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SELF-SIMILAR SCALING LIMITS OF MARKOV CHAINS ON THE
POSITIVE INTEGERS

BY JEAN BERTOIN AND IGOR KORTCHEMSKI

Universität Zürich

We are interested in the asymptotic behavior of Markov chains on the set
of positive integers for which, loosely speaking, large jumps are rare and oc-
cur at a rate that behaves like a negative power of the current state, and such
that small positive and negative steps of the chain roughly compensate each
other. If Xn is such a Markov chain started at n, we establish a limit theo-
rem for 1

nXn appropriately scaled in time, where the scaling limit is given
by a nonnegative self-similar Markov process. We also study the asymp-
totic behavior of the time needed by Xn to reach some fixed finite set. We
identify three different regimes (roughly speaking the transient, the recurrent
and the positive-recurrent regimes) in which Xn exhibits different behavior.
The present results extend those of Haas and Miermont [Bernoulli 17 (2011)
1217–1247] who focused on the case of nonincreasing Markov chains. We
further present a number of applications to the study of Markov chains with
asymptotically zero drifts such as Bessel-type random walks, nonnegative
self-similar Markov processes, invariance principles for random walks con-
ditioned to stay positive and exchangeable coalescence-fragmentation pro-
cesses.

1. Introduction. In short, the purpose of this work is to provide explicit cri-
teria for the functional weak convergence of properly rescaled Markov chains on
N = {1,2, . . .}. Since it is well known from the work of Lamperti [29] that self-
similar processes arise as the scaling limit of general stochastic processes, and
since in the case of Markov chains, one naturally expects the Markov property
to be preserved after convergence, scaling limits of rescaled Markov chains on
N should thus belong to the class of self-similar Markov processes on [0,∞).
The latter have been also introduced by Lamperti [31], who pointed out a remark-
able connexion with real-valued Lévy processes which we shall recall later on.
Considering the powerful arsenal of techniques which are nowadays available for
establishing convergence in distribution for sequences of Markov processes (see,
in particular, Ethier and Kurtz [16] and Jacod and Shiryaev [23]), it seems that
the study of scaling limits of general Markov chains on N should be part of the
folklore. Roughly speaking, it is well known that weak convergence of Feller pro-
cesses amounts to the convergence of infinitesimal generators (in some appropriate
sense), and the path should thus be essentially well-paved.
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However, there is a major obstacle for this natural approach. Namely, there is a
delicate issue regarding the boundary of self-similar Markov processes on [0,∞):
in some cases, 0 is an absorbing boundary, in some other, 0 is an entrance bound-
ary, and further 0 can also be a reflecting boundary, where the reflection can be ei-
ther continuous or by a jump. See [6, 12, 17, 36, 37] and the references therein. An-
alytically, this raises the questions of identifying a core for a self-similar Markov
process on [0,∞) and of determining its infinitesimal generator on this core, in
particular on the neighborhood of the boundary point 0 where a singularity ap-
pears. To the best of our knowledge, these questions remain open in general, and
investigating the asymptotic behavior of a sequence of infinitesimal generators at
a singular point therefore seems rather subtle.

A few years ago, Haas and Miermont [19] obtained a general scaling limit the-
orem for nonincreasing Markov chains on N (observe that plainly, 1 is always
an absorbing boundary for nonincreasing self-similar Markov processes), and the
purpose of the present work is to extend their result by removing the nonincrease
assumption. Our approach bears similarities with that developed by Haas and Mier-
mont, but also with some differences. In short, Haas and Miermont first established
a tightness result, and then analyzed weak limits of convergent subsequences via
martingale problems, whereas we rather investigate asymptotics of infinitesimal
generators.

More precisely, in order to circumvent the crucial difficulty related to the bound-
ary point 0, we shall not directly study the rescaled version of the Markov chain,
but rather of a time-changed version. The time-substitution is chosen so to yield
weak convergence toward the exponential of a Lévy process, where the conver-
gence is established through the analysis of infinitesimal generators. The upshot is
that cores and infinitesimal generators are much better understood for Lévy pro-
cesses and their exponentials than for self-similar Markov processes, and bound-
aries yield no difficulty. We are then left with the inversion of the time-substitution,
and this turns out to be closely related to the Lamperti transformation. However,
although our approach enables us to treat the situation when the Markov chain is
either absorbed at the boundary point 1 or eventually escapes to +∞, it does not
seem to provide direct access to the case when the limiting process is reflected at
the boundary (see Figure 1).

The rest of this work is organized as follows. Our general results are presented
in Section 2. We state three main limit theorems, namely Theorems 1, 2 and 4,
each being valid under some specific set of assumptions. Roughly speaking, The-
orem 1 treats the situation where the Markov chain is transient, and thus escapes
to +∞, whereas Theorem 2 deals with the recurrent case. In the latter, we only
consider the Markov chain until its first entrance time in some finite set, which
forces absorption at the boundary point 0 for the scaling limit. Theorem 4 is con-
cerned with the situation where the Markov chain is positive recurrent; then con-
vergence of the properly rescaled chain to a self-similar Markov process absorbed
at 0 is established, even though the Markov chain is no longer trapped in some
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FIG. 1. Three different asymptotic regimes of the Markov chain Xn/n started at n as n → ∞:
with probability tending to one as n → ∞, in the first case, the chain never reaches the boundary
(transient case); in the second case Xn reaches the boundary and then stays within its vicinity on
long time scales (positive recurrent case) and in the last case Xn visits the boundary infinitely many
times and makes some macroscopic excursions in between (null-recurrent case).

finite set. Finally, we also provide a weak limit theorem (Theorem 3) in the re-
current situation for the first instant when the Markov chain started from a large
level enters some fixed finite set. Section 3 prepares the proofs of the preceding
results, by focusing on an auxiliary continuous-time Markov chain which is both
closely related to the genuine discrete-time Markov chain and easier to study. The
connexion between the two relies on a Lamperti-type transformation. The proofs
of the statements made in Section 2 are then given in Section 4 by analyzing the
time-substitution; classical arguments relying on the celebrated Foster criterion
for recurrence of Markov chains also play a crucial role. We illustrate our gen-
eral results in Section 5. First, we check that they encompass those of Haas and
Miermont in the case where the chain is nonincreasing. Then we derive functional
limit theorems for Markov chains with asymptotically zero drift (this includes the
so-called Bessel-type random walks which have been considered by many authors
in the literature), scaling limits are then given in terms of Bessel processes. Lastly,
we derive a weak limit theorem for the number of particles in a fragmentation–
coagulation process, of a type similar to that introduced by Berestycki [3]. Finally,
in Section 6, we point at a series of open questions related to this work.

We conclude this Introduction by mentioning that our initial motivation for es-
tablishing such scaling limits for Markov chains on N was a question raised by
Nicolas Curien concerning the study of random planar triangulations and their
connexions with compensated fragmentations which has been developed in a sub-
sequent work [5].

2. Description of the main results. For every integer n ≥ 1, let (pn,k;k ≥ 1)

be a sequence of nonnegative real numbers such that
∑

k≥1 pn,k = 1, and let
(Xn(k);k ≥ 0) be the discrete-time homogeneous Markov chain started at state
n such that the probability transition from state i to state j is pi,j for i, j ∈ N.
Specifically, Xn(0) = n, and P(Xn(k +1) = j |Xn(k) = i) = pi,j for every i, j ≥ 1
and k ≥ 0. Under certain assumptions on the probability transitions, we establish
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(Theorems 1, 2 and 4 below) a functional invariance principle for 1
n
Xn, appropri-

ately scaled in time, to a nonnegative self-similar Markov process in the Skorokhod
topology for càdlàg functions. In order to state our results, we first need to formu-
late the main assumptions.

2.1. Main assumptions. For n ≥ 1, denote by �∗
n the probability measure on

R defined by

�∗
n(dx) = ∑

k≥1

pn,k · δln(k)−ln(n)(dx),

which is the law of ln(Xn(1)/n). Let (an)n≥0 be a sequence of positive real num-
bers with regular variation of index γ > 0, meaning that a�xn�/an → xγ as n → ∞
for every fixed x > 0, where �x� stands for the integer part of a real number x. Let
� be a measure on R \ {0} such that �({−1,1}) = 0 and∫ ∞

−∞
(
1 ∧ x2)

�(dx) < ∞.(1)

We require that �({−1,1}) = 0 for the sake of simplicity only, and it would be
possible to treat the general case with mild modifications which are left to the
reader. We also mention that some of our results could be extended to the case
where γ = 0 and an → ∞, but we shall not pursue this goal here. Finally, denote
by R= [−∞,∞] the extended real line.

We now introduce our main assumptions:

(A1). As n → ∞, we have the following vague convergence of measures
on R \ {0}:

an · �∗
n(dx)

(v)−→
n→∞ �(dx).

Or, in other words, we assume that

an ·E
[
f

(
Xn(1)

n

)]
−→
n→∞

∫
R

f
(
ex)

�(dx)

for every continuous function f with compact support in [0,∞] \ {1}.
(A2). The following two convergences holds:

an ·
∫ 1

−1
x�∗

n(dx) −→
n→∞ b, an ·

∫ 1

−1
x2�∗

n(dx) −→
n→∞ σ 2 +

∫ 1

−1
x2�(dx),

for some b ∈ R and σ 2 ≥ 0.

It is important to note that under (A1), we may have
∫ 1
−1 |x|�(dx) = ∞, in

which case (A2) requires small positive and negative steps of the chain to roughly
compensate each other.
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2.2. Description of the distributional limit. We now introduce several addi-
tional tools in order to describe the scaling limit of the Markov chain Xn. Let
(ξ(t))t≥0 be a Lévy process with characteristic exponent given by the Lévy–
Khintchine formula

�(λ) = −1

2
σ 2λ2 + ibλ +

∫ ∞
−∞

(
eiλx − 1 − iλx1|x|≤1

)
�(dx), λ ∈ R.

Specifically, there is the identity E[eiλξ(t)] = et�(λ) for t ≥ 0, λ ∈ R. Then set

I∞ =
∫ ∞

0
eγ ξ(s) ds ∈ (0,∞].

It is known that I∞ < ∞ a.s. if ξ drifts to −∞ [i.e., limt→∞ ξ(t) = −∞ a.s.], and
I∞ = ∞ a.s. if ξ drifts to +∞ or oscillates (see, e.g., [7], Theorem 1, which also
gives necessary and sufficient conditions involving �). Then for every t ≥ 0, set

τ(t) = inf
{
u ≥ 0;

∫ u

0
eγ ξ(s) ds > t

}
with the usual convention inf∅ = ∞. Finally, define the Lamperti transform [31]
of ξ by

Y(t) = eξ(τ(t)) for 0 ≤ t < I∞, Y (t) = 0 for t ≥ I∞.

In view of the preceding observations, Y hits 0 in finite time almost surely if, and
only if, ξ drifts to −∞.

By construction, the process Y is a self-similar Markov process of index 1/γ

started at 1. Recall that if Px is the law of a nonnegative Markov process (Mt)t≥0
started at x ≥ 0, then M is self-similar with index α > 0 if the law of (r−αMrt )t≥0
under Px is Pr−αx for every r > 0 and x ≥ 0. Lamperti [31] introduced and studied
nonnegative self-similar Markov processes and established that, conversely, any
self-similar Markov process which either never reaches the boundary states 0 and
∞, or reaches them continuously [in other words, there is no killing inside (0,∞)]
can be constructed by using the previous transformation.

2.3. Invariance principle for Xn. We are now ready to state our first main
result, which is a limit theorem in distribution in the space of real-valued càdlàg
functions D(R+,R) on R+ equipped with the J1-Skorokhod topology (we refer to
[23], Chapter VI, for background on the Skorokhod topology).

