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Abstract We give a simple new proof of a theorem of Duquesne, stating that
the properly rescaled contour function of a critical aperiodic Galton–Watson tree,
whose offspring distribution is in the domain of attraction of a stable law of index
� 2 .1; 2�, conditioned on having total progeny n, converges in the functional sense
to the normalized excursion of the continuous-time height function of a strictly
stable spectrally positive Lévy process of index � . To this end, we generalize an
idea of Le Gall which consists in using an absolute continuity relation between
the conditional probability of having total progeny exactly n and the conditional
probability of having total progeny at least n. This new method is robust and can be
adapted to establish invariance theorems for Galton–Watson trees having n vertices
whose degrees are prescribed to belong to a fixed subset of the positive integers.
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Introduction

In this article, we are interested in the asymptotic behavior of critical Galton–Watson
trees whose offspring distribution may have infinite variance. Aldous [1] studied
the shape of large critical Galton–Watson trees whose offspring distribution has
finite variance and proved that their properly rescaled contour functions converge
in distribution in the functional sense to the Brownian excursion. This seminal
result has motivated the study of the convergence of other rescaled paths obtained
from Galton–Watson trees, such as the Lukasiewicz path (also known as the Harris
walk) and the height function. In [20], under an additional exponential moment
condition, Marckert and Mokkadem showed that the rescaled Lukasiewicz path,
height function and contour function all converge in distribution to the same
Brownian excursion. In parallel, unconditional versions of Aldous’ result have
been obtained in full generality. More precisely, when the offspring distribution
is in the domain of attraction of a stable law of index � 2 .1; 2�, Duquesne and
Le Gall [8] showed that the concatenation of rescaled Lukasiewicz paths of a
sequence of independent Galton–Watson trees converges in distribution to a strictly
stable spectrally positive Lévy process X of index � , and the concatenation of the
associated rescaled height functions (or of the rescaled contour functions) converges
in distribution to the so-called continuous-time height function associated with X .
In the same monograph, Duquesne and Le Gall explained how to deduce a limit
theorem for Galton–Watson trees conditioned on having at least n vertices from the
unconditional limit theorem. Finally, still in the stable case, Duquesne [7] showed
that the rescaled Lukasiewicz path of a Galton–Watson tree conditioned on having
n vertices converges in distribution to the normalized excursion of the Lévy process
X (thus extending Marckert and Mokkadem’s result) and that the rescaled height
and contour functions of a Galton–Watson tree conditioned on having n vertices
converge in distribution to the normalized excursion of the continuous-time height
function H exc associated with X (thus extending Aldous’ result).

In this work, we give an alternative proof of Duquesne’s result, which is based
on an idea that appeared in the recent papers [16, 18]. Let us explain our approach
after introducing some notation. For every x 2 R, let bxc denote the greatest
integer smaller than or equal to x. If I is an interval, let C.I;R/ be the space
of all continuous functions I ! R equipped with the topology of uniform
convergence on compact subsets of I . We also let D.I;R/ be the space of all
right-continuous with left limits (càdlàg) functions I ! R, endowed with the
Skorokhod J1-topology (see [4, Chap. 3], [12, Chap. VI] for background concerning
the Skorokhod topology). Denote by P� the law of the Galton–Watson tree with
offspring distribution �. The total progeny of a tree � will be denoted by �.�/. Fix
� 2 .1; 2� and let .Xt/t�0 be the spectrally positive Lévy process with Laplace
exponent EŒexp.��Xt /� D exp.t�� /.

(0) We fix a critical offspring distribution � in the domain of attraction of a
stable law of index � 2 .1; 2�. If U1; U2; : : : are i.i.d. random variables with
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distribution �, and Wn D U1 C � � � C Un � n, there exist positive constants
.Bn/n�0 such that Wn=Bn converges in distribution to X1.

(i) Fix a 2 .0; 1/. To simplify notation, set Wa;.n/ D .W
a;.n/
j ; 0 � j �

bnac/ where W
a;.n/
j D Wj .�/=Bn and W.�/ is the Lukasiewicz path of �

(see Sect. 1.2 below for its definition). Then for every function fn W ZbancC1 !
RC, the following absolute continuity relation holds:

E�

�
fn.Wa;.n//j �.�/ D n

� D E�

�
fn.Wa;.n//D.a/

n

�
Wbanc.�/

� j �.�/ � n
�

(1)

with a certain function D
.a/
n W f�1; 0; 1; 2; : : :g ! RC.

(ii) We establish the existence of a measurable function �a W RC ! RC such

that the quantity
ˇ̌
ˇD.a/

n .j / � �a.j=Bn/
ˇ̌
ˇ goes to 0 as n ! 1, uniformly in

values of j such that j=Bn stays in a compact subset of R�C. Furthermore, if H

denotes the continuous-time height process associated with X and N stands for
the Itô excursion measure of X above its infimum, we have for every bounded
measurable function F W D.Œ0; a�;R/ ! RC:

N .F..Ht /0�t�a/�a.Xa/j � > 1/ D N .F..Ht /0�t�a/j � D 1/ ; (2)

where � is the duration of the excursion under N.
(iii) We show that under P�Œ � j�.�/ D n�, the rescaled height function converges

in distribution on Œ0; a� for every a 2 .0; 1/. To this end, we fix a bounded
continuous function F W D.Œ0; a�;R/ ! RC and apply formula (1) with
fn.Wa;.n// D F

�
Bn

n
Hbntc.�/I 0 � t � a

�
where H.�/ is the height function

of the tree � . Using the previously mentioned result of Duquesne and Le Gall
concerning Galton–Watson trees conditioned on having at least n vertices, we
show that we can restrict ourselves to the case where Wbanc.�/=Bn stays in a
compact subset of R�C, so that we can apply (ii) and obtain that:

lim
n!1E�

�
F

�
Bn

n
Hbntc.�/I 0 � t � a

�ˇˇ
ˇ̌ �.�/ D n

	

D lim
n!1E�

�
F

�
Bn

n
Hbntc.�/I 0 � t � a

�
D.a/

n

�
Wbanc.�/

� j �.�/ � n

	

D N .F.Ht I 0 � t � a/�a.Xa/ j � > 1/

D N .F.Ht I 0 � t � a/ j � D 1/ :

(iv) By using a relationship between the contour function and the height function
which was noticed by Duquesne and Le Gall in [8], we get that, under
P�Œ � j�.�/ D n�, the scaled contour function converges in distribution on Œ0; a�.
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(v) By using the time reversal invariance property of the contour function, we
deduce that under P�Œ � j�.�/ D n�, the scaled contour function converges in
distribution on the whole segment Œ0; 1�.

