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Abstract

In the present paper we study general properties of good sequences by means of a
powerful and beautiful tool of combinatorics—the method of bijective proofs. A good
sequence is a sequence of positive integers k = 1, 2, . . . such that the element k occurs
before the last occurrence of k + 1. We construct two bijections between the set of good
sequences of length n and the set of permutations of length n. This allows us to count
good sequences as well as to calculate generating functions of statistics on good sequences.
We study avoiding patterns on good sequences and discuss their relation with Eulerian
polynomials. Finally, we describe particular interesting properties of permutations, again
using bijections.

1 Introduction

Good sequences were introduced by Federico Ardila in the course of his statistical study of
permutations [1]. He found the number of good sequences of a fixed length and proposed this
problem as a question for the 2002 International Mathematical Olympiad. Later on, Richard P.
Stanley reformulated this result as an exercise for the Clay Research Academy 2005 [2].

In this work we establish intimate relations between good sequences and permutations. To
achieve this goal we construct a natural bijection—a standard method of combinatorics—between
these two objects. Furthermore we study general properties of good sequences by calculating gen-
erating functions of certain statistics on good sequences. By the term statistic we mean a map
between the set of good sequences and the set of positive integers. The simplest examples of
statistics include the greatest element of a sequence and the sum of all the elements of the se-
quence. To perform the aforementioned calculation, we invoke a bijective argument to associate a
statistic on good sequences to a statistic on permutations. The latter has already been calculated
in references [2, 3, 4].

We demonstrate that the relative order of the elements of a good sequence is very similar
to the order of the elements of a permutation. We use this fact to study avoiding patterns on
good sequences. In the past, the pattern avoidance has been intensively studied in connection
with permutations. Many interesting results have recently been discovered, among them the
upper bound on the number of permutations avoiding a certain pattern [5, 6]. Several beautiful
bijections have been constructed in this field, e.g, a correspondence has been established between
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123-avoiding permutations and Dyck paths [4]. This correspondence turns out to be useful in
the study of avoiding patterns on good sequences. It indirectly leads us to a relation between
Eulerian polynomials and the number of ways n competitors can rank in a competition, allowing
for the possibility of ties. In addition, we present several combinatorial interpretations of Eulerian
polynomials which play an important role in mathematics [7].

Last but not least, we employ good sequences to build a bijection from a set of permutations
to itself. We study its action on ascents, descents, inversions, orbits and present its geometrical
interpretation on permutations as rotations of the corresponding permutation matrix.

2 Good sequences and Bijections

2.1 Definition

Let n be a positive integer. A sequence of n positive integers (not necessarily distinct) is called a
good sequence if it satisfies the following condition: for each positive integer k ≥ 2, if the number
k appears in the sequence then so does the number k − 1, and moreover the first occurrence of
k − 1 comes before the last occurrence of k.

For example :

2123 is a good sequence of length 4.
31312 is not a good sequence: 2 does not occur before the last occurrence of 3.

Let Gn be the set of all good sequences of fixed length n.

A few questions arise : Is Gn finite? If yes, how many elements does it have?
The following theorem will answer these questions.

2.2 Main Theorem

A few examples for low n:

n=1: G1 = {1}
n=2: G2 = {11, 12}
n=3: G3 = {111, 112, 121, 122, 123, 212}
n=4: G4 = {1111, 1112,1121, 1122, 1123, 1211, 1212, 1213, 1221, 1222, 1223,

1231, 1232, 1233, 1234, 1323, 2112, 2121, 2122, 2123, 2132, 2212,
2312, 3123}

so that
Card(G1) = 1 , Card(G2) = 2 , Card(G3) = 6 , Card(G4) = 24.

We notice that for these sets with low n, Card(Gn) = n!. We shall prove that this relation holds
for arbitrary n.

Theorem 2.1. The number of good sequences of fixed length n is equal to n!.

The proof consists in constructing a bijection B from Gn to the set of all permutations of
{1, . . . , n}. Since the number of elements of this set is n! , theorem 2.1 follows immediately.

The construction will be done in 3 steps.
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2.2.1 Construction of B

Definition: Let [n] be the set {1, . . . , n} and let Sn be the set of all permutations of [n].
Throughout the paper we will use the notation a1a2 . . . ak to denote a sequence of positive integers
a1, a2, . . . , ak. We denote permutations as sequences, for instance, we will consider 564123 as a
permutation of 123456.

Define B : Gn → Sn by the following map: ∀ u ∈ Gn, B(u) = a1 . . . an where ai verifies:

a1 is the position of the leftmost largest integer of u.
a2 is the position of the second leftmost largest integer of u.
...
ai is the position of the i-th leftmost largest integer of u.
...
an is the position of the n-th leftmost largest integer u.

Notice that by construction a1 . . . an is a permutation of [n].

For example :

B : 2132 7→ 3142 (1)

B : 213421 7→ 431526 (2)

2.2.2 Construction of B−1

To show that B is a bijection let us construct the inverse of B.

Define B−1 : Sn → Gn as the map: ∀ w = a1 . . . an ∈ Sn, B−1(w) = b1 . . . bn where the bi are
defined recursively as follows:

ban = 1
For i from n to 2 by −1

bai−1
=

{
bai

if ai−1 < ai

bai
+ 1 if ai−1 > ai

Endfor

For example :

B−1 : 3142 Ã ·1 · · Ã ·1 · 2 Ã 21 · 2 7→ 2132 , as in (1).

B−1 : 431526 Ã · · · · ·1 Ã ·1 · · · 1 Ã ·1 · ·21 Ã 21 · ·21 Ã 213 · 21 7→ 213421 , as in (2).

2.2.3 Proof that we obtain a bijection

We will first demonstrate the following proposition:

Proposition 2.2. We have B−1 ◦B = Id.

3



Lemma 2.3. For u ∈ Gn let m be the greatest element of u. Then for each i ∈ [m], i is an
element of u.

Proof: It follows directly from the definition of a good sequence. ¥

Let u = b1 . . . bn and B(u) = a1 . . . an. For i ∈ {2, . . . , n}, we will show that if ai−1 > ai then
bai−1

= bai
+ 1 and if ai−1 < ai then bai−1

= bai
.

First, note that ai−1 appears before ai in B(u). This means that bai−1
≥ bai

.

If ai−1 > ai : bai−1
and bai

cannot be equal, because ai would have appeared before ai−1 in B(u),
since its position is more to the left. Finally, if ai−1 > ai, then bai−1

> bai
and by lemma 2.3,

bai−1
= bai

+ 1.

If ai−1 < ai : Suppose that bai−1
> bai

, that is bai−1
= bai

+ 1 by lemma 2.3. Since ai−1 < ai, bai

occurs only to the right of bai−1
.

On the other hand, ∀j ∈ {2, . . . , n} such that j 6= i, baj−1
≥ baj

and therefore we obtain:

bai−1
> bai

≥ bai+1
. . . ≥ ban .