THEOREM 1 (Transient case). Assume that (A1) and (A2) hold, and that the
Lévy process ξ does not drift to −∞. Then the convergence(

Xn(�ant�)
n

; t ≥ 0
)

(d)−→
n→∞

(
Y(t); t ≥ 0

)
(2)

holds in distribution in D(R+,R).
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In this case, Y does not touch 0 almost surely (see the left-most image in Fig-
ure 1). When ξ drifts to −∞, we establish an analogous result for the chain Xn

stopped when it reaches some fixed finite set under the following additional as-
sumption:

(A3). There exists β > 0 such that

lim sup
n→∞

an ·
∫ ∞

1
eβx�∗

n(dx) < ∞.

Observe that (A1) and (A3) imply that
∫ ∞

1 eβx�(dx) < ∞. Roughly speaking,
assumption (A3) tells us that in the case where ξ drifts to −∞, the chain Xn/n

does not make too large positive jumps and will enable us to use Foster–Lyapounov
type estimates (see Section 4.2). Observe that (A3) is automatically satisfied if the
Markov chain is nonincreasing or has uniformly bounded upward jumps.

In the sequel, we let K ≥ 1 be any fixed integer such that the set {1,2, . . . ,K} is
accessible by Xn for every n ≥ 1 [meaning that inf{i ≥ 0;Xn(i) ≤ K} < ∞ with
positive probability for every n ≥ 1]. It is a simple matter to check that if (A1),
(A2) hold and ξ drifts to −∞, then such integers always exist. Indeed, consider

κ := sup
{
n ≥ 1 : P(Xn < n) = 0

}
.

If κ = ∞, then the measure �∗
n has support in [0,∞) for infinitely many n ∈ N,

and thus, if further (A1) and (A2) hold, ξ must be a subordinator and, therefore,
drifts to +∞. Therefore, κ < ∞ if ξ drifts to −∞, and by definition of κ , the set
{1,2, . . . , κ} is accessible by Xn for every n ≥ 1. For irreducible Markov chains,
one can evidently take K = 1.

A crucial consequence is that if (A1), (A2), (A3) hold and the Lévy process ξ

drifts to −∞, then {1,2, . . . ,K} is recurrent for the Markov chain, in the sense
that for every n ≥ 1, inf{k ≥ 1;Xn(k) ≤ K} < ∞ almost surely (see Lemma 4.1).
Loosely speaking, we call this the recurrent case.

Finally, for every n ≥ 1, let X†
n be the Markov chain Xn stopped at its first visit

to {1,2, . . . ,K}, that is X†
n(·) = Xn(· ∧ A

(K)
n ), where A

(K)
n = inf{k ≥ 1;Xn(k) ≤

K}, with again the usual convention inf∅= ∞.

THEOREM 2. Assume that (A1), (A2), (A3) hold and that the Lévy process ξ

drifts to −∞. Then the convergence(
X†

n(�ant�)
n

; t ≥ 0
)

(d)−→
n→∞

(
Y(t); t ≥ 0

)
(3)

holds in distribution in D(R+,R).

In this case, the process Y is absorbed once it reaches 0 (see the second and third
images from the left in Figure 1). This result extends [19], Theorem 1; see Sec-
tion 5.1 for details. We will discuss in Section 2.5 what happens when the Markov
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chain Xn is not stopped anymore. Observe that according to the asymptotic be-
havior of ξ , the behavior of Y is drastically different: when ξ drifts to −∞, Y is
absorbed at 0 at a finite time and Y remains forever positive otherwise.

Let us mention that with the same techniques, it is possible to extend Theo-
rems 1 and 2 when the Lévy process ξ is killed at a random exponential time, in
which case Y reaches 0 by a jump. However, to simplify the exposition, we shall
not pursue this goal here.

Given σ 2 ≥ 0, b ∈ R, γ > 0 and a measure � on R \ {0} such that (1) holds and
�({−1,1}) = 0, it is possible to check the existence of a family (pn,k;n, k ≥ 1)

such that (A1) and (A2), hold (see, e.g., [19], Proposition 1, in the nonincreasing
case). We may further request (A3) whenever

∫ ∞
1 eβx�(dx) < ∞ for some β > 0.

As a consequence, our Theorems 1 and 2 show that any nonnegative self-similar
Markov process, such that its associated Lévy measure � has a small finite expo-
nential moment on [1,∞), considered up to its first hitting time of the origin is the
scaling limit of a Markov chain.

2.4. Convergence of the absorption time. It is natural to ask whether the con-
vergence (3) holds jointly with the convergence of the associated absorption times.
Observe that this is not a mere consequence of Theorem 2, since absorption times,
if they exist, are in general not continuous functionals for the Skorokhod topology
on D(R+,R). Haas and Miermont [19], Theorem 2, proved that, indeed, the asso-
ciated absorption time converge for nonincreasing Markov chains. We will prove
that, under the same assumptions as for Theorem 2, the associated absorption times
converge in distribution, and further the convergence holds also for the expected
value under an additional positive-recurrent type assumption.

Let  be the Laplace exponent associated with ξ , which is given by

(λ) = �(−iλ) = 1

2
σ 2λ2 + bλ +

∫ ∞
−∞

(
eλx − 1 − λx1|x|≤1

)
�(dx)

for those values of λ ∈ R such that this quantity is well-defined, so that E[eλξ(t)] =
et(λ). Note that (A3) implies that  is well-defined on a positive neighborhood
of 0.

(A4). There exists β0 > γ such that

lim sup
n→∞

an ·
∫ ∞

1
eβ0x�∗

n(dx) < ∞ and (β0) < 0.(4)

Note the difference with (A3), which only requires the first inequality of (4) to
hold for a certain β0 > 0. Also, if (A4) holds, then we have (γ ) < 0 by convexity
of  . Conversely, observe that (A4) is automatically satisfied if (γ ) < 0 and the
Markov chain has uniformly bounded upward jumps.
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A crucial consequence is that if (A1), (A2) and (A4) hold, then the Lévy process
ξ drifts to −∞ and the first hitting time A

(k)
n of {1,2, . . . , k} by Xn has finite

expectation for every n > k, where k is sufficiently large (see Lemma 4.2). Loosely
speaking, we call this the positive recurrent case.

THEOREM 3. Assume that (A1), (A2), (A3) hold and that ξ drifts to −∞. Let
K ≥ 1 be such that {1,2, . . . ,K} is accessible by Xn for every n ≥ 1.

(i) We have

A
(K)
n

an

(d)−→
n→∞

∫ ∞
0

eγ ξ(s) ds,(5)

and this convergence holds jointly with (3).
(ii) If further (A4) holds, and in addition,

for every n ≥ K + 1,
∑
k≥1

kβ0 · pn,k < ∞,(6)

then

E[A(K)
n ]

an

−→
n→∞

1

|(γ )| .(7)

We point out that when (4) is satisfied, the inequality
∑

k≥1 kβ0 · pn,k < ∞ is
automatically satisfied for every n sufficiently large, that is condition (6) is then
fulfilled provided that K has been chosen sufficiently large. See Remark 4.10 for
the extension of (7) to higher order moments. Finally, observe that (6) is the only
condition which does not only depend on the asymptotic behavior of pn,· as n →
∞ [the behavior of the law of Xn(1) for small values of n matters here].

This result has been proved by Haas and Miermont [19], Theorem 2, in the case
of nonincreasing Markov chains. However, some differences appear in our more
general setup. For instance, (7) always is true when the chain is nonincreasing,
but clearly cannot hold if (γ ) > 0 (in this case

∫ ∞
0 eγ ξ(s) ds = ∞ a.s.) or if the

Markov chain is irreducible and not positive recurrent (in this case E[A(K)
n ] = ∞).

2.5. Scaling limits for the nonabsorbed Markov chain. It is natural to ask if
Theorem 2 also holds for the nonabsorbed Markov chain Xn. Roughly speaking,
we show that the answer is affirmative if it does not make too large jumps when
reaching low values belonging to {1,2, . . . ,K}, as quantified by the following last
assumption which completes (A4).

(A5). Assumption (A4) holds and, in addition, for every n ≥ 1, we have

E
[
Xn(1)β0

] = ∑
k≥1

kβ0 · pn,k < ∞,

with β0 > γ such that (4) holds.
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THEOREM 4. Assume that (A1), (A2) and (A5) hold. Then the convergence(
Xn(�ant�)

n
; t ≥ 0

)
(d)−→

n→∞
(
Y(t); t ≥ 0

)
(8)

holds in distribution in D(R+,R).

Recall that when ξ drifts to −∞, we have I∞ < ∞ and Yt = 0 for t ≥ I∞,
so that roughly speaking this result tells us that with probability tending to 1 as
n → ∞, once Xn has reached levels of order o(n), it will remain there on time
scales of order an.

If (A4) holds but not (A5), we believe that the result of Theorem 4 does not hold
in general since the Markov chain may become null-recurrent (see Remark 4.11)
and the process may “restart” from 0 (see Section 6).

2.6. Techniques. We finally briefly comment on the techniques involved in the
proofs of Theorems 1 and 2, which differ from those of [19]. We start by embed-
ding Xn in continuous time by considering an independent Poisson process Nn of
parameter an, which allows us to construct a continuous-time Markov process Ln

such that the following equality in distribution holds:(
1

n
Xn

(
Nn(t)

); t ≥ 0
)

(d)= (
exp

(
Ln

(
τn(t)

)); t ≥ 0
)
,

where τn is a Lamperti-type time change of Ln [see (12)]. Roughly speaking, to
establish Theorems 1 and 2, we use the characterization of functional convergence
of Feller processes by generators in order to show that Ln converges in distribution
to ξ and that τn converges in distribution toward τ . However, one needs to proceed
with particular caution when ξ drifts to −∞, since the time changes then explode.
In this case, assumption (A3) will give us useful bounds on the growth of Xn by
Foster–Lyapounov techniques.

3. An auxiliary continuous-time Markov process. In this section, we con-
struct an auxiliary continuous-time Markov chain (Ln(t); t ≥ 0) in such a way that
Ln, appropriately scaled, converges to ξ and such that, roughly speaking, Xn may
be recovered from exp(Ln) by a Lamperti-type time change.

3.1. An auxiliary continuous-time Markov chain Ln. For every n ≥ 1, first let
(ξn(t); t ≥ 0) be a compound Poisson process with Lévy measure an · �∗

n. That is,

E
[
eiλξn(t)] = exp

(
t

∫ ∞
−∞

(
eiλx − 1

) · an�
∗
n(dx)

)
, λ ∈ R, t ≥ 0.

It is well known that ξn is a Feller process on R with generator An given by

Anf (x) = an

∫ ∞
−∞

(
f (x + y) − f (x)

)
�∗

n(dy), f ∈ C∞
c (R), x ∈ R,
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where C∞
c (I ) denotes the space of real-valued infinitely differentiable functions

with compact support in an interval I .
It is also well known that the Lévy process ξ , which has been introduced in

Section 2.2, is a Feller process on R with infinitesimal generator A given by

Af (x) = 1

2
σ 2f ′′(x) + bf ′(x) +

∫ ∞
−∞

(
f (x + y) − f (x) − f ′(x)y1|y|≤1

)
�(dy),

f ∈ C∞
c (R), x ∈ R,

and, in addition, C∞
c (R) is a core for ξ (see, e.g., [38], Theorem 31.5). Under

(A1) and (A2), by [24], Theorems 15.14 and 15.17, ξn converges in distribution in
D(R+,R) as n → ∞ to ξ . It is then classical that the convergence of generators

Anf −→
n→∞ Af(9)

holds for every f ∈ C∞
c (R), in the sense of the uniform norm on C0(R). It is also

possible to check directly (9) by a simple calculation which relies on the fact that
limε→0 limn→∞ an

∫ ε
−ε y3�∗

n(dy) = 0 by (A2) (see Section 5.2 for similar esti-
mates). We leave the details to the reader.