(vi) Using once again the relationship between the contour function and the height
function, we deduce that, under P�Œ � j�.�/ D n�, the scaled height function
converges in distribution on Œ0; 1�.

In the case where the variance of � is finite, Le Gall gave an alternative proof of
Aldous’ theorem in [16, Theorem 6.1] using a similar approach based on a strong
local limit theorem. There are additional difficulties in the infinite variance case,
since no such theorem is known in this case.

Let us finally discuss the advantage of this new method. Firstly, the proof is
simpler and less technical. Secondly, we believe that this approach is robust and
can be adapted to other situations. For instance, using the same ideas, we have
established invariance theorems for Galton–Watson trees having n vertices whose
degrees are prescribed to belong to a fixed subset of the nonnegative integers [14].

The rest of this text is organized as follows. In Sect. 1, we present the discrete
framework by defining Galton–Watson trees and their codings. We explain how the
local limit theorem gives information on the asymptotic behavior of large Galton–
Watson trees and present the discrete absolute continuity relation appearing in (1).
In Sect. 2, we discuss the continuous framework: we introduce the strictly stable
spectrally positive Lévy process, its Itô excursion measure N and the associated
continuous-time height process. We also prove the absolute continuity relation (3).
Finally, in Sect. 3 we give the new proof of Duquesne’s theorem by carrying out
steps (i–vi).

Notation and Main Assumptions. Throughout this work � 2 .1; 2� is a fixed
parameter. We consider a probability distribution .�.j //j �0 on the nonnegative
integers satisfying the following three conditions:

(i) � is critical, meaning that
P1

kD0 k�.k/ D 1.
(ii) � is in the domain of attraction of a stable law of index � 2 .1; 2�. This means

that either the variance of � is positive and finite, or �.Œj; 1// D j �� L.j /,
where L W RC ! RC is a function such that L.x/ > 0 for x large enough
and limx!1 L.tx/=L.x/ D 1 for all t > 0 (such a function is called slowly
varying). We refer to [5] or [9, Chap. 3.7] for details.

(iii) � is aperiodic, which means that the additive subgroup of the integers Z

spanned by fj I �.j / ¤ 0g is not a proper subgroup of Z.

We introduce condition (iii) to avoid unnecessary complications, but our results can
be extended to the periodic case.

In what follows, .Xt /t�0 will stand for the spectrally positive Lévy process with
Laplace exponent EŒexp.��Xt /� D exp.t�� / where t; � � 0 and p1 will denote
the density of X1. Finally, 	 will stand for the probability measure on Z defined by
	.k/ D �.k C 1/ for k � �1. Note that 	 has zero mean.
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1 The Discrete Setting: Galton–Watson Trees

1.1 Galton–Watson Trees

Definition 1. Let N D f0; 1; : : :g be the set of all nonnegative integers and N
� D

f1; : : :g. Let also U be the set of all labels:

U D
1[

nD0

.N�/n;

where by convention .N�/0 D f;g. An element of U is a sequence u D u1 � � � uj

of positive integers, and we set juj D j , which represents the “generation” of u.
If u D u1 � � � uj and v D v1 � � � vk belong to U , we write uv D u1 � � � uj v1 � � � vk for
the concatenation of u and v. In particular, note that u; D ;u D u. Finally, a rooted
ordered tree � is a finite subset of U such that:

1. ; 2 � .
2. if v 2 � and v D uj for some j 2 N

�, then u 2 � .
3. for every u 2 � , there exists an integer ku.�/ � 0 such that, for every j 2 N

�,
uj 2 � if and only if 1 � j � ku.�/.

In the following, by tree we will mean rooted ordered tree. The set of all trees is
denoted by T. We will often view each vertex of a tree � as an individual of a
population whose � is the genealogical tree. The total progeny of � will be denoted
by �.�/ D Card.�/. Finally, if � is a tree and u 2 � , we set Tu� D fv 2 U I uv 2 �g,
which is itself a tree.

Definition 2. Let 
 be a probability measure on N with mean less than or equal
to 1 and such that 
.1/ < 1. The law of the Galton–Watson tree with offspring
distribution 
 is the unique probability measure P
 on T such that:

1. P
Œk; D j � D 
.j / for j � 0.
2. for every j � 1 with 
.j / > 0, conditionally on fk; D j g, the shifted trees

T1�; : : : ; Tj � are i.i.d. with distribution P
.

A random tree whose distribution is P
 will be called a GW
 tree.

1.2 Coding Galton–Watson Trees

We now explain how trees can be coded by three different functions. These codings
are crucial in the understanding of large Galton–Watson trees.

Definition 3. We write u < v for the lexicographical order on the labels U (for
example, ; < 1 < 21 < 22). Consider a tree � and order the individuals of � in
lexicographical order: ; D u.0/ < u.1/ < � � � < u.�.�/ � 1/. The height process
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Fig. 1 A tree � with its vertices indexed in lexicographical order and its contour function
.Cu.�/I 0 � u � 2.�.�/ � 1/. Here, �.�/ D 26

H.�/ D .Hn.�/; 0 � n < �.�// is defined, for 0 � n < �.�/, by Hn.�/ D ju.n/j.
For technical reasons, we set Hk.�/ D 0 for k � �.�/. We extend H.�/ to RC
by linear interpolation by setting Ht .�/ D .1 � ftg/Hbtc.�/ C ftgHbtcC1.�/ for
0 � t � �.�/, where ftg D t � btc.

