �

3.4. Infected individuals in the final state

Once we have established Theorems 2 and 3, the proof of Theorem 4 is effortless.

Proof of Theorem 4. When λ ∈ (0, 1), we have P

I (N ) > 0


= P


E N

ext


→ 0 by Theorem 1.

When λ = 1, the result follows by combining Theorems 2(ii) and 3(ii) with the equality
I (N )

= N + 2 − S(N )
− R(N ). Finally, when λ > 1, the desired result is a consequence of

Theorem 3(iii) and the fact that we have R(N )
+ I (N )

= N + 2 on the event E N
ext and that

P

E N

ext


→ 1 as N → ∞. �



I. Kortchemski / Stochastic Processes and their Applications 125 (2015) 886–917 901

4. Final state in the large population limit: convergence in L p

The goal of this section is to study the asymptotic behavior of S(N ), I (N ) and R(N ) with
respect to Lp convergence.

4.1. Main results

We start by stating the results which will be proved in this section.

Theorem 5 (Number of Remaining Susceptible Individuals). The following assertions hold.

(i) Assume that λ ∈ (0, 1). The convergence (1) holds in Lp for every 1 6 p < 1/λ. In
particular, E


S(N )


∼ N 1−λ

· Γ (λ + 1) as N → ∞. For p = 1/λ, the convergence does
not hold in Lp, but we have

E

 S(N )

N 1−λ

1/λ
 −−−−→

N→∞
1 + 1/λ.

For p > 1/λ, we have E


S(N )/N 1−λ
p


∼ N pλ−1/λ as N → ∞.

(ii) Assume that λ = 1. Then E

S(N )


→ 1 + E [G] = 2 as N → ∞ and, for p >

1, E


S(N )
p


∼ N p−1 as N → ∞.

(iii) Assume that λ > 1. Then E


S(N )
p


∼ N p−1/λ for p > 1 as N → ∞. In particular,

E

S(N )


→ 1/λ as N → ∞.

We make several comments on these results:

(i) When λ ∈ (0, 1), the discrepancy concerning the Lp convergence for p = 1/λ happens
because the event that the infected individual starts by recovering happens with probability
1/(λN + 1) (in which case the process terminates with N susceptible individuals), and gives
a non-negligible contribution to S(N )/N 1−λ (in the Lp sense) as soon as p > 1/λ.

(ii) When λ > 1, Theorem 5 implies that the convergences in distribution appearing in
Theorem 2(ii) and (iii) never hold in Lp when p > 1. When λ > 1, the fact that S(N )

converges in probability to 0 but not in Lp is explained by the fact that even if P

S(N ) > 0


tends to 0 as N → ∞, on the event S(N ) > 0, S(N ) is typically not o


1/P


S(N ) > 0


.

Theorem 6 (Number of Remaining Recovered Individuals). The following assertions hold.

(i) Assume that λ ∈ (0, 1). Then as N → ∞,

N − E


R(N )



∼Γ (λ + 1) · N 1−λ if 0 < λ <

√
5 − 1
2

∼


1
2
Γ (1 + 1/λ) + Γ (λ + 1)


· N (3−

√
5)/2 if λ =

√
5 − 1
2

∼
1
2
Γ (1 + 1/λ) · N 2−1/λ if

√
5 − 1
2

< λ < 1.

In particular, the convergence (2) holds in L1 if and only if λ ∈ (0, (
√

5 − 1)/2).
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(ii) Assume that λ = 1. Then the convergence (3) holds in Lp for every p > 1. In particular,

E


R(N )


∼
N→∞

ln(2) · N .

(iii) Assume that λ > 1. The convergence (4) holds in Lp if and only if 1 6 p < λ. In particular,

E


R(N )


∼
N→∞

1
Γ (1 − 1/λ)

· N 1/λ.

Theorem 7 (Outbreak Sizes). The following assertions hold.

(i) If λ ∈ (0, 1), as N → ∞,

E


I (N )


→0 if 0 < λ < 1/2
→1 if λ = 1/2

∼
1
2
Γ (1 + 1/λ) · N 2−1/λ if 1/2 < λ < 1.

(ii) If λ = 1, then the convergence (5) holds in Lp for every p > 1. In particular,

E


I (N )


∼
N→∞

(1 − ln(2)) · N .

(iii) If λ > 1, the convergence (6) holds in Lp if and only if 1 6 p < λ. In particular,

N − E


I (N )


=
1

Γ (1 − 1/λ)
· N 1/λ

+ o(N 1/λ).

By using the relation S(N )
+ I (N )

+ R(N )
= N + 2, we shall establish Theorems 5(ii) & (iii)

and 6(ii) & (iii) to get Theorem 7(ii) & (iii). However, we prove Theorems 5(i) and 7(i) to get
Theorem 6(i).

4.2. Large deviations

Here we gather several lemmas involving large deviations estimates which will be useful
later.

Definition 4.1. Let ϵ > 0. We say that a sequence of positive numbers (xn) is oeϵ(n) if there
exist positive constants c, C > 0 such that xn 6 Ce−cnϵ

for every n > 1, in which case we write
xn = oeϵ(n). We write xn = oe(n) if there exists ϵ > 0 such that xn = oeϵ(n).

Lemma 4.2. The following assertions hold.

(i) For every N > 1 and x > 1, we have P (τN /N > x) 6 exp(−N (x − 1 − ln(x))), and for
every N > 1 and x ∈ (0, 1) we have P (τN /N 6 x) 6 exp(−N (x − 1 − ln(x))).