For x ∈ R, we let {x} = x − �x� denote the fractional part of x and also set
�x = �x� + 1 (in particular �n = n + 1 if n is an integer). By convention, we set
A0 = 0 and �∗

0 = 0. Now introduce an auxiliary continuous-time Markov chain
(Ln(t); t ≥ 0) on R∪ {+∞} which has generator Bn defined as follows:

Bnf (x) = (
1 − {

nex}) ·A�nex�f (x) + {
nex} ·A�nexf (x),

(10)
f ∈ C∞

c (R), x ∈ R.

We allow Ln to take eventually the cemetery value +∞, since it is not clear for the
moment whether Ln explodes in finite time or not. The process Ln is designed in
such a way that if n exp(Ln) is at an integer valued state, say j ∈ N, then it will wait
a random time distributed as an exponential random variable of parameter aj and
then jump to state k ∈ N with probability pj,k for k ≥ 1. In particular n exp(Ln)

then remains integer whenever it starts in N. Roughly speaking, the generator (10)
then extends the possible states of Ln from ln(N/n) to R by smooth interpolation.

A crucial feature of Ln lies in the following result.

PROPOSITION 3.1. Assume that (A1) and (A2) hold. For every x ∈ R, Ln,
started from x, converges in distribution in D(R+,R) as n → ∞ to ξ + x.

PROOF. Consider the modified continuous-time Markov chain (L̂n(t); t ≥ 0)

on R which has generator B̂n defined as follows:

B̂nf (x) = (
1 − {

nex}) · 1�nex�≤n2 ·A�nex�f (x)
(11)

+ {
nex} · 1�nex≤n2 ·A�nexf (x), f ∈ C∞

c (R), x ∈ R.
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We stress that B̂nf (x) = Bnf (x) for all x < lnn, so the processes Ln and L̂n can
be coupled so that their trajectories coincide up to the time when they exceed lnn.
Therefore, it is enough to check that for every x ≥ 0, L̂n, started from x, converges
in distribution in D(R+,R) to ξ + x.

The reason for introducing L̂n is that clearly L̂n does not explode, and is in
addition a Feller process (note that it is not clear a priori that Ln is a Feller pro-
cess that does not explode). Indeed, the generator B̂n can be written in the form
B̂nf (x) = ∫ ∞

−∞(f (x + y) − f (x))μn(x, dy) for x ∈R and f ∈ C∞
c (R) and where

μn(x, dy) is the measure on R defined by

μn(x, dy) = (
1 − {

nex})
1�nex�≤n2a�nex��∗�nex�(dy)

+ {
nex}

1�nex≤n2a�nex�∗�nex(dy).

It is straightforward to check that supx∈R μn(x,R) < ∞ and that the map x →
μn(x, dy) is weakly continuous. This implies that L̂n is indeed a Feller process.

By [24], Theorem 19.25 (see also Theorem 6.1 in [16], Chapter 1), in order
to establish Proposition 3.1 with Ln replaced by L̂n, it is enough to check that
B̂nf converges uniformly to Af as n → ∞ for every f ∈ C∞

c (R). For the sake
of simplicity, we shall further suppose that |f | ≤ 1. Note that Af (x) → 0 as x →
±∞ since ξ is a Feller process, and (9) implies that B̂nf converges uniformly on
compact intervals to Af as n → ∞. Therefore, it is enough to check that

lim
M→∞ lim

n→∞ sup
|x|>M

∣∣B̂nf (x)
∣∣ = 0.

To this end, fix ε > 0. By (1), we may choose u0 > 0 such that �(R\ (−u0, u0)) <

ε. The Portmanteau theorem [8], Theorem 2.1, and (A1) imply that

lim sup
n→∞

an · �∗
n

(
R \ (−u0, u0)

) ≤ �
(
R \ (−u0, u0)

)
< ε.

We can therefore find M > 0 such that an ·�∗
n(R \ (−M,M)) < ε for every n ≥ 1.

Now let m0 < M0 be such that the support of f is included in [m0,M0]. Then, for
x > M > M0 + u0,

B̂nf (x) =
∫ ∞
−∞

f (x + y)1x+y≤M0μn(x, dy),

so that |B̂nf (x)| ≤ a�nex��∗�nex�((−∞,M0 − M)) + a�nex�∗�nex((−∞,M0 −
M)) ≤ 2ε. One similarly shows that |B̂nf (x)| ≤ 2ε for x < −M < m0 − u0. This
completes the proof. �

3.2. Recovering Xn from Ln by a time change. Unless otherwise specifically
mentioned, we shall henceforth assume that Ln starts from 0. In order to formu-
late a connection between Xn and exp(Ln), it is convenient to introduce some
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additional randomness. Consider a Poisson process (Nn(t); t ≥ 0) of intensity an

independent of Xn, and, for every t ≥ 0, set

τn(t) = inf
{
u ≥ 0;

∫ u

0

an exp(Ln(s))

an

ds > t

}
.(12)

We stress that τn(t) is finite a.s. for all t ≥ 0. Indeed, if we write ζ for the possible
explosion time of Ln (ζ = ∞ when Ln does not explode), then

∫ ζ
0 an exp(Ln(s)) ds =

∞ almost surely. Specifically, when n exp(Ln) is at some state, say k, it stays there
for an exponential time with parameter ak and the contribution of this portion of
time to the integral has thus the standard exponential distribution, which entails
our claim.

LEMMA 3.2. Assume that Ln(0) = 0. Then we have(
1

n
Xn

(
Nn(t)

); t ≥ 0
)

(d)= (
exp

(
Ln

(
τn(t)

)); t ≥ 0
)
.(13)

PROOF. Plainly, the two processes appearing in (13) are continuous-time
Markov chains, so to prove the statement, we need to check that their respective
embedded discrete-time Markov chains (i.e., jump chains) have the same law, and
that the two exponential waiting times at a same state have the same parameter.

Recall the description made after (10) of the process n exp(Ln) started at an
integer value. We see in particular that the two jump chains in (13) have indeed
the same law. Then fix some j ∈ N and recall that the waiting time of Ln at
state ln(j/n) is distributed according to an exponential random variable of pa-
rameter aj . It follows readily from the definition of the time-change τn that the
waiting time of exp(Ln(τn(·)) at state j/n is distributed according to an exponen-
tial random variable of parameter aj × an

aj
= an. This proves our claim. �

4. Scaling limits of the Markov chain Xn.

4.1. The nonabsorbed case: Proof of Theorem 1. We now prove Theorem 1
by establishing that (

Xn(Nn(t))

n
; t ≥ 0

)
(d)−→

n→∞
(
Y(t); t ≥ 0

)
(14)

in D(R+,R). Since by the functional law of large numbers (Nn(t)/an; t ≥ 0) con-
verges in probability to the identity uniformly on compact sets, Theorem 1 will
follow from (14) by standard properties of the Skorokhod topology (see, e.g., [23],
Chapter VI. Theorem 1.14).

PROOF OF THEOREM 1. Assume that (A1), (A2) hold and that ξ does not
drift to −∞. In particular, recall from the Introduction that we have I∞ = ∞ and
the process Y(t) = exp(ξ(τ (t))) remains bounded away from 0 for all t ≥ 0.
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By standard properties of regularly varying functions (see, e.g., [9], Theo-
rem 1.5.2), x �→ a�nx�/an converges uniformly on compact subsets of R+ to
x �→ xγ as n → ∞. Recall that Ln(0) = 0. Then by Proposition 3.1 and standard
properties of the Skorokhod topology (see, e.g., [23], Chapter VI. Theorem 1.14),
it follows that (

an exp(Ln(s))

an

; s ≥ 0
)

(d)−→
n→∞

(
exp

(
γ ξ(s)

); s ≥ 0
)

in D(R+,R). This implies that(∫ u

0

an exp(Ln(s))

an

ds;u ≥ 0
)

(d)−→
n→∞

(∫ u

0
exp

(
γ ξ(s)

)
ds;u ≥ 0

)
,(15)

in C(R+,R), which is the space of real-valued continuous functions on R+
equipped with the topology of uniform convergence on compact sets. Since the
two processes appearing in (15) are almost surely (strictly) increasing in u and
I∞ = ∞, τ is almost surely (strictly) increasing and continuous on R+. It is then
a simple matter to see that (15) in turn implies that τn converges in distribution to
τ in C(R+,R). Therefore, by applying Proposition 3.1 once again, we finally get
that (

exp
(
Ln

(
τn(t)

)); t ≥ 0
) (d)−→

n→∞
(
exp

(
ξ
(
τ(t)

)); t ≥ 0
) = Y

in D(R+,R). By Lemma 3.2, this establishes (14) and completes the proof. �

4.2. Foster–Lyapounov type estimates. Before tackling the proof of Theo-
rem 2, we start by exploring several preliminary consequences of (A3), which
will also be useful in Section 4.4.

In the irreducible case, Foster [18] showed that the Markov chain X is positive
recurrent if and only if there exists a finite set S0 ⊂ N, a function f :N→R+ and
ε > 0 such that

for every i ∈ S0,
∑
j≥1

pi,jf (j) < ∞ and

(16)
for every i /∈ S0,

∑
j≥1

pi,jf (j) ≤ f (i) − ε.

The map f : N → R+ is commonly referred to as a Foster–Lyapounov function.
The conditions (16) may be rewritten in the equivalent forms

for every i ∈ S0, E
[
f

(
Xi(1)

)]
< ∞ and

for every i /∈ S0, E
[
f

(
Xi(1)

) − f (i)
] ≤ −ε.

Therefore, Foster–Lyapounov functions allow to construct nonnegative super-
martingales, and the criterion may be interpreted as a stochastic drift condition
in analogy with Lyapounov’s stability criteria for ordinary differential equations.
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A similar criterion exists for recurrence instead of positive recurrence (see, e.g.,
[10] and [33], Chapter 5).

In our setting, we shall see that (A3) yields Foster–Lyapounov functions of the
form f (x) = xβ for certain values of β > 0. For i,K ≥ 1, recall that A

(K)
i =

inf{j ≥ 1;Xi(j) ≤ K} denotes the first return time of Xi to {1,2, . . . ,K}.

LEMMA 4.1. Assume that (A1), (A2), (A3) hold and that the Lévy process ξ

drifts to −∞. Then:

(i) There exists 0 < β0 < β such that (β0) < 0.
(ii) For all such β0, we have

an

∫ ∞
0

(
eβ0x − 1

)
�∗

n(dx) −→
n→∞ (β0) < 0.(17)

(iii) Let M ≥ K be such that an

∫ ∞
0 (eβ0x − 1)�∗

n(dx) ≤ 0 for every n ≥ M .

Then, for every i ≥ M , the process defined by Mi (·) = Xi(·∧A
(M)
i )β0 is a positive

supermartingale (for the canonical filtration of Xi).
(iv) Almost surely, A

(K)
i < ∞ for every i ≥ 1.

PROOF. By (A1) and (A3), we have
∫ ∞

1 x�(dx) < ∞. Since ξ drifts to −∞,
by [7], Theorem 1, we have

b +
∫
|x|>1

x�(dx) ∈ [−∞,0).

In particular,  ′(0+) = b + ∫
|x|>1 x�(dx) ∈ [−∞,0), so that there exists β0 > 0

such that (β0) < 0. This proves (i).
For the second assertion, recall from Section 3.1 that ξn is a compound Poisson

process with Lévy measure an · �∗
n that converges in distribution to ξ as n → ∞.

By dominated convergence, this implies that E[eβ0ξn(1)] → E[eβ0ξ(1)] as n → ∞,
or, equivalently, that (17) holds.

For (iii), note that for i ≥ M ,

ai

iβ0
·E[

Xi(1)β0 − Xi(0)β0
] = ai

iβ0
·

∞∑
k=1

pi,k

(
kβ0 − iβ0

)
(18)

= ai ·
∫ ∞

0

(
eβ0x − 1

)
�∗

i (dx) ≤ 0.