Consider a particle that starts from the root and visits continuously all edges at
unit speed (assuming that every edge has unit length), going backwards as little as
possible and respecting the lexicographical order of vertices. For 0 � t � 2.�.�/ �
1/, Ct.�/ is defined as the distance to the root of the position of the particle at time t .
For technical reasons, we set Ct.�/ D 0 for t 2 Œ2.�.�/ � 1/; 2�.�/�. The function
C.�/ is called the contour function of the tree � . See Fig. 1 for an example, and [7,
Sect. 2] for a rigorous definition.

Finally, the Lukasiewicz path W.�/ D .Wn.�/; n � 0/ of a tree � is defined
by W0.�/ D 0, WnC1.�/ D Wn.�/ C ku.n/.�/ � 1 for 0 � n � �.�/ � 1, and
Wk.�/ D 0 for k > �.�/. For u � 0, we set Wu.�/ D Wbuc.�/.

Note that necessarily W�.�/.�/ D �1. See Fig. 2 for an example.
Let .WnI n � 0/ be a random walk which starts at 0 with jump distribution

	.k/ D �.k C 1/ for k � �1. For j � 1, define �j D inffn � 0I Wn D �j g.

Proposition 1. .W0; W1; : : : ; W�1/ has the same distribution as the Lukasiewicz
path of a GW� tree. In particular, the total progeny of a GW� tree has the same
law as �1.

Proof. See [17, Proposition 1.5]. ut
We will also use the following well-known fact (see e.g. Lemma 6.1 in [21] and

the discussion that follows).

Proposition 2. For every integers 1 � j � n, we have PŒ�j D n� D j

n
PŒWn D �j �.
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Fig. 2 The Lukasiewicz path .Wbuc.�/I 0 � u < �.�/ C 1/ and the height function .Hu.�/; 0 �
u � �.�// of the tree � of Fig. 1

1.3 Slowly Varying Functions

Slowly varying functions appear in the study of domains of attractions of stable
laws. Here we recall some properties of these functions in view of future use.

Recall that a positive measurable function L W RC ! RC is said to be slowly
varying if L.x/ > 0 for x large enough and, for all t > 0, L.tx/=L.x/ ! 1 as
x ! 1. A useful result concerning these functions is the so-called Representation
Theorem, which states that a function L W RC ! RC is slowly varying if and only
if it can be written in the form:

L.x/ D c.x/ exp

�Z x

1

�.u/

u
du

�
; x � 0;

where c is a nonnegative measurable function having a finite positive limit at infinity
and � is a measurable function tending to 0 at infinity. See e.g. [5, Theorem 1.3.1]
for a proof. The following result is then an easy consequence.

Proposition 3. Fix � > 0 and let L W RC ! R be a slowly varying function. There
exist two constants C > 1 and N > 0 such that 1

C
x�� � L.nx/=L.n/ � Cx� for

every integer n � N and x � 1.

1.4 The Local Limit Theorem

Definition 4. A subset A � Z is said to be lattice if there exist b 2 Z and an integer
d � 2 such that A � b C dZ. The largest d for which this statement holds is called
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the span of A. A measure on Z is said to be lattice if its support is lattice, and a
random variable is said to be lattice if its law is lattice.

Remark 1. Since � is supposed to be critical and aperiodic, using the fact that
�.0/ > 0, it is an exercise to check that the probability measure 	 is non-lattice.

Recall that p1 is the density of X1. It is well known that p1.0/ > 0, that p1 is
positive, bounded, and continuous, and that the absolute value of the derivative of
p1 is bounded over R (see e.g. [23, I. 4.]). The following theorem will allow us to
find estimates for the probabilities appearing in Proposition 2.

Theorem 1 (Local Limit Theorem). Let .Yn/n�0 be a random walk on Z started
from 0 such that its jump distribution is in the domain of attraction of a stable law
of index � 2 .1; 2�. Assume that Y1 is non-lattice, that EŒY1� D 0 and that Y1 takes
values in N [ f�1g.

(i) There exists an increasing sequence of positive real numbers .an/n�1 such that
Yn=an converges in distribution to X1.

(ii) We have lim
n!1 sup

k2Z

ˇ
ˇ
ˇ̌anPŒYn D k� � p1

�
k

an

�ˇˇ
ˇ̌ D 0:

(iii) There exists a slowly varying function l W RC ! RC such that an D n1=� l.n/.

Proof. For (i), see [10, Sect. XVII.5, Theorem 3] and [5, Sect. 8.4]. The fact that
.an/ may be chosen to be increasing follows from [9, Formula 3.7.2]. For (ii), see
[11, Theorem 4.2.1]. For (iii), it is shown in [11, p. 46] that akn=an converges to
k1=� for every integer k � 1. Since .an/ is increasing, a theorem of de Haan (see [5,
Theorem 1.10.7]) implies that there exists a slowly varying function l W RC ! RC
such that an D l.n/n1=� for every positive integer n. ut

Let .Wn/n�0 be as in Proposition 1 a random walk started from 0 with jump
distribution 	. Since � is in the domain of attraction of a stable law of index � , it
follows that 	 is in the same domain of attraction, and W1 is not lattice by Remark 1.
Since 	 has zero mean, by the preceding theorem there exists an increasing sequence
of positive integers .Bn/n�1 such that Bn ! 1 and Wn=Bn converges in distribution
towards X1 as n ! 1. In what follows, the sequence .Bn/n�1 will be fixed, and
h W RC ! RC will stand for a slowly varying function such that Bn D h.n/n1=� .

Lemma 1. We have:

.i/ P� Œ�.�/ D n� �
n!1

p1.0/

n1=�C1h.n/
; .ii/ P� Œ�.�/ � n� �

n!1
�p1.0/

n1=� h.n/
;

where we write an � bn if an=bn ! 1.