Thus, ai−1 is the last position where bai−1
occurs.

Therefore by virtue of previous remarks, bai
does not occur before the last occurrence of

bai−1
= bai

+ 1, which is a contradiction. Finally, if ai−1 < ai, then bai−1
= bai

.

The smallest element of w is 1 by lemma 2.3, so that ban = 1. By (2.2.2) we conclude that
B−1 ◦B = Id. Hence B−1 is surjective and B is injective. ¥
Proposition 2.4. The map B−1 is injective.

Proof: Let w = a1 . . . an ∈ Sn. Suppose that w has exactly m descents. One can naturally split
w into m + 1 subsequences w1, . . . , wm+1 such that each wi does not contain a descent, i.e., wi is
increasing and such that w = w1 . . . wm+1. Let B−1(w) = b1 . . . bn. By definition of the bijection
B−1:

bi = 1 for i ∈ wm+1

bi = 2 for i ∈ wm

...

bi = m + 2− j for i ∈ wj

...

bi = m + 1 for i ∈ w1. (3)

Let w and w′ be two permutations of length n. Hence B−1(w) = B−1(w′), if and only if w and
w′ have the same number of descents and exactly the same subsequences as defined above. In
other words, B−1(w) = B−1(w′) if and only if w = w′. This proves that B−1 is injective. ¥

We conclude that B−1 is a bijection. Hence B is a bijection too. Finally:

Card(Gn) = Card(Sn) = n!

¥
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3 Statistics on Gn

3.1 Descent and greatest element statistics

Definition: w = a1 . . . an ∈ Sn. A descent of w is a number i for which ai > ai+1. E.g in
3672415 there are 2 descents: 3 and 5.

Theorem 3.1. The number of elements of Sn with exactly m descents is equal to the number of
elements of Gn with the greatest element m + 1.

Proof: To prove this theorem, let us make use of the bijection B. Let w = a1 . . . an ∈ Sn.
Suppose that w has exactly m descents. One can naturally split w into m + 1 subsequences
w1, . . . , wm+1 such that each wi does not contain a descent, i.e., wi is increasing and such that
w = w1 . . . wm+1. Let B−1(w) = b1 . . . bn. By definition of the bijection B−1:

bi = 1 for i ∈ wm+1

bi = 2 for i ∈ wm

...

bi = m + 2− j for i ∈ wj

...

bi = m + 1 for i ∈ w1. (4)

For example, for w = 3672415, one has w1 = 367, w2 = 24, w3 = 15. One finds B−1(3672415) :=
b1 . . . b7 = 1232133 and indeed :

bi = 1 for i ∈ {1, 5}
bi = 2 for i ∈ {2, 4}
bi = 3 for i ∈ {3, 6, 7}.

Hence the greatest element of B−1(w) is m+1. Since B is a bijection, the number of elements in
Gn having this property is equal to the number of elements in Sn having exactly m descents. ¥

Definitions:

• Denote by d(w) the number of descents of w. An(q) is called an Eulerian polynomial [3].
The coefficient of qi in An(q) is denoted A(n, i) and satisfies the following relation:

∑

k≥0

knqk =

∑n
i=1 A(n, i)qi

(1− q)n+1

For instance: ∑

k≥0

k4qk =
q + 11q2 + 11q3 + q4

(1− q)5
.
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It can be proved (see [2]) that A(n, k + 1) counts the number of permutations of [n] with
k descents, that is:

An(q) =
∑

w∈Sn

q1+d(w).

For instance, the polynomial A4(q) = q + 11q2 + 11q3 + q4 for the set S4 exhibits that the
latter possesses one element with no descents, eleven with one descent, eleven with two
descents and one with three descents.

• u ∈ Gn. Define max(u) as the greatest element of u.

Theorem 3.2. The number of elements of Gn with the greatest element k is equal to A(n, k) so
that: ∑

u∈Gn

qmax(u) = An(q).

Proof: By theorem 3.1, the number of elements of Gn with the greatest element k is equal to
the number of elements of Sn with k− 1 descents, which is A(n, k) by definition of the Eulerian
polynomial. ¥
Note that theorem 3.2 gives an alternative combinatorial view of the Eulerian polynomials.

3.2 Rank statistics

Definition: Let u ∈ Gn. Let k be the greatest element of u. For all i ∈ [k] denote by ni the
number of occurrences of i in u. Define the rank of u by:

rank(u) =
k∑

i=1

(i− 1)ni.

For instance, for u = 423545122 one finds n1 = 1, n2 = 3, n3 = 1, n4 = 2, n5 = 2. So
rank(423545122) = 0× 1 + 1× 3 + 2× 1 + 3× 2 + 4× 2 = 19.

Theorem 3.3. The following relation holds:
∑
u∈Gn

qrank(u) = (1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1).

We will once again give a bijection proof, but before we turn to it, let us introduce one more
definition:

Definition: w ∈ Sn. des(w) is the descent set of w, that is the set of all descents of w. E.g
des(461532897) = {2, 4, 5, 8}. Define the major index of w by the sum of the elements of des(w):

maj(w) =
∑

i∈des(w)

i.

For instance, maj(461352897) = 2 + 4 + 5 + 8 = 19.
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Lemma 3.4. We have:
∑

w∈Sn

qmaj(w) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

A proof of this lemma can be found in [3].

Lemma 3.5. Let w ∈ Sn. Then rank(B−1(w)) = maj(w).

For example, B−1(461352897) = 423545122 and that rank(423545122) = maj(461352897) = 19.

Proof of lemma 3.5: As in section 3.1, assume that w has exactly k− 1 descents. Split w into
k subsequences w1, . . . , wk such that each wi does not contain a descent, i.e., wi is increasing. Let
B−1(w) = b1 . . . bn, then by definition:

bi = 1 for i ∈ wk

bi = 2 for i ∈ wk−1

...

bi = k + 1− j for i ∈ wj

...

bi = k for i ∈ w1.

Thus:

maj(w) = Card(w1) + Card(w1w2) + · · ·+ Card(w1w2 . . . wk−1)

= Card(w1) + [Card(w1) + Card(w2)] + · · ·+ [Card(w1) + Card(w2) + · · ·+ Card(wk−1)]

= (k − 1)Card(w1) + (k − 2)Card(w2) + · · ·+ 1× Card(wk−1) + 0× Card(wk)

= (k − 1)nk + (k − 2)nk−1 + · · ·+ (2− 1)n2 + 0n1

= rank(B−1(w)).

This proves lemma 3.5. ¥

Proof of theorem 3.3: We obtain:
∑
u∈Gn

qrank(u) =
∑
u∈Gn

qmaj(B(u)) =
∑

w∈Sn

qmaj(w) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

The first equality follows from lemma 3.5, the second from the fact that B is a bijection and the
third one from lemma 3.4. ¥

3.3 Degree statistics

Definition: Let u ∈ Gn. Define the degree of u as the sum of all the elements of u: deg(u) =
∑
i∈u

i.