Hence, E[Xi(1)β0] ≤ E[Xi(0)β0] for every i ≥ M , which implies that Mi is a
positive supermartingale.

The last assertion is an analog of Foster’s criterion of recurrence for irreducible
Markov chains. Even though we do not assume irreducibility here, it is a simple
matter to adapt the proof of Theorem 3.5 in [10], Chapter 5, in our case. Since Mi

is a positive supermartingale, it converges almost surely to a finite limit, which
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implies that A
(M)
i < ∞ almost surely for every i ≥ M + 1 and, therefore, A

(M)
i <

∞ for every i ≥ 1 (by an application of the Markov property at time 1). Since
{1,2, . . . ,K} is accessible by Xn for every n ≥ 1, it readily follows that A

(K)
i < ∞

almost surely for every i ≥ K + 1. �

We point out that the recurrence of the discrete-time chain Xn entails that the
continuous-time process Ln defined in Section 3.1 does not explode (and, as a
matter of fact, is also recurrent). If the stronger assumptions (A4) and (6) hold
instead of (A3), roughly speaking the Markov chain becomes positive recurrent
[note that ξ drifts to −∞ when (A4) holds].

LEMMA 4.2. Assume that (A1), (A2), (A4) and (6) hold. Then:

(i) There exists an integer M ≥ K and a constant c > 0 such that, for every
n ≥ M ,

an ·
∫ ∞
−∞

(
eβ0x − 1

)
�∗

n(dx) ≤ −c.(19)

(ii) For every n ≥ K + 1, E[A(K)
n ] < ∞.

(iii) Assume that, in addition, (A5) holds. Then for every n ≥ 1, E[A(K)
n ] < ∞.

PROOF. The proof of (i) is similar to that of Lemma 4.1. For the other asser-
tions, it is convenient to consider the following modification of the Markov chain.
We introduce probability transitions p′

n,k such that p′
n,k = pn,k for all k ≥ 1 and

n > K , and for n = 1, . . . ,K , we choose the p′
n,k such that p′

n,k > 0 for all k ≥ 1
and

∑
k≥1 kβ0 · p′

n,k < ∞. In other words, the modified chain with transition prob-
abilities p′

n,k , say X′
n, then fulfills (A5).

The chain X′
n is then irreducible (recall that, by assumption, {1, . . . ,K} is ac-

cessible by Xn for every n ∈ N) and fulfills the assumptions of Foster’s theorem.
See, for example, Theorem 1.1 in Chapter 5 of [10] applied with h(i) = iβ0 and
F = {1, . . . ,M}. Hence, X′

n is positive recurrent, and as a consequence, the first
entrance time of X′

n in {1, . . . ,K} has finite expectation for every n ∈ N. But by
construction, for every n ≥ K + 1, the chains Xn and X′

n coincide until the first
entrance in {1, . . . ,K}; this proves (ii). Finally, when (A5) holds, there is no need
to modify Xn and the preceding argument shows that E[A(K)

n ] < ∞ for all n ≥ 1.
�

REMARK 4.3. We will later check that under the assumptions of Lemma 4.2,
we may have E[A(K)

i ] = ∞ for some 1 ≤ i ≤ K if (A4) holds but not (A5) (see
Remark 4.11).

Recall that Ln denotes the auxiliary continuous-time Markov chain which has
been defined in Section 3.1 with Ln(0) = 0.
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COROLLARY 4.4. Keep the same assumptions and notation as in Lemma 4.2,
and introduce the first passage time

α(M)
n = inf

{
t ≥ 0;n exp

(
Ln(t)

) ≤ M
}
.

The process

exp
(
β0Ln

(
t ∧ α(M)

n

) + c
(
t ∧ α(M)

n

))
, t ≥ 0,

is then a supermartingale.

PROOF. Let R > M be arbitrarily large; we shall prove our assertion with
α

(M)
n replaced by

α(M,R)
n = inf

{
t ≥ 0;n exp

(
Ln(t)

)
/∈ {M + 1, . . . ,R}}.

The process Ln stopped at time α
(M,R)
n is a Feller process with values in − lnn +

lnN, and it follows from (10) that its infinitesimal generator, say G, is given by

Gf (x) = anex

∫ ∞
−∞

(
f (x + y) − f (x)

)
�∗

nex (dy)

for every x such that nex ∈ {M + 1, . . . ,R}. Applying this for f (y) = exp(β0y),
we get from Lemma 4.2(i) that Gf (x) ≤ −cf (x), which entails that

f
(
Ln

(
t ∧ α(M,R)

n

))
exp

(
c
(
t ∧ α(M,R)

n

))
, t ≥ 0

is indeed a supermartingale. To conclude the proof, it suffices to let R → ∞, recall
that Ln does not explode, and apply the (conditional) Fatou lemma. �

We now establish two useful lemmas based on the Foster–Lyapounov estimates
of Lemma 4.1. The first one is classical and states that if the Lévy process ξ drifts
to −∞ and its Lévy measure � has finite exponential moments, then its overall
supremum has an exponentially small tail. The second, which is the discrete coun-
terpart of the first, states that if the Markov chain Xi starts from a low value i, then
Xi will unlikely reach a high value without entering {1,2, . . . ,K} first.

LEMMA 4.5. Assume that the Lévy process ξ drifts to −∞ and that its Lévy
measure fulfills the integrability condition

∫ ∞
1 eβx�(dx) < ∞ for some β > 0.

There exists β0 > 0 sufficiently small with (β0) < 0, and then for every u ≥ 0,
we have

P

(
sup
s≥0

ξ(s) > u
)

≤ e−β0u.

PROOF. The assumption on the Lévy measure ensures that the Laplace ex-
ponent  of ξ is well-defined and finite on [0, β]. Because ξ drifts to −∞, the
right-derivative  ′(0+) of the convex function  must be strictly negative [pos-
sibly  ′(0+) = −∞] and, therefore, we can find β0 > 0 with (β0) < 0. Then
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the process (eβ0ξ(s), s ≥ 0) is a nonnegative supermartingale and our claim follows
from the optional stopping theorem applied at the first passage time above level u.

�

We now prove an analogous statement for the discrete Markov chain Xn, tai-
lored for future use.

LEMMA 4.6. Assume that (A1), (A2), (A3) hold and that the Lévy process ξ

drifts to −∞. Fix ε > 0. For every n sufficiently large, for every 1 ≤ i ≤ ε2n, we
have

P
(
Xi reaches [εn,∞) before [1,K]) ≤ 2εβ0 .

PROOF. We first check that there exists an integer M ≥ K , such that for every
1 ≤ i ≤ N ,

P
(
Xi reaches [N,∞) before [1,M]) ≤ (i/N)β0 .(20)

By Lemma 4.1, there exists M ≥ K such that Mi (·) = X
β0
i (· ∧ A

(M)
i ) is a positive

supermartingale. Hence, setting B
(N)
i = inf{j ≥ 0;Xi(j) ≥ N}, by the optional

stopping theorem we get that

iβ0 ≥ E
[
X

β0
i

(
A

(M)
i ∧B

(N)
i

)] ≥ E
[
X

β0
i

(
B

(N)
i

)
1{A(M)

i >B
(N)
i }

] ≥ Nβ0P
(
A

(M)
i > B

(N)
i

)
.

This establishes (20).
We now turn to the proof of the main statement. By the Markov property, write

P
(
Xi reaches [εn,∞) before [1,K])

≤ P
(
Xi reaches [εn,∞) before [1,M])

+
M∑

j=K+1

P
(
Xj reaches [εn,∞) before [1,K]).

By (20), the first term of the latter sum is bounded by εβ0 . In addition, for every
fixed 2 ≤ j ≤ M , since {1,2, . . . ,K} is accessible by Xj by the definition of K , it
is clear that P(Xj reaches [εn,∞) before [1,K]) → 0 as n → ∞. The conclusion
follows. �

4.3. The absorbed case: Proof of Theorem 2. Recall that X†
n denotes the

Markov chain Xn stopped when it hits {1,2, . . . ,K}. As for the nonabsorbed case,
Theorem 2 will follow if we manage to establish that(

X†
n(Nn(t))

n
; t ≥ 0

)
(d)−→

n→∞ (Yt ; t ≥ 0)(21)

in D(R+,R).
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We now need to introduce some additional notation. Fix M ≥ 1 and set
a

(M)
i = ai for i > M and a

(M)
i = 0 for 1 ≤ i ≤ M . Denote by L

(M)
n the Markov

chain with generator (10) when the sequence (an)n≥1 is replaced with the se-
quence (a

(M)
n )n≥1. In other words, L

(M)
n may be seen as Ln absorbed at soon

as it hits {ln(1/n), ln(2/n), . . . , ln(M/n)}. Proposition 3.1 [applied with the se-
quence (a

(M)
n ) instead of (an)], shows that, under (A1) and (A2), L

(M)
n , started

from any x ∈ R, converges in distribution in D(R+,R) to ξ + x. In addition,
if L

(M)
n (0) = 0 and if X

(M)
n denotes the process Xn absorbed as soon as hits

{1,2, . . . ,M}, Lemma 3.2 [applied with (a
(M)
n ) instead of (an)] entails that(

1

n
X(M)

n

(
Nn(t)

); t ≥ 0
)

(d)= (
exp

(
L(M)

n

(
τ (M)
n (t)

)); t ≥ 0
)
,(22)

where

τ (M)
n (t) = inf

{
u ≥ 0;

∫ u

0

a
(M)
n exp(Ln(s))

a
(M)
n

ds > t

}
, t ≥ 0.

In particular, (
1

n
X†

n

(
Nn(t)

); t ≥ 0
)

(d)= (
exp

(
L(K)

n

(
τ (K)
n (t)

)); t ≥ 0
)
.(23)

Unless explicitly stated otherwise, we always assume that L
(M)
n (0) = 0.

In the sequel, we denote by dSK the Skorokhod J1 distance on D(R+,R). In the
proof of Theorem 2, we will use the following simple property of dSK.

LEMMA 4.7. Fix ε > 0 and f ∈ D(R+,R) that has limit 0 at +∞. Let
σ : R+ → R+ ∪ {+∞} be a right-continuous nondecreasing function. For T ≥ 0,
let f [T ] ∈ D(R+,R) be the function defined by f [T ](t) = f (σ(t) ∧ T ) for t ≥ 0.
Finally, assume that there exists T > 0 is such that |f (t)| < ε for every t ≥ T .
Then dSK(f ◦ σ,f [T ]) ≤ ε.

This is a simple consequence of the definition of the Skorokhod distance. We
are now ready to complete the proof of Theorem 2.