Proof. We keep the notation of Proposition 1. Proposition 2 gives that:

P�Œ�.�/ D n� D 1

n
PŒWn D �1�: (3)
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For (i), it suffices to notice that the local limit theorem (Theorem 1) and the
continuity of p1 entail PŒWn D �1� � p1.0/=.h.n/n1=� /. For (ii), we use (i) to
write:

P� Œ�.�/ � n� D
1X

kDn

�
1

h.k/k1C1=�
p1 .0/ C 1

h.k/k1C1=�
ı.k/

�
;

where ı.k/ tends to 0 as k ! 1. We can rewrite this in the form:

h.n/n1=�
P� Œ�.�/ � n� D

Z 1

1

dufn.u/; (4)

where:

fn.u/ D h.n/n1=�C1

h.bnuc/bnuc1C1=�
.p1 .0/ C ı.bnuc// :

For fixed u � 1, fn.u/ tends to p1.0/

u1=�C1 as n ! 1. Choose � 2 .0; 1=�/. By
Proposition 3, for every sufficiently large positive integer n we have fn.u/ �
C=u1C1=��� for every u � 1, where C is a positive constant. The dominated
convergence theorem allows us to infer that:

lim
n!1

Z 1

1

dufn.u/ D
Z 1

1

du
p1.0/

u1=�C1
D �p1.0/;

and the desired result follows from (4). ut

1.5 Discrete Absolute Continuity

The next lemma in another important ingredient of our approach.

Lemma 2 (Le Gall and Miermont). Fix a 2 .0; 1/. Then, with the notation of
Proposition 2, for every n � 1 and for every bounded nonnegative function fn on
Z

bancC1:

E
�
fn.W0; : : : ; Wbnac/j �1 D n

�

D E

"

fn.W0; : : : ; Wbnac/
�n�Œan�.Wbanc C 1/=�n.1/

��
n�banc.Wbanc C 1/=��

n .1/

ˇ̌
ˇ
ˇ
ˇ

�1 � n

#

; (5)

where �p.j / D P
�
�j D p

�
and ��

p.j / D P
�
�j � p

�
for every integers j � 1 and

p � 1.
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Proof. This result follows from an application of the Markov property to the random
walk W at time banc. See [18, Lemma 10] for details in a slightly different setting.

ut

2 The Continuous Setting: Stable Lévy Processes

2.1 The Normalized Excursion of the Lévy Process
and the Continuous-time Height Process

We follow the presentation of [7]. The underlying probability space will be denoted
by .˝;F;P/. Recall that X is a strictly stable spectrally positive Lévy process with
index � 2 .1; 2� such that for � > 0:

EŒexp.��Xt /� D exp.t�� /: (6)

We denote the canonical filtration generated by X and augmented with the P-
negligible sets by .Ft /t�0. See [2] for the proofs of the general assertions of this
subsection concerning Lévy processes. In particular, for � D 2 the process X is

p
2

times the standard Brownian motion on the line. Recall that X has the following
scaling property: for c > 0, the process .c�1=� Xct ; t � 0) has the same law as X . In
particular, the density pt of the law of Xt enjoys the following scaling property:

pt .x/ D t�1=� p1.xt�1=� / (7)

for x 2 R, t > 0. The following notation will be useful: for s < t , we set I s
t D

infŒs;t � X and It D infŒ0;t �X . Notice that the process I is continuous since X has no
negative jumps.

The process X � I is a strong Markov process and 0 is regular for itself with
respect to X � I . We may and will choose �I as the local time of X � I at level 0.
Let .gi ; di /; i 2 I be the excursion intervals of X � I above 0. For every i 2 I and
s � 0, set !i

s D X.gi Cs/^di � Xgi . We view !i as an element of the excursion space
E, which is defined by:

E D f! 2 D.RC;R/I !.0/ D 0 and �.!/ WD supfs > 0I !.s/ > 0 g 2 .0; 1/g:

From Itô’s excursion theory, the point measure

N.dtd!/ D
X

i2I
ı.�Igi ;!i /

is a Poisson measure on RC �E with intensity dtN.d!/, where N.d!/ is a 
-finite
measure on E. By classical results, N.� > t/ D � .1 � 1=�/�1t�1=� . Without risk
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of confusion, we will also use the notation X for the canonical process on the space
D.RC;R/.

We now define the normalized excursion of X . Let us first recall the Itô
description of the excursion measure (see [6] or [2, Chap. VIII.4] for details). Define
for � > 0 the rescaling operator S.�/ on E by S.�/.!/ D �

�1=� !.s=�/; s � 0
�

: Then
there exists a unique collection of probability measures .N.a/; a > 0/ on E such that
the following properties hold.

(i) For every a > 0, N.a/.� D a/ D 1.
(ii) For every � > 0 and a > 0, we have S.�/.N.a// D N.�a/.

(iii) For every measurable subset A of E: N.A/ D
Z 1

0

N.a/.A/
da

�� .1 � 1=�/a1=� C 1
.

The probability distribution N.1/ on càdlàg paths with unit lifetime is called the law
of the normalized excursion of X and will sometimes be denoted by N. � j� D 1/. In
particular, for � D 2, N.1/ is the law of

p
2 times the normalized excursion of linear

Brownian motion. Informally, N. � j� D 1/ is the law of an excursion conditioned to
have unit lifetime.

We will also use the socalled continuous-time height process H associated
with X which was introduced in [19]. If � D 2, H is set to be equal to X � I .
If � 2 .1; 2/, the process H is defined for every t � 0 by:

Ht WD lim
�!0

1

�

Z t

0

�fXs<I s
t C�gds;

where the limit exists in P-probability and in N-measure on ft < �g. The definition
of H thus makes sense under P or under N. The process H has a continuous
modification both under P and under N (see [8, Chap. 1] for details), and from
now on we consider only this modification. Using simple scale arguments one can
also define H as a continuous random process under N. � j� D 1/. For our purposes,
we will need the fact that, for every a � 0, .Ht /0�t�a is a measurable function of
.Xt/0�t�a.

2.2 Absolute Continuity Property of the Itô Measure

We now present the continuous counterpart of the discrete absolute continuity
property appearing in Lemma 2. We follow the presentation of [16] but generalize
it to the stable case. The following proposition is classical (see e.g. the proof of
Theorem 4.1 in [22, Chap. XII], which establishes the result for Brownian motion).