The degree of u is closely related to the rank of u by the following argument: if k is the greatest
element of u and if ni is the number of occurrences of i in u then:

deg(u) =
k∑

i=1

i ni =
k∑

i=1

ni(i− 1) +
k∑

i=1

ni = rank(u) + n.
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For instance, for u = 423545122 one finds n1 = 1, n2 = 3, n3 = 1, n4 = 2, n5 = 2 so that
rank(423545122) = 1× 1 + 3× 2 + 1× 3 + 2× 4 + 2× 5 = 28 = 19 + 9.

Theorem 3.6. We have:
∑
u∈Gn

qdeg(u) = qn(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Proof: By theorem 3.3:

∑
u∈Gn

qdeg(u) =
∑
u∈Gn

qrank(u)+n = qn
∑
u∈Gn

qrank(u) = qn(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

3.4 Records

Definition: u = a1 . . . an is a sequence. A record of u is a term aj such that ai < aj for all i < j.
Define rec(w) to be the total number of records of w and srec(w) to be the sum of positions of all
records of w. E.g, in 47516823 there are 3 records which are 4, 7 and 8. Thus rec(47516823) = 3
and srec(47516823) = 1 + 2 + 6 = 9.

Theorem 3.7. We have:
∑
u∈Gn

qrec(u) =
∑

w∈Sn

qrec(w) = q(q + 1)(q + 2) · · · (q + n− 1)

and ∑
u∈Gn

qsrec(u) =
∑

w∈Sn

qsrec(w).

To prove this theorem, we shall construct a new bijection Gn → Sn which will conserve the
positions of records.

3.4.1 Construction of a bijection

Define B2 : Gn → Sn as the following map: ∀ u = b1 . . . bn ∈ Gn one constructs a1 . . . an ∈ Sn

and introduces for later convenience an auxiliary set φu according to the following algorithm:

To begin with, one assigns ai = bi and creates an empty set φu.
For i from 1 to n by 1

If i appears more than once in a1 · · · an

Let k be the position of the last appearance of i in a1 · · · an. Then ∀j 6= k ∈ [n] such
that aj ≥ i increment aj by 1.
Add i to φu.

EndIf
EndFor Define a1 . . . an as B2(u).

For example:

Take u = 31223, φu = {}. 1 appears once so we leave u unchanged. Next, 2 appears more than
once. So add 1 to all the elements which are greater than or equal to 2, except the rightmost 2.

8



After 1 step: u Ã 41324 and φu = {2}. 3 appears once so we leave u unchanged. Then, 4
appears more than once. Therefore, add 1 to all the numbers which are greater than or equal to
4, except the rightmost 4.

After 2 steps: B2(u) = 51324 and φu = {2, 4}.
Take u = 3411523, φu = {}.
After 1 step: u Ã 4521634 and φu = {1}.
After 2 steps: B2(u) = 5621734 and φu = {1, 4}.
Notice that a1 . . . an is always a permutation: After k steps, each one of the integers 1, 2, . . . , k
will appear exactly once upon the application of the algorithm. Thus after at most n steps we
will obtain a permutation.

The bijection B2 is similar to the Schensted’s standardization map [8]. Theorem 3.10 proves
that B2(w) is obtained from w by reading w from right to left, by labeling 1, 2, . . . the successive
occurrences of 1 in w, then by doing the same with the successive occurrences of 2 and so on.
Standardization is the same, except that w is read from left to right instead of right to left.

3.4.2 Constructing B−1
2

In fact, it is very difficult to inverse B2 without doing some tricky manipulations: that is why
have introduced the set φu. Knowing B2(u) and φu we can easily reconstruct u: Replace every
element ai of B2(u) by ai − Card({j ∈ φu|j < ai}), that is substract from ai the number of
elements in φu that are less than ai. This is only a consequence of our algorithm.

For example:

Take B2(u) = 51324 and φu = {2, 4},
Card({j ∈ {2, 4}|j < 5}) = 2
Card({j ∈ {2, 4}|j < 1}) = 0
Card({j ∈ {2, 4}|j < 3}) = 1
Card({j ∈ {2, 4}|j < 2}) = 0
Card({j ∈ {2, 4}|j < 4}) = 1
So, we get: u = (5− 2)(1− 0)(3− 1)(2− 0)(4− 1) = 31223, as in 3.4.1.
Now we have to find φu only from B2(u) and the analysis becomes more complicated. However,
this can be done by virtue of the following lemma:

Lemma 3.8. The following two implications hold:

k ∈ φu =⇒ k + 1 appears to the left of k in B2(u). (5)

k 6∈ φu =⇒ k + 1 appears to the right of k in B2(u). (6)

For example:

Take B2(u) = 51324.

- 2 is on the right of 1, so 1 6∈ φu

- 3 is on the left of 2, so 2 ∈ φu

- 4 is on the right of 3, so 3 6∈ φu
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- 5 is on the left of 4, so 4 ∈ φu

So φu = {2, 4}, as above.

Proof of (5) : Suppose k ∈ φu. When constructing B2(u), consider the step when, inside the
loop for, i = k. Since k ∈ φu, k appears at least twice. Moreover, by means of the algorithm,
the rightmost k will give rise to k in B2(u), and the second rightmost k will give rise to k + 1 in
B2(u), so that k + 1 will appear to the left of k in B2(u). ¥

Proof of (6) : Suppose k 6∈ φu. When constructing B2(u), consider the step when, inside the
loop for, i = k. Suppose that k + 1 does not appear to the right of k. Let p be the position of k
(bp will be the number that is in p-th position in u). Then, by performing backwards the steps
we have just done, the numbers bp + 1 will not appear to the right of bp, which contradicts the
fact that u is a good sequence. ¥

Note that lemma 3.8 is equivalent to the following statement:

Lemma 3.8 bis:

k ∈ φu ⇔ k + 1 appears to the left of k in B2(u).

k 6∈ φu ⇔ k + 1 appears to the right of k in B2(u).

Using the previous arguments, we can finally describe B−1
2 by the following map: w ∈ Sn. Let

φw = {j ∈ [n− 1] | j + 1 appears to the left of j in w}.

For all element ai of w, replace ai by ai − Card({j ∈ φw | j < ai}).

Define this new sequence as B−1
2 (w). It is clear that B−1

2 is the inverse of B2 by the lemma.
Hence B2 is a bijection. ¥

3.4.3 Proof of theorem 3.7

Theorem 3.7 can be easily proved by making use of the bijection B2.

Definition: Let c(n, k) be the number of elements of Sn with exactly k cycles. This number is
called an unsigned Stirling number of the first kind [3].