(ii) We have P

|τN − N | > N 3/4


= oe(N ).

(iii) For every η > 0, there exists a constant C > 0 such that P

P(1+N−η)i < i


6

exp(−Ci N−2η) for every i, N > 1.
(iv) For every η ∈ (0, 1), there exists a constant C > 0 such that P (τN 6 NηE) 6

exp(−C N 1−η) for every N > 1.
(v) For every r > 1, there exists a constant cr > 0 such that E


(1 + Ps)

r


6 cr (1 + sr ) for
every s > 0.
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Proof. Since τ N is distributed as the sum of N i.i.d. exponential random variables of parameter
1, we have ln(E [θτ N ]) = N ln(1/(1 − θ)), so that by Markov’s exponential inequality we get

∀ N > 1, ∀ x > 1, P (τN /N > x) 6 exp


−N · sup
θ>0

(θx − ln(1/(1 − θ)))


= exp(−N (x − 1 − ln(x))).

One similarly shows that P (τN /N 6 x) 6 exp(−N (x − 1 − ln(x))) for N > 1 and x ∈ (0, 1).
The second assertion easily follows from (i). For (iii), set γN = ln(1 + N−η), and for N
sufficiently large apply Markov’s exponential inequality:

P

P(1+N−η)i < i


6 eγN i+(1+N−η)i(e−γN −1)

= e−i N−η(1−Nη ln(1+N−η)) 6 e−i N−2η/4

since x ln(1+ x−1) 6 1− (4x)−1 for x > 1. For (iv), it suffices to write, for N sufficiently large,

P

τN 6 NηE


= P


E > τN /Nη


= E


e−τN /Nη


= E


e−τ1/Nη

N

=


1 −

1
Nη + 1

N

6 e−N 1−η/2.

Indeed, 1 − 1/(x + 1) 6 e−1/(2x) for x > 1. Finally, for (v), by convexity of x → xr on R+,
it is enough to check that there exists a constant cr > 0 such that E


(Ps)

r


6 cr sr for every
s > 0. To this end, first observe that P (Ps > x) 6 exp(−(s − x + x ln(x/s))) for x > s. This
follows from Markov exponential’s inequality P (Ps > x) 6 exp(−(γ x − s(eγ

− 1))) applied
with γ = ln(x/s). Then write:

E

(Ps)

r 
=


∞

0
du P


Ps > u1/r


6 sr

+


∞

sr
du P


Ps > u1/r


= sr

+ r


∞

s
du P (Ps > u) ur−1

6 sr
+ r


∞

s
du e−(s−u+u ln(u/s))ur−1

= sr
+ rsr


∞

1
du e−s(1+u ln(u)−u)ur−1.

The conclusion follows since 1+u ln(u)−u > 0 for u > 1, so that e−s(1+u ln(u)−u) is decreasing
in s for u > 1. This completes the proof. �

4.3. Susceptible vertices in the final state

Proof of Theorem 5. To simplify notation, let E N
1 , E N

2 , E N
3 be the three events defined as

follows: E N
1 = {ρ(1) > σN (1)},

E N
2 = {SN (t) > R(t) − 1 for t ∈ [ρ(2), min(σN (N ), ρ(N ) − ln(N )−1)]},

E N
3 = {σN (N ) > ρ(N ) − ln(N )−1

}.

Notice that E N
1 ∩ E N

2 ∩
c E N

3 ⊂ E N
ext , so that S(N )

= 0 on the latter event. Therefore we have

E


F(S(N ))


= E


F(S(N ))1c E N
1


+ E


F(S(N ))1E N

1 ∩c E N
2


+ E


F(S(N ))1E N

1 ∩E N
2 ∩E N

3


for every measurable function F : R → R+ such that F(0) = 0.
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Now assume that 0 < λ < 1 and fix 1 6 r < 1/λ. First, by (14), since r < 1/λ,

E

(S(N )/N 1−λ)r1c E N

1


=


N

N 1−λ

r

·
1

λN + 1
−−−−→
N→∞

0,

and by Lemma 3.1

E

(S(N )/N 1−λ)r1E N

1 ∩c E N
2


6


N

N 1−λ

r

·
1

N 2 −−−−→
N→∞

0.

Now note that on the event E N
1 ∩ E N

2 ∩ E N
3 , our coupling implies that there are still infected

individuals remaining at time ρ(N )− ln(N )−1. By Proposition 1.2(iii), on the event E N
1 ∩ E N

2 ∩

E N
3 , we have

SN (ρ(N )) 6 S(N ) 6 SN (ρ(N ) − ln(N )−1),

or, in other words, ZσN (N )−ρ(N ) 6 S(N ) 6 ZσN (N )−ρ(N )+ln(N )−1 . Let E N
4 be the event defined

by E N
4 = {τN > N/2, τ N 6 2N , E <

√
N }. Since P


c E N

4


= oe(N ) by Lemma 4.2(i) and

S(N ) 6 N , we have E

(S(N )/N 1−λ)r1c E N

4


→ 0 as N → ∞. Hence, by the previous discussion

and (18), for every N sufficiently large so that exp(λ ln(N )−1) 6 2,

E

(S(N )/N 1−λ)r1E N

1 ∩E N
2 ∩E N

3 ∩E N
4


6 E


ZσN (N )−ρ(N )+ln(N )−1

N 1−λ

r

1
{E N

1 ∩E N
2 ∩E N

3 ∩E N
4 }



6 E


P

(
√

N+2N ) Eλ

(N/2)λ
·2

+ 1

N 1−λ


r . (25)

Plugging the inequality appearing in Lemma 4.2(v) into (25) readily implies that E

(S(N )/

N 1−λ)r


is bounded for every 1 6 r < 1/λ, which shows that S(N )/N 1−λ converges in Lp

for every 1 6 p < 1/λ.
When p > 1/λ, one similarly gets that

E

(S(N )/N 1−λ)p1c E N

1


=


N

N 1−λ

p

·
1

λN + 1
∼

N→∞

1
λ

· N pλ−1,

E

(S(N )/N 1−λ)p1E N

1 ∩c E N
2


6


N

N 1−λ

p

·
1

N 2 ∼
N→∞

N pλ−2.