Proposition 4. Fix t > 0. Under the conditional probability measure N. � j� > t/,
the process .XtCs/s�0 is Markovian with the transition kernels of a strictly stable
spectrally positive Lévy process of index � stopped upon hitting 0.

We will also use the following result (see [3, Corollary 2.3] for a proof).
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Proposition 5. Set qs.x/ D x
s
ps.�x/ for x; s > 0. For x � 0, let T .x/ D infft �

0I Xt < �xg be the first passage time of �X above x. Then P ŒT .x/ 2 dt� D
qt .x/dt for every x > 0.

Note that qs is a positive continuous function on .0; 1/, for every s > 0. It is
also known that qs is bounded by a constant which is uniform when s varies over
Œ�; 1/, � > 0 (this follows from e.g. [23, I. 4.]).

Proposition 6. For every a 2 .0; 1/ and x > 0 define:

�a.x/ D �q1�a.x/
R1

1�a
ds qs.x/

:

Then for every measurable bounded function G W D.Œ0; a�;R2/ ! RC:

N .G..Xt /0�t�a; .Ht /0�t�a/�a.Xa/j � > 1/ D N .G..Xt /0�t�a; .Ht /0�t�a/j � D 1/ :

Proof. Since .Ht /0�t�a is a measurable function of .Xt /0�t�a, it is sufficient to
prove that for every bounded measurable function F W D.Œ0; a�;R/ ! RC:

N .F..Xt /0�t�a/�a.Xa/j � > 1/ D N .F..Xt /0�t�a/j � D 1/ :

To this end, fix r 2 Œ0; a�, let f; g W RC ! RC be two bounded continuous functions
and let h W R�C ! RC be a continuous function. Using the notation of Proposition 5,
we have:

N
�
f .Xr/h.Xa/g.�/�f�>ag

� D N
�
f .Xr/�f�>agE Œh.x/g.a C T .x//�xDXa

�

D
Z 1

0

ds g.a C s/N
�
f .Xr/h.Xa/qs.Xa/�f�>ag

�

D
Z 1

a

du g.u/N
�
f .Xr/h.Xa/qu�a.Xa/�f�>ag

�
; (8)

where we have used Proposition 4 in the first equality and Proposition 5 in the
second equality. Moreover, by property (iii) in Sect. 2.1:

N
�
f .Xr/g.�/�f�>ag

� D
Z 1

a

du
g.u/

�� .1 � 1=�/u1=�C1
� N.u/.f .Xr//: (9)

Now observe that (8) (with h D 1) and (9) hold for any bounded continuous function
g. Since both functions u 7! N

�
f .Xr/qu�a.Xa/�f�>ag

�
and u 7! N.u/ .f .Xr// are

easily seen to be continuous over .a; 1/, it follows that for every u > a:

N
�
f .Xr/qu�a.Xa/�f�>ag

� D 1

�� .1 � 1=�/u1=�C1
N.u/ .f .Xr// :
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In particular, for u D 1 we get:

N
�
f .Xr/q1�a.Xa/�f�>ag

� D 1

�� .1 � 1=�/
N.1/ .f .Xr// : (10)

On the other hand, applying (8) with g.x/ D �fx>1g and noting that N.� > 1/ D
1

� .1�1=�/
, we get:

N .f .Xr/h.Xa/ j� > 1/ D � .1 � 1=�/N
�

f .Xr/h.Xa/�f�>ag
Z 1

1�a

ds qs.Xa/

�
:

(11)

By combining (11) and (10) we conclude that:

N

 

f .Xr/
�q1�a.Xa/

R1
1�a

ds qs.Xa/

ˇ
ˇ
ˇ
ˇ̌ � > 1

!

D N.1/.f .Xr//:

One similarly shows that for 0 � r1 < � � � < rn � a and f1; : : : ; fn W RC ! RC
continuous bounded functions:

N

 

f1.Xr1/ � � � fn.Xrn/
�q1�a.Xa/

R1
1�a

ds qs.Xa/

ˇ
ˇ̌
ˇ
ˇ

� > 1

!

D N.1/.f1.Xr1/ � � � fn.Xrn//:

The desired result follows since the Borel 
-field of D.Œ0; a�;R/ is generated by the
coordinate functions X 7! Xr for 0 � r � a (see e.g. [4, Theorem 12.5 (iii)]). ut

3 Convergence to the Stable Tree

3.1 An Invariance Theorem

We rely on the following theorem, which is similar in spirit to Donsker’s invariance
theorem (see the concluding remark of [8, Sect. 2.6] for a proof).

Theorem 2 (Duquesne and Le Gall). Let tn be a random tree distributed accord-
ing to P�Œ � j �.�/ � n�. We have:

�
1

Bn

Wbntc.tn/;
Bn

n
Hnt.tn/

�

t�0

.d/�!
n!1 .Xt ; Ht /0�t�1 under N. � j � > 1/:
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3.2 Convergence of the Scaled Contour and Height Functions

Recall the notation �n.j / D P
�
�j D n

�
and ��

n .j / D P
�
�j � n

�
.

Lemma 3. Fix ˛ > 0. We have:

(i) lim
n!1 sup

1�k�˛Bn

ˇ̌
ˇ
ˇn�n.k/ � q1

�
k

Bn

�ˇ̌
ˇ
ˇ D 0;

(ii) lim
n!1 sup

1�k�˛Bn

ˇ̌
ˇ
ˇ�

�
n .k/ �

Z 1

1

ds qs

�
k

Bn

�ˇ̌
ˇ
ˇ D 0:

This has been proved by Le Gall in [16] when � has finite variance. In full
generality, the proof is technical and is postponed to Sect. 3.3.

Lemma 4. Fix a 2 .0; 1/. Let tn be a random tree distributed according to
P�Œ � j �.�/ D n�. Then the following convergence holds in distribution in the space
C.Œ0; a�;R/:

�
Bn

n
Hnt.tn/I 0 � t � a

�
.d/�!

n!1 .Ht I 0 � t � a/ under N. � j� D 1/:

Proof. Recall the notation �a introduced in Proposition 6. We start by verifying
that, for ˛ > 1, we have:

lim
n!1

 

sup
1
˛ Bn�k�˛Bn

ˇ
ˇ
ˇ
ˇ̌
�n�banc.k C 1/=�n.1/

��
n�banc.k C 1/=��

n .1/
� �a

�
k

Bn

�ˇˇ
ˇ
ˇ̌

!