Proof of theorem 3.7: u ∈ Gn. Let i, j ∈ [n] with i 6= j. Suppose u = b1 . . . bn and
B2(u) = a1 . . . an. Clearly if bi > bj then ai > aj because bi will be incremented at least the same
number of times as bj, and if bi = bj for i > j then ai > aj because bi will be incremented at
least one more time than bj, because bi is to the left of bj.

Hence B2 conserves records, that is, the positions of the records and their number. Hence:

∑
u∈Gn

qrec(u) =
∑

w∈Sn

qrec(w) and
∑
u∈Gn

qsrec(u) =
∑

w∈Sn

qsrec(w).
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Lemma 3.9. The number of elements of Gn with exactly k records is equal to c(n, k).

Proof: By the preceding result, there is the same number of elements of Gn with k records as
the number of elements of Sn with k records. Moreover, there is a Sn → Sn bijection described
in [3], which maps a permutation with k records into a permutation with k cycles and conversely
(see appendix). Hence the number of elements of Sn with k records is equal to c(n, k) and,
therefore, the number of elements of Gn with k records is equal to c(n, k).

Moreover, it can be proved (see, e.g., [3]) that:

n∑

k=0

c(n, k)qk = q(q + 1) · · · (q + n− 1).

Finally:
∑
u∈Gn

qrec(u) =
∑

w∈Sn

qrec(w) =
n∑

k=0

c(n, k)qk = q(q + 1) · · · (q + n− 1).

¥

3.4.4 Another interpretation of B2

The bijection B2 admits the following interpretation:
Let w = a1 . . . an ∈ Sn. Consider a circular drive with n houses enumerated as an, an−1, . . . , a1

in a clockwise order. A postman carries n letters enumerated 1, 2, . . . , n which must be delivered
according to the following rules: (i) the letter k = 1, . . . , n has to be delivered to the house k
and (ii) the letter k is delivered before the letter k + 1. He starts at the house an and moves
clockwise. When he delivers a letter to the house ak, he assigns to the house ak the number bk

which is equal to the number of times he had passed in front of the house an.

Theorem 3.10. We have: b1 . . . bn = B−1
2 (w).

For example, take w = 451362. He delivers the letter 1 after the first passage. Then he delivers the
letters 2, 3 and 4 after the second passage, he deliver the letter 5 after the third passage and finally
he delivers the letter 6 after the fourth passage. And indeed we have B−1

2 (451362) = 231242.

Proof: Call a decreasing sequence u1 . . . un step-by-step decreasing if ui+1 = ui−1. We will prove
the following statement: Let w = a1 . . . an ∈ Sn and i1 < · · · < il. Assume that (i) ai1 , . . . , ail

is step-by-step decreasing and (ii) ai1 + 1 does not appear to the left of ai1 in w. Let m satisfy
am = ai1 + 1 (if ai1 is not the greatest element of w then m exists). Let u = b1 . . . bn = B−1

2 (w).
Then bi1 = bi2 = · · · = bil = bm − 1.

Let k = Card({x ∈ φu | x < ail}), that is the number of elements of φu that are less than ail .
Then by definition of B−1, bil = ail − k. Since i1 < · · · < il and since ai1 , . . . , ail is step-by-step
decreasing, ∀ j ∈ N such that 2 ≤ j ≤ l we have aij ∈ φu. Hence Card({x ∈ φu | x < ail−1

=
ail +1}) = k+1 and bil−1

= ail−1
−(k+1) = ail +1−(k+1) = ail−k = bil . By induction, ∀ j ∈ N

such that 2 ≤ j ≤ l, bij = ail − k = bil . Moreover, since ai1 + 1 does not appear to the left of ai1
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in w, we have ai1 6∈ φu. Hence Card({x ∈ φu | x < am = ai1 + 1} = Card({x ∈ φu | x < ai1}.
Thus:

bm = am−Card({x ∈ φu | x < ai1} = 1+ai1−(k+l−1) = 1+ail+(l−1)−(k+l−1) = 1+ail−k = 1+bil .

So bm − 1 = bil as announced.
To prove theorem 3.10, let w1 be the set (listed in decreasing order) of the positions of the

elements of the largest step-by-step decreasing subsequence with the least element 1; w2 be the set
(listed in decreasing order) of the positions of the elements of the largest step-by-step decreasing
subsequence with the least element max(w1)+1, . . .; wm be set (listed in decreasing order) of the
positions of the elements of the largest step-by-step decreasing subsequence with least element
max(wm−1) + 1 and such that max(wm) = max(w). By the preceding statement, there exists k
such that:

bi = k for i ∈ w1

bi = k + 1 for i ∈ w2

...

bi = k + j − 1 for i ∈ wj

...

bi = k + m− 1 for i ∈ wm. (7)

By lemma 2.3, k = 1 and theorem 3.10 is proved. Note also that max(u) = m. ¥

For example: Take w = 3562417. One has :

• w1 = {6, 4, 1}, since the largest step-by-step decreasing subsequence with the least element
1 is 3 56 2 4 1 7.

• w2 = {5, 2}, since the largest step-by-step decreasing subsequence with the least element 4
is 3 5 62 4 17.

• w3 = {3}, since the largest step-by-step decreasing subsequence with the least element 6 is
35 6 2417.

• w4 = {7}, since the largest step-by-step decreasing subsequence with the least element 7 is
356241 7 .

And indeed, since u := b1 . . . b7 := B−1
2 (3562417) = 1231214,

bi = 1 for i ∈ {6, 4, 1}
bi = 2 for i ∈ {5, 2}
bi = 3 for i ∈ {3}
bi = 4 for i ∈ {7}.
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3.4.5 Properties of φu

In this section we will study the properties of φu in more details.

Definitions: Let w ∈ Sn.

• Recall that des(w) is the descent set of w, that is, the set of all descents of w.

• Let i(w) be the inverse permutation of w (it is usually denoted by w−1, but as we will see
below, it is more convenient to name it i(w)). By definition of i(w), if i(w) = a1 . . . an then
ai is the position of i in w.

Theorem 3.11. Let u ∈ Gn. Then φu is the descent set of i(B2(u)).

Proof: Let u = b1 . . . bn ∈ Gn and B2(u) = a1 . . . an. By lemma 3.8:

k ∈ φu ⇔ k + 1 appears to the left of k in B2(u)

⇔ i(B2(u))k > i(B2(u))k+1

⇔ k is a descent in i(B2(u)),

where i(B2(u))k is the k-th element of i(B2(u)). ¥

As in the proof of theorem 3.10, we introduce the sets w1, w2, . . . , wm for a permutation w.

Lemma 3.12. We have: i(w) = w1w2 . . . wm.