PROOF OF THEOREM 2. By (23), it suffices to check that(
exp

(
L(K)

n

(
τ (K)
n (t)

)); t ≥ 0
) (d)−→

n→∞
(
Y(t); t ≥ 0

)
(24)

in D(R+,R). To simplify notation, for n ≥ 1, t ≥ 0, set Y †
n (t) =

exp(L
(K)
n (τ

(K)
n (t))), and, for every t0 > 0,

Y t0
n (t) = exp

(
L(K)

n

(
τ (K)
n (t) ∧ t0

))
, Y t0(t) = exp

(
ξ
(
τ(t) ∧ t0

))
and recall that Y(t) = exp(ξ(τ (t))).
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First, observe that for every fixed t0 > 0,

Y t0
n

(d)−→
n→∞ Y t0(25)

in D(R+,R). Indeed, since L
(K)
n → ξ in distribution in D(R+,R), the same argu-

ments as in Section 4.1 apply and give that τ
(K)
n (·) ∧ t0 → τ(·) ∧ t0 in distribution

in C(R+,R).
We now claim that for every η ∈ (0,1), there exists t0 > 0 such that for every n

sufficiently large,

P
(
dSK

(
Y,Y t0

)
> η

)
< 2ηβ0, P

(
dSK

(
Y †

n , Y t0
n

)
> η

)
< 3ηβ0 .(26)

Assume for the moment that (26) holds and let us see how to complete the proof
of (24). Let F : D(R+,R) → R+ be a bounded uniformly continuous function.
By [8], Theorem 2.1, it is enough to check that E[F(Y †

n )] → E[F(Y )] as n → ∞.
Fix ε ∈ (0,1) and let η > 0 be such that |F(f ) − F(g)| ≤ ε if dSK(f, g) ≤ η. We
shall further impose that ηβ0 < ε. By (26), we may choose t0 > 0 such that the
events

� = {
dSK

(
Y,Y t0

)
< η

}
, �n = {

dSK
(
Y †

n , Y t0
n

)
< η

}
are both of probability at least 1 − 3ηβ0 ≥ 1 − 3ε for every n sufficiently large.
Then write for n sufficiently large∣∣E[

F(Y )
] −E

[
F

(
Y †

n

)]∣∣ ≤ ∣∣E[
F(Y )1�

] −E
[
F

(
Y †

n

)
1�n

]∣∣ + 6ε‖F‖∞
≤ ∣∣E[

F
(
Y t0

)
1�

] −E
[
F

(
Y t0

n

)
1�n

]∣∣ + 2ε + 6ε‖F‖∞
≤ ∣∣E[

F
(
Y t0

)] −E
[
F

(
Y t0

n

)]∣∣ + 2ε + 12ε‖F‖∞.

By (25), |E[F(Y t0)] −E[F(Y
t0
n )]| tends to 0 as n → ∞. As a consequence,∣∣E[

F(Y )
] −E

[
F

(
Y †

n

)]∣∣ ≤ 3ε + 12ε‖F‖∞
for every n sufficiently large.

We finally need to establish (26). For the first inequality, since ξ drifts to −∞,
we may choose t0 > 0 such that P(ξ(t0) < 2 ln(η)) > 1 − ηβ0 . By Lemma 4.5 and
the Markov property

P

(
sup
s≥t0

eξ(s)−ξ(t0) > 1/η
)

≤ ηβ0 .

The event {sups≥t0
eξ(s) ≤ η} thus has probability at least 1 − 2ηβ0 , and on this

event, we have dSK(Y,Y t0) ≤ η by Lemma 4.7. This establishes the first inequality
of (26).

For the second one, note that since L
(K)
n converges in distribution to ξ , there

exists t0 > 0 such that P(exp(L
(K)
n (t0)) > η2) < η for every n sufficiently large.

But on the event{
exp

(
L(K)

n (t0)
)
< η2} ∩ {

after time t0, n exp(Ln) reaches [1,K] before [ηn,∞)
}
,
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which has probability at least 1−3ηβ0 by Lemma 4.6 [recall also the identity (23)],
we have the inequality dSK(Y †

n , Y
t0
n ) ≤ η by Lemma 4.7. This establishes (26) and

completes the proof of Theorem 2. �

4.4. Convergence of the absorption time. We start with several preliminary
remarks in view of proving Theorem 3. First, we point out that our statements in
Section 2 are unchanged if we replace the sequence (an) by another sequence, say
(a′

n), such that an/a
′
n → 1 as n → ∞. Thanks to Theorem 1.3.3 and Theorem 1.9.5

(ii) in [9], we may therefore assume that there exists an infinitely differentiable
function h :R+ →R such that

(i) for every n ≥ 1, an = nγ · eh(ln(n)),
(27)

(ii) for every k ≥ 1, h(k)(x) −→
x→∞ 0,

where h(k) denotes the kth derivative of h. This will be used in the proof of
Lemma 4.9 below.

Assume that (A1), (A2), (A3) hold and that ξ drifts to −∞. For every integer
M ≥ 1, recall from Section 4.3 the notation X

(M)
n , (a

(M)
n ) and L

(M)
n , and the initial

condition L
(M)
n (0) = 0. To simplify the notation, we set ãn = a

(M)
n for n ≥ 1 and

L̃n(s) = L
(M)
n (s). By (22), we may and will assume that the identity

1

n
X(M)

n

(
Nn(t)

) = exp
(
L(M)

n

(
τ (M)
n (t)

))
holds for all t ≥ 0, where Nn is a Poisson process with intensity an independent of
Xn and the time change τ

(M)
n is defined by (12) with ãn = a

(M)
n replacing an.

For n > M , let A
(M)
n = inf{i ≥ 1;Xn(i) ≤ M} be the absorption time of X

(M)
n

and α
(M)
n = inf{t ≥ 0;Xn(Nn(t)) ≤ M} that of X

(M)
n (Nn(·)), so that there are the

identities

α(M)
n =

∫ ∞
0

ãn exp(L̃n(s))

ãn

ds =
∫ α

(M)
n

0

an exp(Ln(s))

an

ds and

(28)
Nn

(
α(M)

n

) = A(M)
n

for every n > M . We shall first establish a weaker version of Theorem 3(i) in which
K has been replaced by M .

LEMMA 4.8. Assume that (A1), (A2), (A3) hold and that ξ drifts to −∞. The
following weak convergences hold jointly in D(R+,R) ⊗R:

L̃n
(d)−→

n→∞ ξ and α(M)
n

(d)−→
n→∞

∫ ∞
0

eγ ξ(s) ds.

In turn, in order to establish Lemma 4.8, we shall need the following technical
result.
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LEMMA 4.9. Assume that (A1), (A2), (A3) and (27) hold, and that ξ drifts to
−∞. There exist β > 0, M > 0 and C > 0 such that for every n ≥ M ,∑

k≥1

(
a

β
k − aβ

n

) · pn,k ≤ −C · aβ−1
n .(29)

If an = c · nγ for every n sufficiently large for a certain c > 0, observe that this
is a simple consequence of (17) applied with β0 = βγ . Note also that (29) then
clearly holds when (an) is replaced with (ãn). We postpone its proof in the general
case to the end of this section.

PROOF OF LEMMA 4.8. The first convergence has been established in the
proof of Proposition 3.1. Using Skorokhod’s representation theorem, we may as-
sume that it holds in fact almost surely on D(R+,R), and we shall now check that
this entails the second. To this end, note first that for every R ≥ 0,∫ R

0

ãn exp(L̃n(s))

ãn

ds
a.s.−→

n→∞

∫ R

0
eγ ξ(s) ds,

since the sequence (an) varies regularly with index γ . It is therefore enough to
check that for every ε > 0 and t > 0, we may find R sufficiently large so that

lim sup
n→∞

P

(∫ ∞
R

ãn exp(L̃n(s))

ãn

ds > t

)
≤ ε and

(30)

P

(∫ ∞
R

eγ ξ(s) ds > t

)
≤ ε.

The second inequality is obvious since
∫ ∞

0 eγ ξ(s) ds is almost surely finite.
To establish the first inequality in (30), we start with some preliminary ob-

servations. By the Potter bounds (see [9], Theorem 1.5.6), there exists a con-
stant C1 > 0 such that ãi/ãn ≤ C1(i/n)γ+1 for every 1 ≤ i ≤ n. Fix η > 0 such
that 2β+1C2C

β
1 ηβ(γ+1)/tβ < ε, where C2 is a positive constant (independent of

η and ε) which will be chosen later on. Then pick R sufficiently large so that
P(exp(L̃n(R)) > η) < ε/2 for every n sufficiently large (this is possible since L̃n

converges to ξ and the latter drifts to −∞). By the Markov property and (28), for
every i ≥ 1, the conditional law of∫ ∞

R

ãn exp(L̃n(s))

ãn

ds

given n exp(L̃n(R)) = i, is that of α
(M)
i . It follows from (28) and elementary esti-

mates for Poisson processes that is suffices to check

lim sup
n→∞

max
M+1≤i≤ηn

P
(
A

(M)
i > tãn/2

) ≤ ε/2.(31)
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To this end, for every i ≥ M + 1 and n ≥ 1, we use Markov’s inequality and get

P
(
A

(M)
i > tãn/2

) ≤ 2β

tβ ã
β
n

E
[(

A
(M)
i

)β]
.(32)

We then apply Theorem 2′ in [2] with

f (x) = xβ, h(x) = ãβ
x , g(x) = ãβ−1

x ,

which tells us that there exists a constant C2 > 0 such that E[f (A
(M)
i )] ≤ C2 ·h(i)

for every i ≥ M + 1, provided that we check the existence of a constant C > 0
such that the two conditions

E
[
h
(
Xn(1)

) − h(n)
] ≤ −C · g(n) for every n ≥ M and

lim inf
n→∞

g(n)

f ′ ◦ f −1 ◦ h(n)
> 0

hold. This first condition follows from (29), and for the second, simply note that
we have

g(n)/
(
f ′ ◦ f −1 ◦ h(n)

) = 1/β.

By (32), we therefore get that for every i ≥ M + 1 and n ≥ 1,

P
(
A

(M)
i > tãn/2

) ≤ C2
2β

tβ

(
ãi

ãn

)β

.

As a consequence of the aforementioned Potter bounds, for every M + 1 ≤ i ≤ ηn,

P
(
A

(M)
i > tãn/2

) ≤ 2βC2C
β
1

tβ
· ηβ(γ+1) < ε/2.

This entails (31), and completes the proof. �

We are now ready to start the proof of Theorem 3.

PROOF OF THEOREM 3. (i) Assume that M ≥ K , β > 0, c0 > 0 are such that
Lemmas 4.9 and 4.1(iii) hold (with β instead of β0).

It suffices to check that (5) holds with A
(K)
n replaced by A

(M)
n . Indeed, since

X
(M)
n and X†

n may be coupled in such a way that they coincide until the first time
Xn hits {1,2, . . . ,M}, for every a > 0 we have

P
(∣∣A(K)

n − A(M)
n

∣∣ > a
) ≤ max

K+1≤i≤M
P

(
A

(K)
i > a

)
,

which tends to 0 as a → ∞ by Lemma 4.1(iv). In turn, as before, since
(Nn(t)/an; t ≥ 0) converges in probability to the identity uniformly on compact
sets as n → ∞, it is enough to check that the convergence

Ã(M)
n

(d)−→
n→∞

∫ ∞
0

eγ ξ(s) ds
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holds jointly with (21). By the preceding discussion and (28), we can complete the
proof with an appeal to Lemma 4.8.

(ii) Again, it suffices to check that (7) holds with A
(K)
n replaced by A

(M)
n . Indeed,

we see from Markov property that

E
[∣∣A(K)

n − A(M)
n

∣∣] ≤ max
K+1≤i≤M

E
[
A

(K)
i

]
,

and the right-hand side is finite by Lemma 4.2(ii).
Recall that Nn is a Poisson process with intensity an, so by (28), we have for

n > M

1

an

E
[
A(M)

n

] = E
[
α(M)

n

] = E

[∫ α
(M)
n

0

an exp(Ln(s))

an

ds

]
and we thus have to check that∫ ∞

0
E

[
an exp(Ln(s))

an

1{s<α
(M)
n }

]
ds −→

n→∞

∫ ∞
0

E
[
eγ ξ(s)]ds = 1

|(γ )| .(33)

In this direction, take any β ∈ (γ,β0), and recall from Potter bounds [9], Theo-
rem 1.5.6, that there is some constant C > 0 such that an

−1anx ≤ C · xβ for every
n ∈ N and x ≥ 0 with nx ∈ Z+. We deduce that

E

[(
an exp(Ln(s))

an

)β0/β

1{s<α
(M)
n }

]
≤ Cβ0/β ·E[

exp
(
β0Ln(s)

)
1{s<α

(M)
n }

] ≤ C′ · e−cs,

where c,C′ are positive finite constants, and the last inequality stems from Corol-
lary 4.4. Then recall that an

−1an exp(Ln(s))1{s<α
(M)
n } converges in distribution to

exp(γ ξ(s)) for every s ≥ 0. An argument of uniform integrability now shows that
(33) holds, and this completes the proof. �

REMARK 4.10. The argument of the proof above shows that more precisely,
for every 1 ≤ p < β0/γ , we have

E

[(
A

(M)
n

an

)p]
−→
n→∞ E

[(∫ ∞
0

eγ ξ(s) ds

)p]
.