D 0: (12)

To this end, we will use the existence of a constant ı > 0 such that, for n sufficiently
large,

inf
1
˛ Bn�k�˛Bn

Z 1

1

ds qs

�
k C 1

Bn�banc

�
> ı: (13)

The existence of such ı follows from the fact that, for every ˇ > 1,
inf 1

ˇ �x�ˇ

R1
1

ds qs .x/ > 0: We will also need the fact that for every ˇ > 1

there exists a constant C > 0 such that:

sup
1
ˇ �x�ˇ

q1 .x/ � C; sup
1
ˇ �x�ˇ

Z 1

1

ds qs .x/ � C: (14)

This is a consequence of the fact that q1 is bounded for the first inequality, and the
second inequality follows from the scaling property (7) combined with the fact that
p1 is bounded (see e.g. [23, I. 4.]). To establish (12), we first show that
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lim
n!1

0

@ sup
1
˛ Bn�k�˛Bn

ˇ
ˇ
ˇ
ˇ
ˇ̌
�n�banc.k C 1/=�n.1/

��
n�banc.k C 1/=��

n .1/
� �

1
1�a

q1



kC1

Bn�banc

�

R1
1 ds qs



kC1

Bn�banc

�

ˇ
ˇ
ˇ
ˇ
ˇ̌

1

A D 0: (15)

Since Bn�banc=Bn ! .1 � a/1=� as n ! 1, Lemma 3 guaranties the existence of

two sequences ."
.1/

k;n; "
.2/

k;n/k;n�1 such that

.n � banc/�n�banc.k C 1/ D q1

�
k C 1

Bn�banc

�
C "

.1/

k;n;

��
n�banc.k C 1/ D

Z 1

1

ds qs

�
k C 1

Bn�banc

�
C "

.2/

k;n

and such that max."
.1/

k;n; "
.2/

k;n/ ! 0 as n ! 1, uniformly in 1=˛ �Bn � k � ˛Bn. To
simplify notation set mn D n�banc. By (14) and the fact that Bmn=Bn ! .1�a/1=� ,
there exists C > 0 such that for n sufficiently large and 1=˛ � Bn � k � ˛Bn:

ˇ̌
ˇ
ˇ̌
ˇ

mn�mn
.k C 1/

��
mn

.k C 1/
�

q1



kC1
Bmn

�

R1

1
ds qs



kC1
Bmn

�

ˇ̌
ˇ
ˇ̌
ˇ

D
ˇ̌
ˇ
ˇ̌
ˇ

"
.1/

k;n � R1

1
ds qs



kC1
Bmn

�
� "

.2/

k;n � q1



kC1
Bmn

�

R1

1
ds qs



kC1
Bmn

�
�

R1

1
ds qs



kC1
Bmn

�
C "

.2/

k;n

�

ˇ̌
ˇ
ˇ̌
ˇ

� 2C

ı2
� sup

1
˛ Bn�k�˛Bn

max."
.1/

k;n; "
.2/

k;n/;

where we have used (13) for the last inequality. This, combined with the fact that
��

n .1/=.n�n.1// ! � as n ! 1 by Lemma 1, implies (15). Then our claim (12)
follows the scaling property (7) and the continuity of �a.

We shall now prove another useful result before introducing some notation. Fix
˛ > 1. Let gn W R

bancC1 ! RC be a bounded measurable function. To simplify
notation, for x0; : : : ; xbanc 2 R, set

Gn.x0; : : : ; xbanc/ D gn.x0; : : : ; xbanc/�xbanc2Œ 1
˛ Bn;˛Bn�

and, for a tree � , set

QGn.�/ D gn.W0.�/;W1.�/; : : : ;Wbanc.�//�fWbnac.�/2Œ 1
˛ Bn;˛Bn�g:

We claim that

lim
n!1

ˇ
ˇ̌
ˇE
� QGn.tn/

� � E�

�
QGn.�/�a

�
Wbanc.�/

Bn

�ˇˇ̌
ˇ �.�/ � n

	ˇˇ̌
ˇ D 0: (16)
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Indeed, using successively Proposition 1 and (5), we have:

E
� QGn.tn/

� � E�

�
QGn.�/�a

�
Wbanc.�/

Bn

�ˇˇ̌
ˇ �.�/ � n

	

D E
�
Gn.W0; : : : ; Wbnac/j �1 D n

� � E

�
Gn.W0; : : : ; Wbnac/�a

�
Wbanc

Bn

�
j �1 � n

	

D E

"

Gn.W0; : : : ; Wbnac/

 
�n�Œan�.Wbanc C 1/=�n.1/

��
n�banc

.Wbanc C 1/=��
n .1/

� �a

�
Wbanc

Bn

�!ˇ̌
ˇ
ˇ̌ �1 � n

#

:

Our claim (16) then follows from (12).
We finally return to the proof of Lemma 4. Let F W D.Œ0; a�;R/ ! RC be

a bounded continuous function. We also set Fn.�/ D F
�

Bn

n
Hbntc.�/I 0 � t � a

�
.