Proof: The elements of w with positions corresponding to the elements of w1 form a step-by-step
decreasing subsequence. Hence the positions of 1, 2, . . . , Card(w1) in w are exactly the elements of
w1. By the same argument, the positions of Card(w1)+1, Card(w1)+2, . . . , Card(w1)+Card(w2)
in w are exactly the elements of w2 and so on. Hence i(w) = w1w2 . . . wm.

Note that we identify the set w1 to the sequence obtained by writing down one-by-one the
elements of w1, starting by the first one. ¥

For example, for w = 3562417 one has w1 = {6, 4, 1}, w1 = {5, 1}, w1 = {3}, w1 = {7} and:

i(3562417) = 6415237 = 641 52 3 7 = w1w2w3w4.

Definitions: Let w ∈ Sn.

• An ascent of w is a number i for which ai+1 > ai. asc(w) is the ascent set of w, that is,
the set of all ascents of w. E.g, asc(47516823) = {1, 4, 5, 7}.

• Let r(w) be the reverse permutation of w (if w = a1a2 . . . an then r(w) = an . . . a2a1).

Theorem 3.13. The two following relations hold:

Card(φu) = n−max(u) and
∑
u∈Gn

qCard(φu) =
An(q)

q
.
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Proof: Let u = b1 . . . bn, B2(u) = w = a1 . . . an and max(u) = k + 1. By lemma 3.12, split
i(w) into k + 1 subsequences w1, . . . , wk+1 such that each wi does not contain an ascent, i.e., wi

is decreasing and such that i(w) = w1 . . . wk+1. It follows that Card(asc(i(w))) = k. Since the
reverse permutation bijection maps an ascent to a descent and conversely, we obtain:

Card(asc(i(w))) + Card(des(i(w))) = n− 1.

By theorem 3.11, φu is the descent set of i(w). Hence

k + Card(φu) = n− 1

or
Card(φu) = n− (k + 1).

Finally,
Card(φu) = n−max(u).

Therefore, we obtain:

∑
u∈Gn

qCard(φu) =
∑
u∈Gn

qn−max(u) =
qn

∑
u∈Gn

qmax(u)
= qn

∑
u∈Gn

1

qmax(u)
.

The idea is to compute the coefficient of qj in the rightmost expression. This can be done owing
to the following lemma:

Lemma 3.14. The Eulerian polynomial is symmetric, that is, A(n, k) = A(n, n + 1− k).

Proof: It suffices to show that in Sn the number of permutations with k−1 descents is equal to
the number of permutations with n− k descents, which is true since the reverse bijection maps
a permutation with k − 1 descents to a permutation with n− 1− (k − 1) = n− k descents. ¥

Let Q = qn
∑
u∈Gn

1

qmax(u)
.

By theorem 3.2 the number of elements of Gn with the greatest element k is equal to A(n, k).
Hence the coefficient of qn−i in Q is A(n, i). Let j = n − i, so that the coefficient of qj in Q is
A(n, n− j). By lemma 3.14, the coefficient of qj in Q is A(n, j + 1). Hence:

∑
u∈Gn

qCard(φu) =
An(q)

q
.

¥
Note that (7) is very similar to (4). This suggests that the set φu is closely related to the bijection
B−1.

Theorem 3.15. Let w ∈ Sn. Then B2(B
−1(w)) = i(r(w)).

14



Proof: For all i ∈ [k+1] let w′
i = r(wi). Using the same definitions as in the proof of theorem 3.13,

r(i(w)) = w′
k+1 . . . w′

1. Note that since wi is decreasing, w′
i is increasing and r(i(w)) has exactly

k descents. By (7):

bi = 1 for i ∈ w′
1

bi = 2 for i ∈ w′
2

...

bi = j for i ∈ w′
j

...

bi = k + 1 for i ∈ w′
k+1. (8)

Note that here we also identify the sequence w′
j to the set of all the elements of the sequence w′

j.

After comparing (8) and (4) one immediately finds that B−1(r(i(w))) = b1 . . . bn = u. Thus:

B−1(r(i(B2(u)))) = u

and B2(u) = i(r(B(u))). Take w′ such that u = B−1(w′). Then B2(B
−1(w′)) = i(r(w′)). ¥

For example: For w = 3562417, one has w′
1 = 146, w′

2 = 25, w′
3 = 3, w′

4 = 7. First,

r(i(w)) = 7325146 = 7 3 25 146 = w′
4w

′
3w

′
2w

′
1.

Second, u := b1 . . . b7 := B−1
2 (3562417) = 1231214 and indeed one has:

bi = 1 for i ∈ {1, 4, 6}
bi = 2 for i ∈ {2, 5}
bi = 3 for i ∈ {3}
bi = 4 for i ∈ {7}.

3.5 Avoiding patterns

Definitions:

• Let w = a1 · · · ak ∈ Sk. We say that the sequence b1 . . . bn ∈ Sn (with k ≤ n) avoids w if
none of its subsequences of length k is ordered in “the same way” as w, that is, there exist
no k integers i1 < i2 < · · · < ik such that bir < bis ⇐⇒ ar < as. For instance, 52134 does
not avoid 312 because 534 is ordered in the same way as 312, but 52134 is 2413 avoiding.

• Define a full sequence s to be a sequence of k positive integers with the greatest element
m such that all i ∈ [m] appear in s. Denote by Fk the set of full sequences of length
k. Let u be a good sequence of length n ≥ k. Similarly to above, we can introduce the
following definition: u = b1 . . . bn avoids a full sequence s = a1 . . . ak if there are no k
integers i1 < i2 < · · · < ik such that bir < bis ⇐⇒ ar < as and bir = bis ⇐⇒ ar = as. For
example, u = 1323422 does not avoid s = 1223 but u avoids s = 13324.
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Suppose that w ∈ Sn avoids a permutation. The goal of this section is to find what kind of
sequences does B−1

2 (w) avoid.
Let a1 . . . an ∈ Sn. Define the set Ma1...an as follows:

Ma1...an = {s1 . . . sn ∈ Fn | for i < j , (ai < aj) ⇐⇒ (si < sj)}. (9)

For instance, for w = 4132, M4132 = {2122, 3122, 3132, 4132}.

Theorem 3.16. Let k ≤ n and w ∈ Sk. The number of permutations of [n] avoiding w is equal
to the number of good sequences of length n avoiding simultaneously all elements of Mw.

Proof: Let w = a1 . . . an ∈ Sn, u = B−1
2 (w) = b1 . . . bn and w = c1 . . . ck ∈ Sk. We will prove

the following statement:

∃x ∈ Mw such that u does not avoid x ⇐⇒ w does not avoid w.

First, suppose that ∃ x ∈ Mw such that u does not avoid x = d1 . . . dk. There exists i1 < · · · <
ik such that bi1bi2 . . . bik is ordered in the same way as x. Assume that l < m. By definition of
x, cl < cm ⇐⇒ dl < dm ⇐⇒ bil < bim . By definition of B2, bil < bim ⇐⇒ ail < aim . Hence
cl < cm ⇐⇒ ail < aim and ai1ai2 . . . aik is ordered in the same way as w, which implies that w
does not avoid w.