REMARK 4.11. Assume that (A1), (A2) and (A4) hold. Let 1 ≤ m ≤ K be an
integer. Then

E
[
A(K)

m

] = ∞ ⇐⇒ ∑
k≥1

ak · pm,k = ∞.

Indeed, by the Markov property applied at time 1, write

E
[
A(K)

m

] = 1 + ∑
k≥K+1

E
[
A

(K)
k

]
pm,k.
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By Lemma 4.2(ii), E[A(K)
k ] < ∞ for every k ≥ K + 1, and by Theorem 3(ii),

E[A(K)
k ]/ak converges to a positive real number as k → ∞. Therefore, there exists

a constant C > 0 such that ak/C ≤ E[A(K)
k ] ≤ C · ak for every k ≥ K + 1. As a

consequence,

1

C

(
E

[
A(K)

m

] − 1
) = 1

C

∑
k≥K+1

E
[
A

(K)
k

] · pm,k ≤ ∑
k≥K+1

ak · pm,k

≤ C
∑

k≥K+1

E
[
A

(K)
k

]
pm,k = C

(
E

[
A(K)

m

] − 1
)
.

The conclusion follows.

We conclude this section with the proof of Lemma 4.9.

PROOF OF LEMMA 4.9. By Lemma 4.1, there exists β0 > 0 such that (β0) <

0. Fix β < β0 ∧(β0/γ ) and note that (βγ ) < 0 by convexity of  . We shall show
that

a1−β
n

∑
k≥1

(
a

β
k − aβ

n

) · pn,k −→
n→∞ (βγ ).(34)

To this end, write

a1−β
n

∑
k≥1

(
a

β
k − aβ

n

) = an

∫ ∞
−∞

(
eβγ x − 1

)
�∗

n(dx)

+ an

∫ ∞
−∞

((
anex

an

)β

− eβγ x

)
�∗

n(dx).

By Lemma 4.1(ii), the result will follow if we prove that

an

∫ ∞
−∞

((
anex

an

)β

− eβγ x

)
�∗

n(dx) −→
n→∞ 0.

In this direction, we first check that

an

∫
x≥1

((
anex

an

)β

− eβγ x

)
�∗

n(dx) −→
n→∞ 0,

(35)

an

∫
x≤−1

((
anex

an

)β

− eβγ x

)
�∗

n(dx) −→
n→∞ 0.

By standard properties of regularly varying functions (see, e.g., [9], Theo-
rem 1.5.2), (anex /an)

β converges to eβγ x as n → ∞, uniformly in x ≤ −1. By
(A1) and (1), this readily implies the second convergence of (35). For the first one,
a similar argument shows that the convergence of (anex /an)

β to eβγ x as n → ∞
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holds uniformly in x ∈ [1,A], for every fixed A > 1. Therefore, if η > 0 is fixed,
it is enough to establish the existence of A > 1 such that

lim sup
n→∞

an

∫ ∞
A

∣∣∣∣(anex

an

)β

− eβγ x

∣∣∣∣�∗
n(dx) ≤ η.(36)

To this end, fix ε > 0 such that β(γ + ε) < β0. By the Potter bounds, there exists
a constant C > 0 such that for every x ≥ 1 and n ≥ 1 we have∣∣∣∣(anex

an

)β

− eβγ x

∣∣∣∣ ≤ Ceβ(γ+ε)x + eβγ x.

Since
∫ ∞

1 eβ(γ+ε)x�(dx) < ∞ and
∫ ∞

1 eβγ x�(dx) < ∞ by our choice of β and ε,
we may choose A > 0 such that

C

∫ ∞
A

eβ(γ+ε)x�(dx) +
∫ ∞
A

eβγ x�(dx) < η.

Hence,

lim sup
n→∞

an

∫ ∞
A

∣∣∣∣(anex

an

)β

− eβγ x

∣∣∣∣�∗
n(dx)

≤ C

∫ ∞
A

eβ(γ+ε)x�(dx) +
∫ ∞
A

eβγ x�(dx) < η.

This establishes (36) and completes the proof of (37).
We now show that

an

∫ 1

−1

((
anex

an

)β

− eβγ x

)
�∗

n(dx) −→
n→∞ 0.(37)

By (i) in (27), we have(
anex

an

)β

− eβγ x = eβγ x(
eβh(ln(n)+x)−βh(ln(n)) − 1

)
.

For every n ≥ 1 and x ∈ (−1,1), an application of Taylor–Lagrange’s formula
yields the existence of a real number un(x) ∈ (ln(n) − 1, ln(n) + 1) such that

h
(
ln(n) + x

) = h
(
ln(n)

) + xh(1)(ln(n)
) + x2h(2)(un(x)

)
/2,

where we recall that h(k) denotes the kth derivative of h. Recalling (ii) in (27), we
can write

eβγ x(
eβh(ln(n)+x)−βh(ln(n)) − 1

) = βxh(1)(ln(n)
) + x2gn(x),

where gn(x) → 0 as n → ∞, uniformly in x ∈ (−1,1). Also note that
h(1)(ln(n)) → 0 as n → ∞. Now,

an

∫ 1

−1

((
anex

an

)β

− eβγ x

)
�∗

n(dx) = βh(1)(ln(n)
) · an

∫ 1

−1
x�∗

n(dx)

(38)

+ an

∫ 1

−1
x2gn(x)�∗

n(dx).
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By (A2) and the preceding observations, the sum appearing in (38) tends to 0 as
n → ∞. This completes the proof. �

4.5. Scaling limits for the nonstopped process. Here, we establish Theorem 4.

PROOF OF THEOREM 4. By Theorem 2, Lemma 4.7 and the strong Markov
property, it is enough to show that for every fixed t0 > 0, ε > 0 and 1 ≤ i ≤ K , we
have

P

(
sup

0≤t≤t0

Xi

(�ant�) ≥ εn
)

= P

(
sup

0≤k≤�ant0�
Xi(k) ≥ εn

)
−→
n→∞ 0.(39)

To this end, fix 1 ≤ i ≤ K , and introduce the successive return times to
{1,2, . . . ,K} by Xi :

T (1) = A
(K)
i = inf

{
j > 0;Xi(j) ≤ K

}
,

and recursively, for k ≥ 2,

T (k) = inf
{
j > T (k−1);Xi(j) ≤ K

}
.

Plainly, T (k) ≥ k and we see from the strong Markov property that (39) will follow
if we manage to check that, for every 1 ≤ i ≤ K ,

an · P
(

sup
0≤j≤T (1)

Xi(j) ≥ εn
)

−→
n→∞ 0.(40)

To this end, introduce τn = inf{j ≥ 1;Xi(j) > εn}∧T (1) and note that E[τn] →
E[T (1)] as n → ∞ by monotone convergence since {1,2, . . . ,K} is accessible by
Xn for every n ≥ 1. In addition,

E
[
T (1) − τn

] = ∑
j≥εn

P
(
X1(τn) = j

)
E

[
A

(K)
j

]
.

But the last part of Theorem 3 shows that E[A(K)
j ]/aj converges to some positive

real number as j → ∞ and thus E[A(K)
j ] ≥ Caj for every j ≥ 1 and some constant

C > 0. Since E[τn] → E[T (1)] as n → ∞, this implies that∑
j≥εn

P
(
X1(τn) = j

)
aj −→

n→∞ 0.

In addition, by the Potter bounds, for η > 0 arbitrary small, there exists a constant
C′ > 0 such that aj/an ≥ C′(j/n)γ−η ≥ C′εγ−η for every n ≥ 1 and j ≥ εn.
Therefore,

an · ∑
j≥εn

P
(
Xi(τn) = j

) −→
n→∞ 0,

which is exactly (40). This completes the proof. �
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5. Applications. We shall now illustrate our general results stated in Sec-
tion 2 by discussing some special cases which may be of independent interest.
Specifically, we shall first show how one can recover the results of Haas and Mier-
mont [19] about the scaling limits of decreasing Markov chains, then we shall dis-
cuss limit theorems for Markov chains with asymptotically zero drift. Finally, we
shall apply our results to the study of the number of blocks in some exchangeable
fragmentation–coagulation processes (see [3]).

5.1. Recovering previously known results. Let us first explain how to recover
the result of Haas and Miermont. For n ≥ 1, denote by p∗

n the probability measure
on R+ defined by

p∗
n(dx) = ∑

k≥1

pn,k · δk/n(dx),

which is the law of 1
n
Xn(1). In [19], Haas and Miermont establish the convergence

(2) under the assumption of the existence of a nonzero, finite, nonnegative measure
μ on [0,1] such that the convergence

an(1 − x) · p∗
n(dx)

(w)−→
n→∞ μ(dx)(41)

holds for the weak convergence of measures on [0,1]. Our framework covers
this case, where the limiting process Y is decreasing. Indeed, assuming (41) and
μ({0}) = 0 (i.e., there is no killing), let μ̃ be the image of μ by the mapping
x �→ ln(x), and let �(dx) be the measure μ̃(dx)/(1 − ex), which is supported on
(−∞,0) (the image of �(dx) by x �→ −x is exactly the measure ω(dx) defined
in [19], page 1219). Then we have the following.

PROPOSITION 5.1. Assume (41) with μ({0}) = 0. We then have
∫ ∞
−∞(1 ∧

|x|)�(dx) < ∞ and (A1), (A2) hold with

b =
∫ 0

−1
x�(dx) + μ

({1}) =
∫ 1

1/e

ln(x)

1 − x
μ(dx) + μ

({1}), σ 2 = 0.

In addition, (A3), (A4) and (A5) hold for every β > 0.

PROOF. This simply follows from the facts that for every continuous bounded
function f : R→R+,∫ ∞

−∞
f (x)�(dx) =

∫ 1

0

f (ln(x))

1 − x
μ(dx),

an

∫ ∞
−∞

f (x)�∗
n(dx) =

∫ 1

0

f (ln(x))

1 − x
· an(1 − x)p∗

n(dx)

and that, as noted in [19], page 1219,

(λ) = −μ
({1}) · λ +

∫ 0

−∞
(
eλx − 1

)
�(dx),
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which is negative for every λ > 0. �

Then Theorem 4 enables us to recover Theorem 1 in [19], whereas Theorem 3
yields the essence of Theorem 2 of [19].

We also mention that our results can be used to (partially) recover the invariance
principles for random walks conditioned to stay positive due to Caravenna and
Chaumont [11], but we do not enter into details for the sake of the length of this
article. The interested reader is referred to the first version of this paper available
on ArXiV for a full argument.

5.2. Markov chains with asymptotically zero drift. For every n ≥ 1, let �n =
Xn(1)−n be the first jump of the Markov chain Xn. We say that this Markov chain
has asymptotically zero drift if E[�n] → 0 as n → ∞. The study of processes
with asymptotically zero drift was initiated by Lamperti in [27, 28, 30], and was
continued by many authors; see [1] for a thorough bibliographical description.