Since .H0.�/; H1.�/; : : : ; Hbanc.�// is a measurable function of .W0.�/;W1.�/;

: : : ;Wbanc.�// (see [17, Prop 1.2]), by (16) we get:

lim
n!1

ˇ
ˇ
ˇ
ˇE
�
Fn.tn/�A˛

n.tn/

� � E�

�
Fn.�/�A˛

n.�/�a

�
Wbanc.�/

Bn

�ˇˇ
ˇ
ˇ �.�/ � n

	ˇˇ
ˇ
ˇ D 0:

By Theorem 2, the law of
��

Bn

n
Hbntc.�/I 0 � t � a

�
;

1

Bn

Wbanc.�/

�

under P�Œ � j �.�/ � n� converges towards the law of ..Ht I 0 � t � a/; Xa/ under
N.� j � > 1/ (for the convergence of the second component we have also used the
fact that X is almost surely continuous at a). Thus:

lim
n!1E

h
Fn.tn/�fWbnac.tn/2Œ 1

˛ Bn;˛Bn�g
i

D N


F.Ht I 0 � t � a/�a.Xa/�fXa2Œ 1

˛ ;˛�g j � > 1
�

D N


F.Ht I 0 � t � a/�fXa2Œ 1

˛ ;˛�g j � D 1
�

; (17)

where we have used Proposition 6 in the second equality.
By taking F 	 1, we obtain:

lim
n!1P

�
Wbnac.tn/ 2

�
1

˛
Bn; ˛Bn

		
D N

�
Xa 2

�
1

˛
; ˛

	ˇˇ
ˇ̌ � D 1

�
:

This last quantity tends to 1 as ˛ ! 1. By choosing ˛ > 1 sufficiently large, we
easily deduce from the convergence (17) that:

lim
n!1E

�
F

�
Bn

n
Hbntc.tn/I 0 � t � a

�	
D N .F.Ht I 0 � t � a/ j � D 1/ :
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The path continuity of H under N . � j � D 1/ then implies the claim of Lemma 4.
ut

Theorem 3. Let tn be a random tree distributed according to P�Œ � j �.�/ D n�.
Then:

�
Bn

n
Hnt.tn/;

Bn

n
C2nt .tn/

�

0�t�1

.d/�!
n!1 .Ht ; Ht /0�t�1 under N. � j� D 1/:

Proof. The proof consists in showing that the scaled height process is close to the
scaled contour process and then using a time-reversal argument in order to show
that the convergence holds on the whole segment Œ0; 1�. To this end, we adapt [7,
Remark 3.2] and [8, Sect. 2.4] to our context. For 0 � p < n set bp D 2p � Hp.tn/

so that bp represents the time needed by the contour process to reach the .p C 1/-st
individual of tn (in the lexicographical order). Also set bn D 2.n � 1/. Note that
Cbp D Hp . From this observation, we get:

sup
t2Œbp ;bpC1�

jCt.tn/ � Hp.tn/j � jHpC1.tn/ � Hp.tn/j C 1: (18)

for 0 � p < n. Then define the random function gn W Œ0; 2n� ! N by setting
gn.t/ D k if t 2 Œbk; bkC1/ and k < n, and gn.t/ D n if t 2 Œ2.n � 1/; 2n� so that
for t < 2.n � 1/, gn.t/ is the index of the last individual which has been visited
by the contour function up to time t if the individuals are indexed 0; 1; : : : ; n � 1 in
lexicographical order. Finally, set Qgn.t/ D gn.nt/=n. Fix a 2 .0; 1/. Then, by (18):

sup
t� bbanc

n

ˇ
ˇ̌
ˇ
Bn

n
Cnt .tn/ � Bn

n
Hn Qgn.t/.tn/

ˇ
ˇ̌
ˇ � Bn

n
C Bn

n
sup

k�banc
jHkC1.tn/ � Hk.tn/j;

(19)

which converges in probability to 0 by Lemma 4 and the path continuity of .Ht /.
On the other hand it follows from the definition of bn that:

sup
t� bbanc

n

ˇ̌
ˇ
ˇ Qgn.t/ � t

2

ˇ̌
ˇ
ˇ � 1

2Bn

sup
k�an

Bn

n
Hk.tn/ C 1

n

.P/�! 0

by Lemma 4. Finally, by the definition of bn and using Lemma 4 we see that bbanc

n

converges in probability towards 2a and that Bn

n
supt�2a

ˇ
ˇHn Qgn.t/.tn/ � Hnt=2.tn/

ˇ
ˇ

converges in probability towards 0 as n ! 1. Using (19), we conclude that:

Bn

n
sup

0�t�a

jC2nt .tn/ � Hnt .tn/j .P/�! 0: (20)
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Together with Lemma 4, this implies:

�
Bn

n
C2nt .tn/I 0 � t � a

�
.d/�! .Ht I 0 � t � a/ under N. � j � D 1/:

Since .Ct.tn/I 0 � t � 2n � 2/ and .C2n�2�t .tn/I 0 � t � 2n � 2/ have the same
distribution, it follows that:

�
Bn

n
C2nt .tn/I 0 � t � 1

�
.d/�! .Ht I 0 � t � 1/ under N. � j � D 1/: (21)

See the last paragraph of the proof of Theorem 6.1 in [16] for details.
Finally, we show that this convergence in turn entails the convergence of the

rescaled height function of tn on the whole segment Œ0; 1�. To this end, we verify
that convergence (20) remains valid for a D 1. First note that:

sup
0�t�2

ˇ̌
ˇ
ˇ Qgn.t/ � t

2

ˇ̌
ˇ
ˇ � 1

2n
sup
k�n

Hk.tn/ C 1

n
D 1

2Bn

sup
k�2n

Bn

n
Ck.tn/ C 1

n

.P/�! 0

(22)

by (21). Secondly, it follows from (18) that:

sup
0�t�2

ˇ
ˇ
ˇ̌Bn

n
Cnt .tn/ � Bn

n
Hn Qgn.t/

ˇ
ˇ
ˇ̌ � Bn

n
C Bn

n
sup

k�n�1

jHkC1.tn/ � Hk.tn/j

D Bn

n
C Bn

n
sup

k�n�1

ˇ̌
ˇ
ˇC bkC1

n n
.tn/ � C bk

n n
.tn/

ˇ̌
ˇ
ˇ :

By (21), in order to prove that the latter quantity tends to 0 in probability, it is

sufficient to verify that supk�n

ˇ
ˇ
ˇ bkC1

n
� bk

n

ˇ
ˇ
ˇ converges to 0 in probability. But by the

definition of bn:

sup
k�n

ˇ
ˇ̌
ˇ
bkC1

n
� bk

n

ˇ
ˇ̌
ˇ D sup

k�n

ˇ
ˇ̌
ˇ
2 C Hk.tn/ � HkC1.tn/

n

ˇ
ˇ̌
ˇ � 2

n
C 2 sup

k�n

Hk.tn/

n

which converges in probability to 0 as in (22). As a consequence:

Bn

n
sup

0�t�1

jC2nt .tn/ � Hn Qgn.2t/.tn/j .P/�! 0:

By (21), we get that:

�
Bn

n
Hn Qgn.2t/.tn/

�

0�t�1

.d/�!
n!1 .Ht /0�t�1 under N. � j � D 1/:
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Combining this with (22), we conclude that:

�
Bn

n
C2nt .tn/;

Bn

n
Hnt .tn/

�

0�t�1

.d/�!
n!1 .Ht ; Ht /0�t�1 under N. � j � D 1/:

This completes the proof. ut
Remark 2. If we see the tree tn as a finite metric space using its graph distance, this
theorem implies that tn, suitably rescaled, converges in distribution to the �-stable
tree, in the sense of the Gromov–Hausdorff distance on isometry classes of compact
metric spaces (see e.g. [17, Sect. 2] for details).

Remark 3. When the mean value of � is greater than one, it is possible to replace
� with a critical probability distribution belonging to the same exponential family
as � without changing the distribution of tn (see [13]). Consequently, the theorem
holds in the supercritical case as well. The case where � is subcritical and �.i/ �
L.i/=i1C� as i ! 1 has been treated in [15]. However, in full generality, the
noncritical subcritical case remains open.

3.3 Proof of the Technical Lemma

In this section, we prove Lemma 3.

Proof (of Lemma 3). We first prove (i). By the local limit theorem (Theorem 1 (ii)),
we have, for k � 1 and j 2 Z:

ˇ
ˇ
ˇ
ˇBnPŒWn D j � � p1

�
j

Bn

�ˇˇ
ˇ
ˇ � �.n/;

where �.n/ ! 0. By Proposition 2, we have n�n.j / D jPŒWn D �j �. Since
j

Bn
p1



� j

Bn

�
D q1



j

Bn

�
, we have for 1 � j � ˛Bn:

ˇ
ˇ
ˇ
ˇn�n.j / � q1

�
j

Bn

�ˇˇ
ˇ
ˇ D j

Bn

ˇ
ˇ
ˇ
ˇBnPŒWn D �j � � p1

�
j

Bn

�ˇˇ
ˇ
ˇ � ˛�.n/:

This completes the proof of (i).
For (ii), first note that by the definition of qs and the scaling property (7):

Z 1

1

ds qs

�
j

Bn

�
D
Z 1

1

j=Bn

s1=�C1
p1

�
�j=Bn

s1=�

�
ds:
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By Proposition 2 and the local limit theorem:

ˇ
ˇ
ˇ̌
ˇ
��

n .j / �
1X

kDn

j

kBk

p1

�
� j

Bk

�ˇˇ
ˇ̌
ˇ

D
ˇ
ˇ
ˇ̌
ˇ

1X

kDn

�
j

k
PŒWk D �j � � j

kBk

p1

�
� j

Bk

��ˇˇ
ˇ̌
ˇ

�
1X

kDn

j

kBk

�.k/;

where �.n/ ! 0. Then write:

ˇ
ˇ
ˇ
ˇ
ˇ

1X

kDn

j

kBk

p1

�
� j

Bk

�
�
Z 1

1

ds
j=Bn

s1=�C1
p1

�
�j=Bn

s1=�

�ˇˇ
ˇ
ˇ
ˇ

�
Z 1

1

ds

ˇ
ˇ
ˇ
ˇ

jn

Bbnscbnsc � j=Bn

s1=�C1

ˇ
ˇ
ˇ
ˇp1

�
� j

Bbnsc

�

C
Z 1

1

ds
j=Bn

s1=�C1

ˇ
ˇ̌
ˇp1

�
� j

Bbnsc

�
� p1

�
�j=Bn

s1=�

�ˇˇ̌
ˇ :

Denote the first term of the right-hand side by P.n; j / and the second term by
Q.n; j /. Since p1 is bounded by a constant which we will denote by M , we have
for 1 � j � ˛Bn:

P.n; j / � ˛M

Z 1

1

ds
1

s1=�C1

ˇ
ˇ
ˇ̌nBns1=�C1

Bbnscbnsc � 1

ˇ
ˇ
ˇ̌ :

For fixed s � 1, 1

s1=�C1

ˇ
ˇ
ˇ nBns1=�C1

Bbnscbnsc � 1
ˇ
ˇ
ˇ tends to 0 as n ! 1, and using Proposition 3,

the same quantity is bounded by an integrable function independent of n. The
dominated convergence theorem thus shows that P.n; j / ! 0 uniformly in 1 �
j � ˛Bn. Let us now bound Q.n; j / for 1 � j � ˛Bn. Since the absolute value
of the derivative of p1 is bounded by a constant which we will denote by M 0, we
have:

Q.n; j / � M 0

Z 1

1

ds
j=Bn

s1=�C1

ˇ
ˇ̌
ˇ

j

Bbnsc

� j=Bn

s1=�

ˇ
ˇ̌
ˇ � ˛2M 0

Z 1

1

ds
1

s2=�C1

ˇ
ˇ̌
ˇ
Bns1=�

Bbnsc

� 1

ˇ
ˇ̌
ˇ :

The right-hand side tends to 0 by the same argument we used for P.n; j /. We have
thus proved that:

lim
n!1 sup

1�j �˛Bn

ˇ̌
ˇ
ˇ
ˇ

1X

kDn

j

kBk

p1

�
� k

Bk

�
�
Z 1

1

ds qs

�
j

Bn

�ˇ̌
ˇ
ˇ
ˇ

D 0:
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One finally shows that
P1

kDn
j

kBk
�.k/ tends to 0 as n ! 1 uniformly in 1 � j �

˛Bn by noticing that:

sup
n�1

sup
1�j �˛Bn

 1X

kDn

j

kBk

!

� ˛ sup
n�1

 1X

kDn

Bn

kBk

!

< 1:

This completes the proof. ut
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