Second, suppose that w does not avoid w. There exists i1 < · · · < ik such that ai1ai2 . . . aik is
ordered in the same way as w. Assume that l < m. Then cl < cm ⇐⇒ ail < aim . By definition
of B−1

2 , ail < aim ⇐⇒ bil < bim . Let b = bi1bi2 . . . bik . Take2:

x = (bi1 − (min(b)− 1))(bi2 − (min(b)− 1)) . . . (bik − (min(b)− 1)) .

Since:
cl < cm ⇐⇒ ail < aim ⇐⇒ bil < bim ⇐⇒ xl < xm,

we have x ∈ Mw and the proof is finished. ¥

We extend B2 on Fn by calculating B2(s) for each element s ∈ Fn by applying the definition
of B2 (from section 3.4.1). The second part of the proof of theorem 3.16 yields the following
corollary:

Corollary 3.17. Let w ∈ Sn. Then Mw = {s ∈ Fn | B2(s) = w}.

Define Cn = 1
n+1

(
2n
n

)
as the n-th Catalan number.

Corollary 3.18. The number of good sequences of length n which avoid 123 is equal to Cn.

Proof: It is known that the number of permutations of length n which avoid 123 is equal to Cn

[4]. It is clear that M123 = {123}. By theorem 3.16, the number of permutations of [n] avoiding
123 is equal to the number of good sequences of length n avoiding 123. ¥

For w ∈ Sn, define φw as the set φB−1
2 (w). Recall that des(w) is the descent set of w.

2We take such an x in order to obtain a full sequence when min(b) 6= 1
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Theorem 3.19. The following property holds: Card(Mw) = 2Card(des(i(w))).

For example:

• w = 123 and M123 = {123}. Card(des(i(123))) = Card(des(123)) = Card(∅) = 0.

• w = 132 and M132 = {122, 132}. Card(des(i(132))) = Card(des(132)) = Card({2}) = 1.

• w = 213 and M213 = {112, 213}. Card(des(i(213))) = Card(des(213)) = Card({1}) = 1.

• w = 231 and M231 = {121, 231}. Card(des(i(231))) = Card(des(312)) = Card({1}) = 1.

• w = 312 and M312 = {212, 312}. Card(des(i(312))) = Card(des(231)) = Card({2}) = 1.

• w = 321 and M321 = {111, 211, 221, 321}. Card(des(i(321))) = Card(des(321)) = Card({1, 2}) =
2.

Lemma 3.20. Let w = a1 . . . an ∈ Sn and s = s1 . . . sn ∈ Mw. Assume that k, l are positive
integers such that ak < al. Then sk ≤ sl.

Proof: If k < l, then by definition of s, ak < al =⇒ sk < sl =⇒ sk ≤ sl. Now assume k > l and
suppose that sk > sl. By definition of s, since l < k, sl < sk =⇒ al < ak which is a contradiction.
¥

Proof of theorem 3.19: Let w = a1 . . . an ∈ Sn and let s = s1 . . . sn ∈ Mw. Assume that k, l
are positive integers such that al = ak + 1. Clearly if sl ≥ sk + 2 then sk + 1 does not appear in
s by lemma 4.1, which contradicts the fact that s is a good sequence.

First, suppose that ak ∈ φw. By lemma 4.1, sl = sk + 1 or sl = sk. Let j = ak and let
i(w) = i1 . . . in. Since ij is the position of j in w, k = ij and l = ij+1. Hence:

j ∈ φw =⇒ sij+1
= sij ou sij+1

= sij + 1. (10)

Second, suppose that ak 6∈ φw, that is k < l. By definition of s, ak < al =⇒ sk < sl =⇒ sl =
sk + 1 by lemma 4.1. Similarly, let j = ak and let i(w) = i1 . . . in so that k = ij and l = ij+1.
Hence:

j 6∈ φw =⇒ sij+1
= sij + 1. (11)

We shall now give an algorithm which will produce 2Card(φw) elements of Mw:
Let i(w) = i1 . . . in. Recall that ij is the position of j in w. Start with the set S, where

S = {11 . . . 11} contains the sequence of n 1s.

For j from 1 to n− 1 by 1
If j ∈ φw

∗ For each existing sequence s = s1 . . . sn in S, one assigns sij+1
= sij

∗ One creates a new sequence s′ = s′1 . . . s′n such that s′ = s, assigns s′ij+1
= s′ij + 1

and adds s′ to S.
Else (j 6∈ φw)

For each existing sequence s = s1 . . . sn in S, one assigns sij+1
= sij + 1.

EndIf
EndFor
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Define Sw to be the final set S.

For example for w = 25143. φ25143 = {1, 3, 4}. Start with S = {11111}
For j = 1, since 1 ∈ φ25143, we obtain S = {11111 , 21111}.
For j = 2, since 2 6∈ φ25143, we obtain S = {11112, 21113}.
For j = 3, since 3 ∈ φ25143, we obtain S = {11122, 11132 , 21133, 21143}.
For j = 4, since 4 ∈ φ25143, we finally obtain
S25143 = {12122, 13122 , 13132, 14132 , 23133, 24133 , 24143, 25143}.

Proposition 3.21. The following inclusion is verified: Mw ⊂ Sw.

Proof: This inclusion is obvious because every element of Mw verifies (10) and (11), so that it
will be produced by the algorithm and will therefore be an element of Sw. ¥

Proposition 3.22. The following inclusion is verified: Sw ⊂ Mw.

Proof: Let w = a1 . . . an be a fixed permutation and let s ∈ Sw. Let i(w) = i1 . . . in. By
construction, s is a full sequence. We show that for x < y, (ax < ay) ⇐⇒ (sx < sy).

Let x, y be such that x < y and ax < ay. Thus there exists such a k that x ≤ k < y and
ak 6∈ φw. The algorithm shows that:

sx ≤ sx+1 ≤ · · · ≤ sk < sk+1 ≤ · · · ≤ sy,

so that sx < sy.
Let x, y be such that x < y and sx < sy. By construction, if sik < sil then k < l. But

siax
< siay

and x = iax . Hence ax < ay. ¥

Hence we deduce that Sw is exactly Mw. The number of elements of Sw is 2Card(φw). Moreover,
by theorem 3.11: Card(φw) = Card(des(i(w)))). We conclude that:

Card(Mw) = 2Card(φw) = 2Card(des(i(w))).

¥

Let f(n) be the number of ways n competitors can rank in a competition, allowing for the
possibility of ties [2]. For instance, f(3) = 13 (six ways with no ties, three ways with a two-way
tie for the first place, three ways with a two-way tie for the second place, and one way with all
three tied).