A particular instance of such Markov chains are the so-called Bessel-type ran-
dom walks, which are random walks on N, reflected at 1, with steps ±1 and tran-
sition probabilities

pn,n+1 = pn = 1

2

(
1 − d

2n
+ o

(
1

n

))
as n → ∞,

(42)
pn,n−1 = qn = 1 − pn,

where d ∈ R. The study of Bessel-type random walks has attracted a lot of at-
tention starting from the 1950s in connection with birth-and-death processes, in
particular concerning the finiteness and local estimates of first return times [20,
21, 28, 30]; see also the Introduction of [1], which contains a concise and precise
bibliographical account. Also, the interest to Bessel-type random walks has been
recently renewed due to their connection to statistical physics models such as ran-
dom polymers [1, 14] (see again the Introduction of [1] for details) and a nonmean
field model of coagulation–fragmentation [4]. Nonneighbor Markov chains with
asymptotically zero drifts have also appeared in [32] in connection with random
billiards.

Assume that there exist p > 2, δ > 0, C > 0 such that for every n ≥ 1

E
[|�n|p] ≤ C · np−2−δ.(43)

Also assume that as n → ∞,

E[�n] = c

n
+ o

(
1

n

)
, E

[
�2

n

] = s2 + o(1)(44)

for some c ∈R and s2 ∈ (0,∞).
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Finally, set

r = −2c

s2 , ν = −1 + r

2
, δ = 1 − r.

Note that we do not require the Markov chain to be irreducible.
This model has been introduced and studied in detail in [22] (note however

that in the latter reference, the authors impose the stronger conditions E[�n] =
c
n
+o((n log(n))−1) and E[�2

n] = s2 +o(log(n)−1) and also that the Markov chain
is irreducible, but do not restrict themselves to the Markovian case).

Note that Bessel-type random walks satisfying (42) verify (43) and (44) with
c = −d/2 and s = 1, so that r = d .

In the seminal work [28], when r < 1, under the additional assumptions that
supn≥1 E[|�n|4] < ∞ and that the Markov chain is uniformly null (see [28] for
a definition), Lamperti showed that 1

n
Xn, appropriately scaled in time, converges

in D(R+,R) to a Bessel process. However, the majority of the subsequent work
concerning Markov chains with asymptotically zero drifts and Bessel-type random
walks was devoted to the study of the asymptotic behavior of return times and of
statistics of excursions from sets. A few authors [13, 25, 26] extended Lamperti’s
result under weaker moment conditions, but only for the convergence of finite
dimensional marginals and not for functional scaling limits.

Let R
(ν)
1/s be a Bessel process with index ν [or equivalently of dimension δ =

2(ν + 1)] started from 1/s (we refer to [35], Chapter XI, for background on Bessel
processes). By standard properties of Bessel processes, R

(ν)
1/s does not touch 0 for

r ≤ −1, is reflected at 0 for −1 < r < 1, and absorbed at 0 for r ≥ 1.
In the particular case of Markov chains with asymptotically zero drifts satisfying

(43) and (44), our main results specialize as follows.

THEOREM 5. Assume that (43) and (44) hold.

(i) If either r ≤ −1, or r > 1, then we have(
Xn(�n2t�)

n
; t ≥ 0

)
(d)−→

n→∞ sR
(ν)
1/s

in D(R+,R).
(ii) If r > −1, there exists an integer K ≥ 1 such that {1,2, . . . ,K} is acces-

sible by Xn for every n ≥ 1, and the following distributional convergence holds in
D(R+,R): (

X†
n(�n2t�)

n
; t ≥ 0

)
(d)−→

n→∞ sR
(ν),†
1/s ,

where X†
n denotes the Markov chain Xn stopped as soon as it hits {1,2, . . . ,K}

and R
(ν),†
1/s denotes the Bessel process R

(ν)
1/s stopped as soon as it hits 0.
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In addition, if An denotes the first time Xn hits {1,2, . . . ,K}, then

An

n2

(d)−→
n→∞

1

2s2 · γ(1+r)/2
,(45)

where γ(1+r)/2 is a Gamma random variable with parameter (1 + r)/2.
(iii) If r > 1, we have further

E[Aq
n]

n2q
−→
n→∞

1

(2s2)q
· �((1 + r)/2 − q)

�((1 + r)/2)
(46)

for every 1 ≤ q < (1 + r)/2. In particular,

E[An]
n2 −→

n→∞
1

s2(r − 1)
.

These results concerning the asymptotic scaled functional behavior of Markov
chains with asymptotically zero drifts and the fact that the scaling limit of the first
time they hit 0 is a multiple of an inverse gamma random variable may be new. We
stress that the appearance of the inverse gamma distribution in this framework is
related to a well-known result of Dufresne [15]; see also the discussion in [7] for
further references.

The main step to prove Theorem 5 is to check that the conditions (43) and (44)
imply our assumptions introduced in Section 2 are satisfied.

PROPOSITION 5.2. Assertion (A1) holds with an = n2 and � = 0; Assertion
(A2) holds with b = 2c−s2

2 and σ 2 = s2; Assertion (A3) holds for every β > 0.
Finally, if r > 1, then Assertion (A5) holds for every β0 ∈ (2,1 + r).

Before proving this, let us explain how to deduce Theorem 5 from Proposi-
tion 5.2.

PROOF OF THEOREM 5. By Proposition 5.2, for every t ≥ 0, we have ξ(t) =
sBt + 2c−s2

2 t where B is a standard Brownian motion. Note that ξ drifts to −∞
if and only if 2c − s2 < 0, that is r > −1. By [35], page 452, Y(t/s2) is a Bessel
process R

(ν)
1 with index ν and dimension δ given by

ν := 2c − s2

2s2 = −1 + r

2
, δ := 1 − r

started from 1 and stopped as soon as its hits 0. Hence, by scaling, we can write
Y(t) = sR

(ν)
1/s(t). Theorem 5 then follows from Theorems 1, 2, 3 and 4 as well as

Remark 4.10. For (45) and (46), we also use the fact that (see, e.g., [35], page 452)∫ ∞
0

e2(sBu+((2c−s2)/2)u) du
(d)= 1

2s2 · γ(1+r)/2
.
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This completes the proof. �

The proof of Proposition 5.2 is slightly technical, and we start with a couple of
preparatory lemmas.

LEMMA 5.3. We have

n2
∫
|x|>1

|ex − 1|�∗
n(dx) −→

n→∞ 0, n2
∫
|x|>1

(
ex − 1

)2
�∗

n(dx) −→
n→∞ 0.

PROOF. It is enough to establish the second convergence, which implies the
first one. We show that n2 ∫ ∞

1 (ex − 1)2�∗
n(dx) → 0 as n → ∞ (the case when

x < −1 is similar, and left to the reader). We write

n2
∫ ∞

1

(
ex − 1

)2
�∗

n(dx) = n2
∑
k≥en

(
k

n
− 1

)2

pn,k

= ∑
k≥en

(k − n)p · 1

(k − n)p−2 pn,k

≤ ∑
k≥en

(k − n)p · 1

(e − 1)p−2 · np−2 pn,k

= E[�n1{�n≥(e−1)n}]
(e − 1)p−2np−2

≤ C

(e − 1)p−2 · n−δ by (43),

which tends to 0 as n → ∞. �

LEMMA 5.4. We have

lim
ε→0

lim sup
n→∞

n2
∫
|x|<ε

|x|3 · �∗
n(dx) = 0.

PROOF. To simplify notation, we establish the result with ε replaced by ln(1+
ε), with ε ∈ (0,1). Write∫

|x|<ln(1+ε)
|x|3 · �∗

n(dx) = ∑
(1+ε)−1≤k/n≤1+ε

∣∣∣∣ln(
1 + k − n

n

)∣∣∣∣3pn,k.

But (1+ε)−1 ≤ k/n ≤ 1+ε implies that |k −n|/n ≤ ε, and there exists a constant
C′ > 0 such that | ln(1 + x)|3 ≤ C′|x|3 for every |x| ≤ 1. Hence,

n2
∫
|x|<ε

|x|3 · �∗
n(dx) ≤ ∑

(1+ε)−1≤k/n≤1+ε

|k − n|2 · |k − n|
n

pn,k ≤ ε ·E[
�2

n

]
,
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and the result follows by (44). �

We are now in position to establish Proposition 5.2.

PROOF OF PROPOSITION 5.2. In order to check (A1), we show that n2 ·
�∗

n([ln(a),∞)) → 0 as n → ∞ for every fixed a > 1 [the proof is similar for
a ∈ (0,1)] by writing that

(a − 1)pnp
∑

k≥an

pn,k ≤ ∑
k≥an

(k − n)ppn,k ≤ E
[|�n|p] ≤ C · np−2−δ.

Therefore,

n2 · �∗
n

([
ln(a),∞)) = n2

∑
k≥an

pn,k ≤ C

(a − 1)p
n−δ −→

n→∞ 0.

To prove (A2), we first show that

n2
∫ 1

−1

(
ex − 1 − x − x2

2

)
�∗

n(dx) −→
n→∞ 0.(47)

Since there exists a constant C′ > 0 such that |ex −1−x −x2/2| ≤ C′x3 for every
|x| ≤ 1, for fixed ε > 0, by Lemma 5.4 we may find η > 0 such that

n2
∫ η

−η

(
ex − 1 − x − x2

2

)
�∗

n(dx) ≤ ε

for every n sufficiently large. But

n2
∫
η<|x|<1

(
ex − 1 − x − x2

2

)
�∗

n(dx) −→
n→∞ 0

by the first paragraph of the proof. This establishes (47). One similarly shows that

n2
∫ 1

−1

((
ex − 1

)2 − x2)
�∗

n(dx) −→
n→∞ 0.(48)

Next, observe that

n2
∫ ∞
−∞

(
ex − 1

)
�∗

n(dx) = nE[�n] and n2
∫ ∞
−∞

(
ex − 1

)2
�∗

n(dx) = E
[
�2

n

]
.

Thus, by Lemma 5.3 and (44), we have

n2
∫ 1

−1

(
ex − 1

)
�∗

n(dx) −→
n→∞ c, n2

∫ 1

−1

(
ex − 1

)2
�∗

n(dx) −→
n→∞ s2.

Then write

n2
∫ 1

−1

(
ex − 1

)
�∗

n(dx) = n2
∫ 1

−1
x�∗

n(dx) + n2
∫ 1

−1

x2

2
�∗

n(dx)

+ n2
∫ 1

−1

(
ex − 1 − x − x2

2

)
�∗

n(dx)
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and

n2
∫ 1

−1

(
ex − 1

)2
�∗

n(dx) = n2
∫ 1

−1
x2�∗

n(dx) + n2
∫ 1

−1

((
ex − 1

)2 − x2)
�∗

n(dx).

By (47) and (48), the last term of the right-hand side of the two previous equalities
tends to 0 as n → ∞. It follows that

n2 ·
∫ 1

−1
x�∗

n(dx) −→
n→∞ b, n2 ·

∫ 1

−1
x2�∗

n(dx) −→
n→∞ σ 2,

where b and σ 2 satisfy

c = b + σ 2

2
, s2 = σ 2.

This shows that (A2) holds.
In order to establish that (A3) holds for every β0 ∈ [0,p], first note that the

constraint on β0 yields the existence of a constant C′ > 0 such that kβ0/(k −n)p ≤
C′nβ0−p for every k ≥ en and n ≥ 1. Then write

n2 ·
∫ ∞

1
eβ0x�∗

n(dx) = n2−β0
∑
k≥en

kβ0pn,k

= n2−β0
∑
k≥en

(k − n)p
kβ0

(k − n)p
pn,k

≤ C′n2−p
∑
k≥en

(k − n)ppn,k ≤ CC′n−δ.