Then, to simplify notation, set, for N > 1 and u ∈ R,

WN (u) =
1

N 1−λ


P Eλ(E+τ N )

(E+τN )λ
eλu−E

+ 1


, (26)

where we set by convention Pt = −1 for t < 0. As before, by Proposition 1.2(iii),

E


S(N )

N 1−λ

p

1E N
1 ∩E N

2 ∩E N
3


6 E


WN (ln(N )−1)p


.

It is a simple matter to check that E


WN (ln(N )−1)
p


→ E

Eλp


. Indeed, in the proof of

Theorem 2, we have seen that WN (0) converges in probability to Eλ. The same argument shows
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that WN (ln(N )−1) also converges in probability to Eλ, and the same argument that lead us to

(25) shows that, for every r > 1, E


WN (ln(N )−1)
r

is bounded as N → ∞. The preceding

estimates give

E


S(N )

N 1−λ

p
∼

N→∞

1
λ

· N pλ−1.

When p = 1/λ, we similarly obtain that

E

(S(N )/N 1−λ)1/λ1c E N

1


=


N

N 1−λ

1/λ

·
1

λN + 1
−−−→
n→∞

1
λ

,

E

(S(N )/N 1−λ)1/λ1E N

1 ∩c E N
2


6


N

N 1−λ

1/λ

·
1

N 2 ∼
N→∞

1
N

,

lim sup
N→∞

E

(S(N )/N 1−λ)1/λ1E N

1 ∩E N
2 ∩E N

3


6 E [E] .

We next claim that

E [E] 6 lim inf
N→∞

E

(S(N )/N 1−λ)1/λ1E N

1 ∩E N
2 ∩E N

3


. (27)

To this end, first observe that by Proposition 1.2(iii),

E

WN (0)1/λ1E N

1 ∩E N
2 ∩E N

3


6 E

 S(N )

N 1−λ

1/λ

1E N
1 ∩E N

2 ∩E N
3

 .

We already know that P

E N

1 ∩ E N
2 ∩ E N

3


→ 1 as N → ∞. In addition, in the proof of

Theorem 2, we have seen that WN (0) converges in probability to Eλ as N → ∞. Hence
the quantity WN (0)1/λ1E N

1 ∩E N
2 ∩E N

3
converges in probability to E. Our claim (27) then follows

from Fatou’s Lemma and a standard extraction argument. The preceding estimates imply that
E

(S(N )/N 1−λ)1/λ


→ 1 + 1/λ as N → ∞. This completes the proof of (i).

Now assume that λ = 1 and recall the definition of the events E N
1 , E N

2 , E N
3 from the

beginning of the proof and the definition of WN (u) from (26). The same argument as before
yields

E


S(N )1c E N
1


= N ·

1
N + 1

−−−−→
N→∞

1, E


S(N )1c E N
2


6 N ·

C

N 2 −−−−→
N→∞

0

and

E

WN (0)1E N

1 ∩E N
2 ∩E N

3


6 E


S(N )1E N

1 ∩E N
2 ∩E N

3


6 E


WN (ln(N )−1)1E N

1 ∩E N
2 ∩E N

3


.

Since λ = 1, we have already seen that σN (N ) − ρ(N ) → ln(E/E) almost surely as N → ∞.
Hence 1E N

1 ∩E N
2 ∩E N

3
→ 1

{E>E}
almost surely as N → ∞. The same arguments as for the case

λ ∈ (0, 1) yield

E


S(N )1E N
1 ∩E N

2 ∩E N
3


−−−−→
N→∞

E

PE−E1{E>E}


= 2E


G ′

.
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The preceding estimates thus entail that E

S(N )


→ 1 + 2E


G ′


= 2 as N → ∞. If p > 1, one
similarly obtains that

E


S(N )
p
1c E N

1


= N p

·
1

N + 1
∼

N→∞
N p−1,

E


S(N )
p
1c E N

2


6 N p

·
C

N 2 ∼
N→∞

C · N p−2,

E


S(N )
p
1E N

1 ∩E N
2 ∩E N

4


−−−−→
N→∞

2E

(G ′)p ,

implying that E


S(N )
p


∼ N p−1 as N → ∞. This completes the proof of (ii).
For (iii), assume that λ > 1 and write for p > 1

E


S(N )
p

=
N p

λN + 1
+ E


S(N )

p
1E N

1 ∩c E N
2


+ E


S(N )

p
1E N

1 ∩E N
2 ∩E N

3


.