It is easy to see that f(n) = Card(Fn), since a such ranking can be put in a bijection with a
full sequence s1 . . . sn in the following way: si is the position of i in the ranking.

Corollary 3.23. We have:

f(n) =
An(2)

2
.

18



Proof: Consider all permutations w1 . . . wn! of [n]. The sets Mw1 . . . Mwn!
are clearly disjoint3

so that Fn = Mw1

⋃ · · ·⋃ Mwn!
. Let w be a permutation such that i(w) has k descents. By

theorem 3.19, Card(Mw) = 2k. But the number of the permutations of [n] with k descents is
A(n, k + 1). Hence:

f(n) =
n−1∑

k=0

2kA(n, k + 1) =

∑n−1
k=0 2k+1A(n, k + 1)

2
=

An(2)

2
.

¥
Note: It can be proved (see Ref. [2]) that the exponential generating function of f(n) is

1

2− ex
.

4 Application to permutations

4.1 Reminder

We have constructed two bijections:
B : Gn → Sn

and
B2 : Gn → Sn.

We have found that B2 ◦ B−1 is endowed with an interesting interpretation by virtue of theo-
rem 3.15. Let B1 = B−1 and B3 = B2 ◦ B1. Thus B3 is a Sn → Sn bijection. The following
question naturally arises:

Does B3 have distinguished properties?

The answer to this question is yes.

4.2 B3 and inversions

4.2.1 Simplifying B3

First let us give yet another proof of theorem 3.15. The latter states that if w ∈ Sn then
B3(w) = i(r(w)).

Lemma 4.1. Let w = a1 . . . an ∈ Sn and B3(w) = b1 . . . bn. Then ba1 = n, ba2 = n − 1, . . . ,
ban = 1. In other words, B3(w) is obtained from w by placing n in the a1-th position, n − 1 in
the a2-th position , . . . , 1 in the an-th position.

Proof: As in (3.1), suppose that w has exactly m descents. One can naturally split w into m+1
subsequences w1, . . . , wm+1 such that each wi does not contain a descent, i.e., wi is increasing.
In B1(w), all the positions that are elements of w1 will be occupied by m + 1 according to (4).
What is the result of applying B2 to B1(w)?

We have already seen that if elements are equal, then after applying B2, the leftmost element
will be the largest one, the second leftmost element will be the second largest one, etc. Since

3Suppose that s = s1 . . . sn ∈ Ma1...an and that s′ = s′1 . . . s′n ∈ Ma1...an . By definition (9), for i < j one has
si < sj ⇐⇒ s′i < s′j . Since s and s′ are permutations, s = s′.

19



B3(w) is a permutation, the leftmost position of w1, that is, the position a1, will be occupied by
n, a2 will be occupied by n− 1 and so on. ¥

Second proof of theorem 3.15: Suppose that w = a1 . . . an ∈ Sn. By lemma ??, B3(w) is
obtained from w by placing n in the a1-th position, n − 1 in the a2-th position , . . . , 1 in the
an-th position. Hence B3(r(w)) is obtained from w by placing n in the an-th position, n − 1 in
the an−1-th position, . . . , 1 in the a1-th position. Or in other words: B3(r(w)) is obtained from
w by placing 1 in the a1-th position, 2 in the a2-th position ,. . . , n in the an-th position. This
procedure is precisely the construction of the inverse permutation of w! Hence B3(r(w)) = i(w),
B3(r(r(w)) = i(r(w)) and finally B3(w) = i(r(w)). ¥

4.2.2 B3 and inversions

Definition: An inversion of w = a1 . . . an ∈ Sn is a pair (i, j) for which i < j and ai > aj.
inv(w) is the number of inversions of w. E.g., in 3241 there are 4 inversions: (1, 2), (1, 4), (2, 4)
and (3, 4).

Due to theorem 3.15, we are now able to prove a peculiar theorem which follows:

Theorem 4.2. Let w ∈ Sn. Then:

inv(w) + inv(B3(w)) =
n(n− 1)

2
.

Lemma 4.3. Let w ∈ Sn. Then:
inv(w) = inv(i(w)).

Proof: Let w = a1 . . . an and let us construct i(w) by the double array representation which we
shall denote as D(w). Recall that the double array representation of a permutation is obtained
by writing down the integers 1, 2, . . . , n in the first row and the permutation in the second row.
To inverse a permutation w, one writes the double array representation of w, interchanges the
first and second rows, orders the first row such that it is an increasing sequence, and finally reads
i(w) in the second row.

For example let us invert w = 456132.

D(w) =

(
1 2 3 4 5 6
4 5 6 1 3 2

)
Ã

(
4 5 6 1 3 2
1 2 3 4 5 6

)
.

After ordering the first row, one obtains D(i(w)):

D(i(w)) =

(
1 2 3 4 5 6
4 6 5 1 2 3

)
.

Hence i(456132) = 465123.

Let w = a1 . . . an. Then:

D(w) =

(
1 2 · · · i · · · j · · · n
a1 a2 · · · ai · · · aj · · · an

)
.
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where we assumed that i < j. Interchanging the first and second rows, we find
(

a1 a2 · · · ai · · · aj · · · an

1 2 · · · i · · · j · · · n

)
.

If ai < aj, i.e., (i, j) is not an inversion, we get:

D(i(w)) =

(
ax · · · ai · · · aj · · · ay

x · · · i · · · j · · · y

)
.

This implies that in i(w) the pair (ai, aj) is not an inversion, since i < j.

Now suppose ai > aj, that is (i, j) is an inversion. In this case we get:

D(i(w)) =

(
ax · · · aj · · · ai · · · ay

x · · · j · · · i · · · y

)
.

This means that in i(w) the pair (aj, ai) is an inversion, since i < j.
Thus, an inversion in w maps to an inversion in i(w) and a pair which is not an inversion in w

maps to a pair which is not an inversion in i(w). Hence the lemma is proved. ¥

Lemma 4.4. We have:

inv(w) + inv(r(w)) =
n(n− 1)

2
.

Proof: By definition of r(w), a pair (i, j), with i > j, which is an inversion in w will map to a
pair that is not an inversion in r(w) and a pair (i, j), with i > j, which is not an inversion in w
will map to a pair that is an inversion in r(w). Hence:

inv(w) + inv(r(w)) =

(
n

2

)
=

n(n− 1)

2
.

¥

Proof of theorem 4.2: By lemmas 3.14, 4.1 and by theorem 3.15:

n(n− 1)

2
= inv(w) + inv(r(w)) = inv(w) + inv(i(r(w))) = inv(w) + inv(B3(w)).

¥

Corollary 4.5. The following relation holds:

∑

w∈Sn

inv(w) =
n(n− 1)n!

4
.