This shows that (A3) holds.
Finally, for the last assertion of Proposition 5.2 observe that (λ) = 1

2s2λ2 +
2c−s2

2 λ, so that (2) = 2c + s2 and (1 + r) = 0. In particular, if 2c + s2 <

0, one may find β0 ∈ (2,1 + r) such that (β0) < 0. This shows (A4). Finally,
for (A5), note that E[|Xn(1) − n|β0] = E[|�n|β0] ≤ E[|�n|p] < ∞ implies that
E[Xn(1)β0] < ∞. This completes the proof. �

REMARK 5.5. The results of [22] establish many estimates concerning vari-
ous statistics of excursions of X1 from 1 (such as the duration of the excursion, its
maximum, etc.). Unfortunately, those estimates are not enough to establish directly
(40), (45) and (46). However, only in the particular case of Bessel-type random
walks, it is possible to use the local estimates of [1] in order to establish (40), (45)
and (46) directly.
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5.3. The number of fragments in a fragmentation–coagulation process. Ex-
changeable fragmentation-coalescence processes were introduced by J. Beresty-
cki [3], as Markovian models whose evolution combines the dynamics of ex-
changeable coalescent processes and those of homogeneous fragmentations. The
fragmentation–coagulation process that we shall consider in this section can be
viewed as a special case in this family.

Imagine a particle system in which particles may split or coagulate as time
passes. For the sake of simplicity, we shall focus on the case when coalescent
events are simple, that is the coalescent dynamics is that of a �-coalescent in
the sense of Pitman [34]. Specifically, � is a finite measure on [0,1]; we shall
implicitly assume that � has no atom at 0, namely �({0}) = 0. In turn, we sup-
pose that the fragmentation dynamics are homogeneous (i.e., independent of the
masses of the particles) and governed by a finite dislocation measure which only
charges mass-partitions having a finite number (at least two) of components. That
is, almost-surely, when a dislocation occurs, the particle which splits is replaced
by a finite number of smaller particles.

The process #n = (#n(t); t ≥ 0) which counts the number of particles as time
passes, when the process starts at time t = 0 with n particles, is a continuous-time
Markov chain with values in N. More precisely, the rate at which #n jumps from n

to k < n as the result of a simple coagulation event involving n− k + 1 particles is
given by

gn,k =
∫
(0,1]

(
n

k − 1

)
xn−k−1(1 − x)k−1�(dx).

We also write

gn =
n−1∑
k=1

gn,k =
∫
(0,1]

(
1 − (1 − x)n − nx(1 − x)n−1)

x−2�(dx)

for the total rate of coalescence. In turn, let μ denote a finite measure on N, such
that the rate at which each particle splits into j + 1 particles (whence inducing an
increase of j units for the number of particles) when a dislocation event occurs, is
given by μ(j) for every j ∈ N.

We are interested in the jump chain Xn = (Xn(k);k ≥ 0) of #n, that is the
discrete-time embedded Markov chain of the successive values taken by #n. The
transition probabilities pn,k of Xn are thus given by

pn,k =
{

nμ(k − n)/
(
gn + nμ(N)

)
, for k > n,

gn,k/
(
gn + nμ(N)

)
, for k < n.

We assume from now on that the measure μ has a finite mean

m :=
∞∑

j=1

jμ(j) < ∞
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and further that ∫
(0,1]

x−1�(dx) < ∞.

Before stating our main result about the scaling limit of the chain Xn, it is
convenient introduce the measure �(dy) on (−∞,0) induced by the image of
x−2�(dx) by the map x �→ y = ln(1 − x) and observe that∫

(−∞,0)

(
1 ∧ |y|)�(dy) < ∞.

We may thus consider the spectrally negative Lévy process ξ = (ξ(t), t ≥ 0) whose
Laplace transform given by

E
[
exp

(
qξ(t)

)] = exp
(

t

μ(N)

(
mq +

∫
(−∞,0)

(
eqy − 1

)
�(dy)

))

= exp
(

t

μ(N)

(
mq +

∫
(0,1)

(
(1 − x)q − 1

) · x−2�(dx)

))
.

We point out that ξ has finite variations, more precisely it is the sum of the negative
of a subordinator and a positive drift, and also that ξ drifts to +∞, oscillates, or
drifts to −∞ according as the mean

E[ξ1] = m +
∫
(−∞,0)

y�(dy) = m +
∫ 1

0

ln(1 − x)

x2 �(dx)

is respectively strictly positive, zero, or strictly negative (possibly −∞).

COROLLARY 5.6. Let (Y (t), t ≥ 0) denote the positive self-similar Markov
process with index 1, which is associated via Lamperti’s transform to the spectrally
negative Lévy process ξ .

(i) If ξ drifts to +∞ or oscillates, then there is the weak convergence in
D(R+,R) (

Xn(�nt�)
n

; t ≥ 0
)

(d)−→
n→∞

(
Y(t); t ≥ 0

)
.

(ii) If ξ drifts to −∞, then A
(1)
n = inf{k ≥ 1 : Xn(k) = 1} is a.s. finite for all

n ≥ 1,

A
(1)
n

n

(d)−→
n→∞

∫ ∞
0

eξ(s) ds,

and this weak convergence holds jointly with(
Xn(�nt� ∧ A

(1)
n )

n
; t ≥ 0

)
(d)−→

n→∞
(
Y(t); t ≥ 0

)
in D(R+,R).
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(iii) If m <
∫
(−∞,0)(1 − ey)�(dy) = ∫ 1

0 x−1�(dx) and
∑∞

j=1 jβμ(j) < ∞ for
some β > 1, then ξ drifts to −∞ and(

Xn(�nt�)
n

; t ≥ 0
)

(d)−→
n→∞

(
Y(t); t ≥ 0

)
in D(R+,R). In addition, for every 1 ≤ p < β such that m <

∫
(0,1)(1 − (1 −

x)p)/p · x−2�(dx), we have

E

[(
A

(1)
n

n

)p]
(d)−→

n→∞ E

[(∫ ∞
0

eξ(s) ds

)p]
.

PROOF. We first note that, since μ as finite mean m,

lim
n→∞n

∞∑
k=n

(
f (k/n) − f (1)

)
μ(k − n) = mf ′(1)

for every bounded function f : R+ → R that is differentiable at 1. We also lift
from Lemma 9 from Haas and Miermont [19] that in this situation

lim
n→∞

n−1∑
k=1

(
f (k/n) − f (1)

)
gn,k

=
∫
(0,1]

(
f (1 − x) − f (1)

)
x−2�(dx).

Then we observe that there is the identity

gn

n
=

∫
(0,1]

n−1

(
n−2∑
j=0

(
(1 − x)j − (1 − x)n−1))

x−1�(dx).

It follows readily by dominated convergence from our assumption∫
(0,1] x−1�(dx) < ∞ that gn = o(n) and, therefore, gn + nμ(N) ∼ nμ(N) as

n → ∞. Hence,

lim
n→∞nμ(N)

∞∑
k=1

(
f (k/n) − f (1)

)
pn,k

= mf ′(1) +
∫
(0,1]

(
f (1 − x) − f (1)

)
x−2�(dx),

and for every bounded function h : R → R which is differentiable at 0, we there-
fore have

lim
n→∞n

∫
R

(
h(x) − h(0)

)
�∗

n(dx)

= lim
n→∞n

∞∑
k=1

(
h
(
ln(k/n)

) − h(0)
)
pn,k
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= 1

μ(N)

(
mh′(0) +

∫
(0,1]

(
h
(
ln(1 − x)

) − h(0)
)
x−2�(dx)

)

= 1

μ(N)

(
mh′(0) +

∫
(−∞,0)

(
h(y) − h(0)

)
�(dy)

)
,

where �(dy) stands for the image of x−2�(dx) by the map x �→ y = ln(1 − x).
This proves that the assumptions (A1) and (A2) hold [with �/μ(N) instead of �

to be precise], and then (i) follows from Theorem 1. Note also that

n ·
∫ ∞

1
eβx�∗

n(dx) = n · ∑
k>en

k

n
· pn,k

(49)

≤ 1

μ(N)

∑
k>(1−e)n

(1 + k)μ(k) ≤ (1 + m)/μ(N),

which shows that (A3) is fulfilled. Hence, (ii) follows from Theorems 2 and 3(i).
Finally, it is easy to check that when the assumptions of (iii) are fulfilled, then

(A4) and (A5) hold. Indeed, as for (49), for every β > 0 we have

n ·
∫ ∞

1
eβx�∗

n(dx) = n · ∑
k>en

(
k

n

)β

pn,k ≤ n1−β

μ(N)

∑
k>(1−e)n

kβμ(k),

and we can thus invoke Theorem 4, as well as Theorem 3(ii) and Remark 4.10. �

Roughly speaking, Corollary 5.6 tells us that in case (i), the number of blocks
drifts to +∞ and in case (iii), once the number of blocks is of order o(n), it will
remain of order o(n) on time scales of order an. In case (ii), we are only able
to understand what happens until the moment when there is only one block. It is
plausible that in some cases, the process counting the number of blocks may then
“restart” (see Section 6 for a similar discussion).

6. Open questions. Here, we gather some open questions.

QUESTION 6.1. Is it true that Theorem 2 remains valid if (A3) is replaced
with the condition inf{i ≥ 1;Xn(i) ≤ K} < ∞ almost surely for every n ≥ 1?

QUESTION 6.2. Is it true that Theorem 4 remains valid if (A4) is replaced
with the condition that E[inf{i ≥ 1;Xn(i) ≤ K}] < ∞ for every n ≥ 1?

It seems that answering Questions 6.1 and 6.2 would require new techniques
which are not based on Foster–Lyapounov type estimates. Unfortunately, up to
now, even in the case of Markov chains with asymptotically zero drifts, all refined
analysis is based on such estimates.

A first step would be to answer these questions in the particular case Markov
chains with asymptotically zero drifts; recalling the notation of Section 5.2:
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QUESTION 6.3. Consider a Markov chain with asymptotically zero drifts sat-
isfying (44) only. Under what conditions do we have(

Xn(�n2t�)
n

; t ≥ 0
)

(d)−→
n→∞ sR

(ν)
1/s?

When in addition the assumption (43) is satisfied, our results settle the cases
r ≤ −1 and r > 1. Also, as it was already mentioned, using moment methods,
Lamperti [28], Theorem 5.1, settles the case r ≤ 1 under the assumptions that
supn≥1 E[|�n|4] < ∞ and that Markov chain is uniformly null (see [28] for a def-
inition). We mention that if Xn is irreducible and not positive recurrent (which is
the case when r < 1), then it is uniformly null.

However, in general, the asymptotic behavior of Xn will be very sensitive to the
laws of Xk(1) for small values of k. For example, even in the Bessel-like random
walk case, one drastically changes the behavior of Xn just by changing the distri-
bution of X1(1) in such a way that E[X1(1)2] = ∞. More generally, we have the
following question.

QUESTION 6.4. Assume that (A1) and (A2) hold, and that there exists an in-
teger 1 ≤ n ≤ K such that E[inf{i ≥ 1;Xn(i) ≤ K}] = ∞. Under what conditions
on the probability distributions X1(1),X2(1), . . . ,XK(1) does the Markov chain
Xn have a continuous scaling limit (in which case 0 is a continuously reflecting
boundary)? A discontinuous càdlàg scaling limit (in which case 0 is a discontinu-
ously reflecting boundary)?

As a first step, one could first try to answer this question under the assump-
tions (A3) or (A4) which enable the use of Foster–Lyapounov type techniques. We
intend to develop this in a future work.

QUESTION 6.5. Assume that ξ does not drift to −∞, and that if Px denotes
the law of Y started from x > 0, then Px converges weakly as x ↓ 0 to a probability
distribution denoted by P0. Does there exist a family (pn,k) such that the law of
Y under P0 is the scaling limit of Xn as n → ∞? If so, can one find sufficient
conditions guaranteeing this distributional convergence?

QUESTION 6.6. Assume that ξ drifts to −∞, so that Y is absorbed at 0. As-
sume that Y has a recurrent extension at 0. Does there exist a family (pn,k) such
that this recurrent extension is the scaling limit of Xn as n → ∞? If so, can one
find sufficient conditions guaranteeing this distributional convergence?
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