As before, E


S(N )
p 1E N

1 ∩c E N
2


6 N p

· C/N 2
= o(N p−1) and, for N sufficiently large that

eλ/ ln(N ) 6 2:

E


S(N )
p
1E N

1 ∩E N
2 ∩E N

3


6 E


WN (ln(N )−1)p1E N

1 ∩E N
2 ∩E N

3


6 E


P Eλ(E+τ N )

(E+τN )λ
eλ/ ln(N )−E

+ 1

p

1E N
1 ∩E N

2 ∩E N
3


6 cpE


P2Eλ(E+τ N )/τλ

N

p


+ cpP


E N
3


,

where we have used Lemma 4.2(v) for the last inequality. Since λ > 1, it is a simple matter
to check using Lemma 4.2(ii) that the first quantity tends to 0 as n → ∞, while P


E N

3


→ 0

since σN (N )/ρ(N ) converges almost surely to 1/λ < 1. This shows that E

S(N )


∼ N p−1/λ as

N → ∞ and completes the proof of the theorem. �

4.4. Recovered vertices in the final state

Proof of Theorem 6 (ii) and (iii). If λ = 1, note that since R(N ) 6 N , E

(R(N )/N )p


6 1.

Since R(N )/N converges in distribution as N → ∞, this implies that for λ = 1, R(N )/N
converges in Lp for every p > 1.

Now assume that λ > 1. By Proposition 1.2(iv), R(N ) 6 R(σN (N )). Since R(N )/N 1/λ

converges in distribution, it is enough to check that for every 1 6 r < λ, E

(R(σN (N ))/N 1/λ)r


is bounded as N → ∞. Using (13) and recalling that E


(1 + Ps)

r


6 cr (1 + sr ), write

E

(R(σN (N )))r  6 E


PE(1+τ N /E)1/λ + 1

r
6 cr


1 + E


E(1 + τ N /E)1/λ

r
,

and

E

Er (1 + τ N /E)r/λ


6 c′

r


1 + E


τ

r/λ
N


· E

E

−r/λ


6 c′′
r · N r/λ.

Note that here we crucially need the fact that r < λ since E

E

−r/λ


= ∞ otherwise. When

p > λ, the convergence (4) cannot hold in Lp since E


Exp(E
1/λ

)
p

= ∞. �

We postpone the proof of Theorem 6(i) since it requires Theorem 7(i).
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4.5. Infected vertices in the final state

We will need the following results in the proof of Theorem 7.

Lemma 4.3. Let aN , bN be two sequences of positive real numbers such that aN ∼ N and
bN ∼ N as N → ∞. If λ ∈ (0, 1), the following assertions hold.

(i) We have P

(1 + aN /E)1/λ < 1 + bN /E


∼

N→∞

Γ (1+1/λ)

N
1
λ

−1
.

(ii) Conditionally on the event (1 + aN /E)1/λ < 1 + bN /E, the random variable 1 +
E

bN
−

E
bN

(1 +
aN

E
)1/λ converges in distribution to the uniform distribution on [0, 1] as N → ∞.

This convergence also holds in L1.

(iii) We have P


1 +
bN
E


e−1/ ln(N ) 6


1 +

aN

E

1/λ

6 1 +
bN
E


= o(N 1−1/λ).

Proof. Fix 0 6 c 6 1 and observe that

P

(1 + aN /E)1/λ < 1 + (1 − c)bN /E


= P


E >

aN

(1 + (1 − c)bN /E)λ − 1


= E


exp


−

aN

(1 + (1 − c)bN /E)λ − 1


=


∞

0
dx exp(−x) · exp


−

aN

(1 + (1 − c)bN /x)λ − 1


=

bN (1 − c)

a1/λ
N


∞

0
dx exp(−x(1 − c)bN /a1/λ

N ) exp


−

1

(1/a1/λ
N + 1/x)λ − 1/aN


,

where we have used a change of variables for the last equality. It follows from the dominated
convergence theorem that

N
1
λ
−1P


(1 + aN /E)1/λ < 1 + (1 − c)bN /E


−−−−→
N→∞

(1 − c)


∞

0
dx exp(−xλ)

= (1 − c)Γ (1 + 1/λ).

Indeed, it is a simple matter to check that (αx + 1)λ − (αx)λ 6 1 for every α > 0 and x > 0,
which implies that

exp


−

1

(1/a1/λ
N + 1/x)λ − 1/aN


6 exp(−xλ)

for every x > 0 and N > 1. Assertion (i) immediately follows.
For (ii), note that

E


1 +

E

bN
−

E

bN


1 +

aN

E

1/λ
 (1 + aN /E)1/λ < 1 + bN /E


=

 1

0
dc

FN (c)

FN (0)
,

where

FN (c) = P

(1 + aN /E)1/λ < 1 + (1 − c)bN /E


.
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For fixed c ∈ [0, 1], we have already seen that FN (c)/FN (0) → 1−c, which shows that the distri-
butional limit is uniform. In addition, since exp(−x(1 − c)bN /a1/λ

N ) 6 1, we also have FN (c) 6

bN (1 − c)/a1/λ
N . Since FN (0) ∼ bN /a1/λ

N as N → ∞, there exists a constant K > 0 such that

FN (c)/FN (0) 6 K (1 − c) for every c ∈ [0, 1] and N > 1. Thus
 1

0 dc FN (c)
FN (0)

→
 1

0 dc (1 − c) =

1/2 as N → ∞ by the dominated convergence theorem. This completes the proof of (ii).
For (iii), to simplify notation set X N = 1 +

E
bN

−
E

bN
(1 +

aN

E
)1/λ and observe that

P


1 +

bN

E


e−1/ ln(N ) 6


1 +

aN

E

λ

6


1 +

bN

E



= P


E

bN
+ 1


1 − e−1/ ln(N )


> X N

X N > 0


· P (X N > 0) .