Proof:

∑

w∈Sn

n(n− 1)

2
=

∑

w∈Sn

inv(w) + inv(B3(w)) =
∑

w∈Sn

inv(w) +
∑

w∈Sn

inv(B3(w)) = 2
∑

w∈Sn

inv(w).
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Hence:

2
∑

w∈Sn

inv(w) = n!× n(n− 1)

2
.

¥

4.3 B3, ascents and descents

Definition : Let s(w) be the permutation obtained from w = a1 . . . an by substituting each ai

by n + 1− ai. We shall call s(w) the symmetric permutation of w. E.g, s(47516823) = 52483176.

Theorem 4.6. We have:
asc(w) = des(B3(i(w)).

Lemma 4.7. Let w = a1 . . . an ∈ Sn. Then B3(i(w)) is a symmetric permutation of w.

Proof: The idea is to take w′ = i(w) = a1 . . . an ∈ Sn and compare i(r(w′)) and i(w′). As before,
let us use the double array representation:

D(w′) =

(
1 2 · · · n
a1 a2 · · · an

)
.

D(r(w′)) =

(
1 2 · · · n
an an−1 · · · an

)
.

Interchanging the first and second rows in D(r(w′)), we get:

(
an an−1 · · · a1

1 2 · · · n

)
.

Hence in i(r(w′)) every ai is paired with n + 1− i.

Moreover, after interchanging the first and second row in D(w′), we obtain:

(
a1 a2 · · · an

1 2 · · · n

)
.

Hence in i(w′) every ai is paired with i. Since n+1− i+ i = n+1, i(r(w′)) and i(w′) are symmet-
ric. Since w′ = i(w), i(r(i(w))) and i(i(w)) are symmetric. Thus B3(i(w)) and w are symmetric. ¥

Proof of theorem 4.6: By lemma 4.7, the bijection w 7→ B3(i(w)) maps every descent to an
ascent and converse is also true. ¥

Corollary 4.8. Sn possesses the same number of ascents and of descents:

22



∑

w∈Sn

card(asc(w)) =
∑

w∈Sn

card(des(w)) =
(n− 1)n!

2
.

Proof: By theorem 4.6:

∑

w∈Sn

card(asc(w)) =
∑

w∈Sn

des(B3(i(w)) =
∑

w∈Sn

card(des(w)) ≡ N.

Moreover, there are n! permutations and each permutation has in total n−1 ascents and descents.
After summing over all permutations, we get: N + N = (n− 1)n! . ¥

4.4 B3 and orbits

The goal of this section is to find the smallest integer k such that for a given w:

B3 ◦ . . . ◦B3︸ ︷︷ ︸
k

(w) ≡ B
(k)
3 (w) = w.

Theorem 4.9. Depending on the properties of w, k takes one of the following values:

k = 1 ⇔ r(w) = i(w) (12)

k = 2 ⇔ r(s(w)) = w (13)

k = 4 in the other cases. (14)

Proof of (12):

k = 1 ⇔ B3(w) = w ⇔ i(r(w)) = w ⇔ i(i(r(w))) = i(w) ⇔ r(w) = i(w).

Proof of (13) and (14): The key idea is to interpret the bijections i, r and s geometrically as
symmetries of the permutation matrix. For w = a1 . . . an ∈ Sn, the permutation matrix Pw is the
n×n matrix containing 1 at the intersection of the i-th row and the ai-th column and 0 elsewhere.

For example:

Pw =




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0




is the permutation matrix of w = 13254.

Inverting w, that is, applying i on w, consists in transposing Pw. Reversing w, that is, applying
r on w, consists in reflecting Pw with respect to the central row (see Figure 1).
Composing these operations, one obtains that B3 ≡ i ◦ r consists in rotating Pw around the

center of Pw (the intersection of the two axes shown in Figure 1) on the angle −π

2
. Therefore,
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Figure 1: i in blue and r in red.

B
(4)
3 (w) = w, and k must divide 4. Thus k takes one of the following values: 1, 2 or 4.

For k = 2 one has:

k = 2 ⇔ Pw remains unchanged after rotation by angle π

⇔ the center of Pw is a center of symmetry of Pw

⇔ r(s(w)) = w as shown by figure 2.

Figure 2: Applying r ◦ s to the ”1” in the fourth row.

This proves theorem 4.9. ¥

Note: Figure 2 gives an alternate proof of lemma 4.7: i ◦ r ◦ i ≡ s.

5 Summary

Our present consideration was dedicated to the study of general properties of good sequences
using the powerful technique of bijective proofs. To start with, we have determined the total
number of good sequences of fixed length by constructing a bijection B between a set of good
sequences and a set of permutations (Theorem 2.1). We have then used bijections to find the
generating function of a certain statistic on good sequences: greatest element, rank, degree,
number of records, etc. For this purpose, we have constructed a new bijection B2 which kept the
records invariant (Theorem 3.7). Using this new bijection we have studied properties of good
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sequences avoiding Full Sequences and we have found a relation between Eulerian polynomials
and the number of ways n competitors can rank in a competition, allowing for the possibility of
ties.

Furthermore, by composing these two bijections we have constructed a new bijection B3 from
the set of permutations to itself. We have proved certain interesting facts about this bijection: B3

can be easily defined (theorem 3.15) and it possesses definite properties with respect to inversions,
ascents, descents and its orbits.

Appendix

This appendix is devoted to a bijection described in [3]. Similarly to the double array representa-
tion, we can interpret a permutation w of length n as a bijection [n] → [n], that is, w(i) = j ⇐⇒
j appears in the i-th position in w. For every element k ∈ [n] we can look at the sequence
k, w(k), w(2)(k), · · · . Since w is a bijection, there exists a unique positive integer l such that
k, w(k), w(2)(k), · · · , w(l−1)(k) are all different. We say that k, w(k), w(2)(k), · · · , w(l−1)(k) is a
cycle of length l. Note that a cycle remains the same after applying a cyclic permutation on
it. We can now write a permutation in its cycle form C1, . . . , Cn where the Ci are disjoint cy-
cles. For example, take w = 2165473. w(1) = 2, w(2) = 1, w(3) = 6, w(4) = 5, w(5) = 4,
w(6) = 7, w(7) = 3. Hence w = (12)(367)(45). Notice that we also have w = (45)(12)(367) =
(673)(12)(54). Given a permutation, we can write it in a standard representation by requiring
that the greatest element of a cycle is placed the first in the cycle and that the subsequence
formed by the first element of each cycle is increasing. For instance, the standard representation
of w = 2165473 is (21)(54)(736). Now remove the parentheses: we obtain a new permutation
ŵ = 2154736. The general procedure to apply our bijection on a permutation w is the following:
write w in its standard representation, erase the parentheses and get ŵ. To recover w from ŵ,
write down a left parenthesis before every record since in the standard representation of w the
first element of a cycle is a record, and finally complete by right parentheses when needed. Hence
our bijection is a bijection Sn → Sn which maps a permutation with k cycles to a permutation
with k records, and conversely.
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