By (i), P (X N > 0) ∼ Γ (1 + 1/λ) · N 1−
1
λ , and by (ii), the law of X N , conditionally on X N > 0,

converges in distribution to a uniform distribution on [0, 1]. Since


E
bN

+ 1
 

1 − e−1/ ln(N )


converges almost surely to 0 as N → ∞, assertion (iii) follows. This completes the proof. �

Corollary 4.4. For λ ∈ (0, 1) we have

P (σN (N ) < ρ(N )) ∼
N→∞

Γ (1 + 1/λ)

N
1
λ
−1

.

Proof. Recalling that σN (N ) = ln(1 + τ N /E)/λ and ρ(N ) = ln(1 + τN /E), this is a simple
consequence of Lemma 4.3, since by Lemma 4.2(ii) we can write

P


1 +

N + N 3/4

E

1/λ

< 1 +
N − N 3/4

E


+ oe(N )

6 P (σN (N ) < ρ(N )) 6 P


1 +

N − N 3/4

E

1/λ

< 1 +
N + N 3/4

E


+ oe(N ). �

In the sequel, we will often refer to Lemma 4.3 when aN and bN are respectively replaced
by τ N and τN . This may be justified by using the same kind of inequalities as in the proof of
Corollary 4.4 (we shall leave such details to the reader).

We will also need the following estimate.

Lemma 4.5. For λ ∈ (0, 1) we have P (σN (N ) < ρ(N ), σN (1) > ρ(1)) = o(N 1−1/λ).

Proof. It follows from the definition of the chain SN that (σN (1), σN (N )) has the same distri-
bution as (EN , EN + σN−1(N − 1)), where EN is an independent exponential random variable
of parameter N . Let E1 be an independent exponential random variable of parameter 1. Hence,
since (τ1, τN ) has the same distribution as (E1, E1 + τN−1),

P (σN (N ) < ρ(N ), σN (1) > ρ(1)) 6 P (σN−1(N − 1) < ρ(N ), EN > ρ(1))

6 P


ln


1 +
τ N−1

E


< ln


1 +

E1 + τN−1

E


, EN > E1


.
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Since P

E1 >

√
N


= oe(N ), it follows that

P (σN (N ) < ρ(N ), σN (1) > ρ(1))

6 P


ln


1 +
τ N−1

E


< ln


1 +

√
N + τN−1

E


, EN > E1


+ oe(N )

=
1

N + 1
P


ln


1 +
τ N−1

E


< ln


1 +

√
N + τN−1

E


+ oe(N ).

The same argument that was used to establish Corollary 4.4 shows that

P


ln


1 +
τ N−1

E


< ln


1 +

√
N + τN−1

E


∼

N→∞

Γ (1 + 1/λ)

N
1
λ
−1

.

The desired result follows. �

We are finally ready to prove Theorem 7.

Proof of Theorem 7. When λ = 1 (resp. λ > 1), this is a simple consequence of Theorems 5(ii)
and 6(ii) (resp. Theorems 5(iii) and 6(iii)) by using the equality I (N )

= N + 2 − S(N )
− R(N ).

Now assume that 0 < λ < 1, recall that E N
1 = {ρ(1) > σN (1)} and let E N

5 be the event

E N
5 = {σN (N ) 6 ρ(N ) − ln(N )−1

}.

Since P

E N

5


= P (σN (N ) 6 ρ(N )) − P


ρ(N ) − ln(N )−1 6 σN (N ) 6 ρ(N )


, by Corol-

lary 4.4 and Lemma 4.3(iii) we have

P


E N
5


∼

N→∞

Γ (1 + 1/λ)

N
1
λ
−1

.

Next, since I (N )
= 0 on each one of the events c E N

ext ,
c E N

1 and {σN (N ) > ρ(N )}, we may write

E


I (N )


= E


I (N )1
{ρ(N )−ln(N )−16σN (N )6ρ(N ),E N

ext }


+ E


I (N )1

{E N
1 ,E N

5 ,E N
ext }


.

Let AN (resp. BN ) be the first term (resp. second term) in the last sum. We study AN and BN
separately. Since AN 6 N · P


ρ(N ) − ln(N )−1 6 σN (N ) 6 ρ(N )


, by Lemma 4.3 we have

AN = o(N 2−1/λ).
We shall now establish that

BN ∼
N→∞

Γ (1 + 1/λ)

2
· N 2−1/λ.

By Proposition 1.2(ii), we have I (N )
= N + 2 − R(σN (N )) on the event E N

ext , so that

BN = E


I (N )1
{E N

1 ,E N
5 ,E N

ext }


= E


(N + 2 − R(σN (N )))1

{E N
1 ,E N

5 }


− E


(N + 2 − R(σN (N )))1

{E N
1 ,E N

5 ,c E N
ext }
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By Lemma 3.1, we have E

(N + 2 − R(σN (N )))1

{E N
1 ,E N

5 ,c E N
ext }


6 NP


E N

1 , E N
5 , c E N

ext


6

C/N . Then write

E

(N + 2 − R(σN (N )))1

{E N
1 ,E N

5 }


= E


(N + 2 − R(σN (N )))1

{E N
5 }


− E


(N + 2 − R(σN (N )))1

{c E N
1 ,E N

5 }


.

By Lemma 4.5, we have

E

(N + 2 − R(σN (N )))1

{c E N
1 ,E N

5 }


6 (N + 2)P (σN (N ) < ρ(N ), UN (1) > ρ(1))

= o(N 2−1/λ).

In addition, using our coupling and the fact that (Pt ; 0 6 t 6 τN ) has the same distribution as
(N − 1 − P(τ N −t)−; 0 6 t 6 τN ), we have

E

(N + 2 − R(σN (N )))1

{E N
5 }


= 2P


E N

5


+ E


(N − 1 − PE(eσN (N )

−1))1{E N
5 }


= 2P


E N

5


+ E


PτN −E(eσN (N )

−1)1{E N
5 }


.

We have 2P

E N

5


= o(N 2−1/λ), and E


PτN −E(eσN (N )

−1)1{E N
5 }


can be written as

E

PτN −E(eσN (N )

−1)1{σN (N )<ρ(N )}


− E


PτN −E(eσN (N )

−1)1{ρ(N )−ln(N )−16σN (N )6ρ(N )}


.

We can bound the second term of this expression by N ·P

ρ(N ) − ln(N )−1 6 σN (N ) 6 ρ(N )


,

which by Lemma 4.3 is o(N 2−1/λ). Rewrite the first expression as:

E

PτN −E(eσN (N )

−1)1{σN (N )<ρ(N )}


= E

P
τN ·


1+

E
τN

−
E

τN


1+

τ N
E

1/λ
1

1+
E

τN
−

E
τN


1+

τ N
E

1/λ
>0

 .

We claim that this expression is asymptotic to Γ (1+1/λ)
2 · N 2−1/λ as N → ∞. To prove this, as

before, it is enough to establish this claim when τ N and τN are respectively replaced by aN and
bN , where aN , bN are two sequences of positive real numbers such that aN ∼ N and bN ∼ N
as N → ∞ (we leave details to the reader). Recall the notation X N = 1 +

E
bN

−
E

bN
(1 +

aN

E
)1/λ

and observe that

E

PbN X N1{X N >0}


= E


bN X N1{X N >0}


= bN · E [X N |X N > 0] · E [X N > 0] ,

which, by Lemma 4.3(i) and (ii) is asymptotic to Γ (1+1/λ)
2 · N 2−1/λ as N → ∞. The preceding

estimates establish that E

I (N )


∼

Γ (1+1/λ)
2 · N 2−1/λ as N → ∞, and this completes the

proof. �

Note that the factor 1/2 is present in the asymptotic behavior of E

I (N )


and not in that of

P (σN (N ) 6 ρ(N )). The reason stems from the proof of Theorem 7: when σN (N ) 6 ρ(N ),
extinction happens roughly at time τN /2 (in the time scale of the Poisson processes), and then
on average roughly N/2 infected vertices are present at that time.



I. Kortchemski / Stochastic Processes and their Applications 125 (2015) 886–917 911

The proof of Theorem 6(i) is now effortless:

Proof of Theorem 6 (i). Assume that λ ∈ (0, 1). By Theorem 5(i), we have E

S(N )


∼ N 1−λ

·Γ (λ+1). It then suffices to observe that R(N )
= N +2− I (N )

− S(N ). Indeed, by Theorem 7(i),
when λ < (1 −

√
5)/2, we have E


I (N )


= o(N 1/λ), when λ = (1 −

√
5)/2 we have

2 − 1/λ = 1 − λ and E

I (N )


∼

1
2Γ (1 + 1/λ)N 1−λ and finally when (1 −

√
5)/2 < λ < 1 we

have E

S(N )


= o(N 2−1/λ). �

5. Proofs of the technical lemmas

5.1. Proof of Lemma 2.1

Proof. If λ ∈ (0, 1), Lemma 2.1 follows from the fact that P (σN (N ) < ρ(N )) → 0 as N → ∞.
Now assume that λ > 1. By (12) and (13), it is sufficient to show that

P


ln


1 +
τN

E


>

1
λ

ln


1 +
τ N

E


and ∃ 0 6 t 6

1
λ

ln


1 +
τ N

E


such that PE(et −1) > P

(τ N +E)(1−e−λt)


tends to 0 as N → ∞. By making the time change s = (τ N + E)


1 − e−λt


, this is equivalent

to showing that

P

 ln


1 +
τN

E


>

1
λ

ln


1 +
τ N

E


and ∃ 0 6 s 6 τ N

such that P
E


τ N +E

τ N +E−s

1/λ

−1

 > Ps

 −−−−→
N→∞

0,

or, again equivalent, to showing that

P

 ln


1 +
τN

E


>

1
λ

ln


1 +
τ N

E


and ∃ 1 6 i 6 N

such that P
E


τ N +E

τ N +E−τ i

1/λ

−1

 > i


tends to 0 as N → ∞.

We first treat the case λ = 1. Since ln

1 +

τN
E


/ ln


1 +

τ N

E


converges almost surely to E/E,

it is sufficient to establish that

P

E > E and ∃ 1 6 i 6 N such that P
E


τ i

τ N +E−τ i

 > i

 −−−−→
N→∞

0. (28)
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To this end, we separate the cases 1 6 i 6
√

N and i >
√

N and first prove that

P

∃ 1 6 i 6
√

N such that P
E


τ i

τ N +E−τ i

 > i

 −−−−→
N→∞

0. (29)

By Lemma 4.2, P (τN < N/2) = oe(N ) and P

∃ 1 6 i 6

√
N such that τ i > N 3/4


= oe(N ),

so that it is sufficient to check that for every M > 0,

P

∃ 1 6 i 6

√
N such that PMτ i /N 3/4 > i


−−−−→
N→∞

0. (30)

Using the inequality P (Ps > i) 6 si/ i !, we get that

P

PMτ i /N 3/4 > i


6

M i

i !N 3i/4 E

τ i

i


= (M/N 3/4)i

·
(2i − 1)!

i !(i − 1)!
6 (4M/N 3/4)i .

Hence P

∃ 1 6 i 6

√
N such that PMτ i /N > i


6


∞

i=1(4M/N 3/4)i
= 4M/(N 3/4

− 4M),

and (30) follows.
We next show that

P

E > E and ∃
√

N 6 i 6 N such that P
E


τ i

τ N +E−τ i

 > i

 −−−−→
N→∞

0. (31)

Since Eτ i/(τ N + E − τ i ) 6 Eτ i/E, it is sufficient to show that

P

E > E and ∃

√
N 6 i 6 N such that PEτ i /E

> i


−−−−→
N→∞

0.

Fix ϵ > 0 and let η ∈ (0, 1) be such that P

E > E > (1 − η)E


6 ϵ. Then observe that we

have P

∀ i >

√
N , τ i/ i 6 1 + η


> 1 − ϵ for N sufficiently large (this can be seen using, for

example, Lemma 4.2(i) and the union bound). Hence it is sufficient to establish that

P

∃

√
N 6 i 6 N such that P(1−η2)i > i


−−−−→
N→∞

0.

This follows from the fact that for every η ∈ (0, 1), there exists a constant C > 0 such that
we have P


P(1−η2)i > i


6 exp(−Ci). Indeed, fix γ > 0 such that γ > (1 − η2)(eγ

− 1),

and using Markov’s exponential inequality write P

P(1−η2)i > i


6 e−γ i e(1−η2)i(eγ

−1)
=

e−i(γ−(1−η2)(eγ
−1)). Combined with (29), this completes the proof in the case λ = 1.

We finally treat the case λ > 1. To this end, we again separate the cases i 6
√

N and i >
√

N
and first note that

P

∃ 1 6 i 6
√

N such that P
E


τ N +E

τ N +E−τ i

1/λ

−1

 > i

 −−−−→
N→∞

0. (32)
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Indeed, since x1/λ 6 x for x > 1, we have

P

∃ 1 6 i 6
√

N such that P
E


τ N +E

τ N +E−τ i

1/λ

−1

 > i


6 P

∃ 1 6 i 6
√

N such that P
E


τ i

τ N +E−τ i

 > i

 ,

which tends to 0 as N → ∞ by (29). We next show that

P

∃
√

N 6 i 6 N such that P
E


τ N +E

τ N +E−τ i

1/λ

−1

 > i

 −−−−→
N→∞

0.

To this end, using the fact that v+E

v+E−u
6 u+E

E
for every 0 6 u 6 v and the fact that P (τ i < E)

= 1/2i , it is sufficient to prove that

P


∃
√

N 6 i 6 N such that P 2E

E
1/λ

τ
1/λ
i

> i


−−−−→
N→∞

0.

We may choose M > 0 such that P


2E 6 ME
1/λ

and τ i 6 i (1+λ)/2 for
√

N 6 i 6 N


>

1 − ϵ. It is hence enough to check that

P

∃

√
N 6 i 6 N such that PMi (1+λ)/(2λ) > i


−−−−→
N→∞

0.

This follows from the fact that since (1 + λ)/(2λ) < 1, there exists a constant C > 0 such
that P


PMi (1+λ)/(2λ) > i


6 exp(−Ci) for every i > 0 (this comes from a simple application

of Markov’s exponential inequality). Combined with (32), this completes the proof in the case
λ > 1. �

5.2. Proof of Lemma 3.1

Proof of Lemma 3.1. Recall that here λ > 0. Set xN = 1/ ln(N ) to simplify notation. By (12)
and (13), it is sufficient to show that

P

∃ ρ(2) 6 t 6 ρ(N ) − xN such that P

(τ N +E)(1−e−λt) < PE(et −1)


6

C

N 2 .

By making the time change s = E(et
− 1), this is equivalent to showing that

P


∃ τ2 6 s 6 (E + τN )e−xN − E such that P
(τ N +E)


1−

Eλ

(E+s)λ

 < Ps


6

C

N 2 .

We first check that

P


∃ τ2 6 s 6 τN 3/4 such that P
(τ N +E)


1−

Eλ

(E+s)λ

 < Ps


6

C

N 2 . (33)
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To this end, write

P


∃ τ2 6 s 6 τN 3/4; P
(τ N +E)


1−

Eλ

(E+s)λ

 < Ps



= P

∃ 2 6 i 6 N 3/4
; P

(τ N +E)


1−

Eλ

(E+τi )
λ

 < i


6 P

∃ 2 6 i 6 N 3/4
; P

τ N


1−

Eλ

(E+τi )
λ

 < i

 .

Observe that Pτ N (1−Eλ/(E+τi )
λ) > Pτ N (1−1/2λ) on the event τi > E, and that there exists a

constant C > 0 such that P

Pτ N (1−1/2λ) < i


6 exp(−C N ) for every N > 1 and 1 6 i 6

N 3/4. On the other hand, since there exists a constant C0 > 0 such that 1 −
1

(1+x)λ
> 2C0x for

every 0 6 x 6 1, it follows that on the event τi 6 E, we have Pτ N (1−Eλ/(E+τi )
λ) > P2C0τ N τi /E >

P2C0τ N τi /(τi +E). Since P (τ N 6 N/2) = oe(N ), it is therefore enough to check that

P


∃ 2 6 i 6 N 3/4
; P τi

τi +E
·C0 N < i


6

C

N 2 . (34)

It is a simple matter to check that the law of τi/(τi + E) has density i x i−1 on [0, 1]. Hence

P


P τi
τi +E

·C0 N = j


=

1
j !

E


τi

τi + E
· C0 N

 j

e
−

τi
τi +E

·C0 N



=
C j

0

j !

 1

0
dx i · x i−1

· x j
· N j

· e−xC0 N

=
i

j !(C0 N )i

 C0 N

0
ui+ j−1e−udu

6
i

j !(C0 N )i


∞

0
ui+ j−1e−udu =

(i + j − 1)!

j !

i

(C0 N )i .

Then, for i > 2 we have

P


P
1−

E
τi +E


·C0 N

< i


6

i−1
j=0

(i + j − 1)!

j !
·

i

(NC0)i =
(2i − 1)!

(i − 1)!
·

1
(C0 N )i

6 C


4i

C0e

i

·
1

N i ,

where we have used Stirling’s formula for the last inequality. Hence (34) will follow if we
establish the existence of an integer M > 1 such that

N 2
N 3/4
i=M


4i

C0e

i

·
1

N i −−−−→
N→∞

0.
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We check that M = 9 works by writing, for N sufficiently large,

N 2
N 3/4
i=9


4i

C0e

i

·
1

N i 6 N 2
N 3/4
i=9


4N 3/4

C0e

i

·
1

N i 6 N 2
∞

i=9


4

C0eN 1/4

i

6 N 2


4

C0eN 1/4

9

= C
1

N 1/4 ,

which tends to 0 as N → ∞.
To complete the proof of Lemma 3.1 it is therefore enough to check that

P


∃ τN 3/4 6 s 6 (E + τN )e−xN − E such that P
(τ N +E)


1−

Eλ

(E+s)λ

 < Ps


6

C

N 2 . (35)

A simple calculation shows that the function s →
1
s


1 −

Eλ

(E+s)λ


is decreasing on R+. Hence,

for 0 6 s 6 (E + τN )e−xN − E,

τ N + E

s


1 −

Eλ

(E + s)λ


>

τ N + E

(E + τN )e−xN − E


1 −

Eλ

(E + τN )λ
eλxN


=

τ N

τN
exN · AN ,

where

AN =
1 + E/τ N

1 − E(exN − 1)/τN


1 −

Eλ

(E + τN )λ
eλxN


.

Hence

P


∃ τN 3/4 6 s 6 (E + τN )e−xN − E such that P
(τ N +E)


1−

Eλ

(E+s)λ

 < Ps


6 P


∃ τN 3/4 6 s 6 (E + τN )e−xN − E such that P τ N

τN
exN AN ·s

< Ps


. (36)

We then claim that P

τ N /τN 6 1 − 1/N 1/4


= oe(N ) and that P


AN 6 1 − 1/Nλ/4


=

oe(N ). For the first claim, by the same argument that lead us to Lemma 4.2(ii) we get that
P

τN > N + N 3/5


= oe(N ) and P


τ N 6 N − N 3/5


= oe(N ), so that P


τN 6 N + N 3/5,

τ N > N − N 3/5


= 1 − oe(N ). It then suffices to notice that (N − N 3/5)/(N + N 3/5) >
1 − N−1/4 for N > 20. For the second one for N sufficiently large we have eλxN 6 2 and
AN > 1 − (2E/(E + τN ))λ. Hence P


AN 6 1 − 1/Nλ/4


6 P


τN /E 6 2N 1/4


, and the claim

follows from Lemma 4.2(iv). Next, since exN > 1+ ln(N )−1 and (1−1/N 1/4)(1−1/Nλ/4)(1+

1/ ln(N )) > 1 + 1/N 1/3 for N sufficiently large, the previous observations entail that

P


τ N

τN
exN AN 6 1 + 1/N 1/3


= oe(N ).

By (36), it is thus sufficient to show that

P

∃ τN 3/4 6 s 6 (E + τN )e−xN − E such that Ps(1+N−1/3) < Ps


6

C

N 2 .
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Noting that P

(E + τN )e−xN − E > τ2N


= oe(N ) and that P


τN 3/4 6 N 3/4/2


= oe(N ), this

boils down to checking that

P

∃ N 3/4/2 6 i 6 2N such that P(1+N−1/3)i < i


6

C

N 2 .

This easily follows from the fact that P

P(1+N−1/3)i < i


6 e−Ci/N 2/3

by Lemma 4.2(iii). �

6. Extensions

We conclude by proposing possible extensions and stating an open question. In a first direc-
tion, one may wonder what happens if instead of stopping the chase–escape process once either
no infected or no susceptible individuals remain, one just looks at its final state (which is attained
when no infected individuals remain). This does not change the final number of susceptible in-
dividuals, so that Theorems 2 and 5 remain unchanged. Limit theorems for the final number of
recovered individuals then follow immediately from the relation R(N )

= N + 2 − S(N ).
In other directions, one may imagine a possibility of immigration of susceptible vertices, or

consider a model where vertices can be of n different types, and where, for 1 6 i 6 n − 1, a
vertex with type i may only spread to a vertex of type i + 1 with rate λi . It would be interesting
to study if similar limit theorems as those established in this work hold.

It is also natural to study the chase–escape process on other types of graphs. In particular,
what happens on the graph Z2, starting with one infected vertex and a neighboring recovered
vertex (and all the other vertices being susceptible)? Is it true that the critical value for λ is less
than 1? This question is due to James Martin and was communicated to us by Itai Benjamini.
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