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Abstract—In this paper, we report YouTube traffic measure-
ments from Orange IP backbone network connecting residen-
tial customers. We exhibit its salient features in relation to
the performance of caching. By examining the file popularity
distribution, we show that video requests are highly volatile in
that a huge number of files are viewed only a few times; these
files are therefore not relevant for caching. Nevertheless, there is
a subset of files which are massively viewed by end users and
are worth caching. On the basis of this experimental observation,
we develop a mathematical model for estimating the efficiency of
file caching in the presence of noise traffic composed of those
files which are rarely requested and thus “pollute” the cache. We
then proceed to trace-driven simulations in order to check the
qualitative conclusions derived from the theoretical model.

I. INTRODUCTION

As reported in many recent studies, it is now well-known
that the volume of streaming traffic carried over telecommu-
nication networks has exploded in the past few years [1], [2].
Within busy hours, streaming can contribute up to 60 % of
global traffic. Excluding IPTV which is mostly delivered via
dedicated infrastructures, streaming traffic is then basically
composed of video downloads from Video on Demand (VoD)
service platforms and from user-produced media platforms
such as YouTube; at the moment, WebTV or other TV ser-
vices (e.g. that delivered by peer-to-peer networks) are still
marginal. Understanding the performance of caches dedicated
to such traffic is consequently critical for estimating the global
performance of caching.

The characteristics of VoD downloads in Orange networks,
in particular, has been studied in [3]; we here study traffic
generated by User Generated Content (UGC) services. The
basic difference between VoD content and UGC available from
YouTube platforms is that the catalog size for the former is
finite, while the number of videos in various formats for UGC
is almost unbounded. This implies that the volatility of content
requests is much higher for UGC than for VoD.

The problem of volatility is central for caching. In fact,
if a network operator aims at load reduction on critical
transmission links (typically, peering links) via caching, it is
crucial to determine whether some content items are requested
sufficiently often so that it is worth caching them. In addition,
such items have to be frequently requested in order not to
be pushed out of the cache by other items which are rarely
downloaded, but are numerous enough to overflow the cache.
These two issues require an in-depth analysis of the dynamics
of UGC file requests. We here assume transparent caching,
as can be deployed by a network operator, and do not take
into account the possible interactions, relays and forwarding

that can take place in a Content Delivery Network (CDN).
In order to keep our presentation simple, we also restrict our
results to the most popular replacement policy, namely the
Least Recently Used (LRU) policy, which is known to provide
a good performance/complexity tradeoff.

The characteristics of YouTube traffic has been studied in
the technical literature in various contexts. In [4], YouTube
traffic within a campus network is studied; a detailed analysis
is performed where the popularity of files can be well ap-
proximated by means of a Zipf distribution with an exponent
α < 1; it is also noted that the mean size of video file is about
10 MB. Another analysis of YouTube traffic from a campus
network can be found in [5], where popularity, file sizes,
and request arrival process are analyzed in depth; the authors
additionally perform a proxy-caching analysis with various
cache capacities and observe hit ratios at most 35 %. Popularity
of YouTube files is analyzed in [6] by crawling YouTube
websites and collecting meta information about video files. The
pattern of requests is, in particular, studied in [7]. Additional
precise YouTube traffic characterization can be found in [8].
Traffic matrices of YouTube traffic in an ISP network is
analyzed in [9]. Inter-domain implications of streaming traffic
are addressed in [10], but this is out of the scope of this paper.

In this paper, as in the above mentioned studies, we
investigate YouTube traffic characteristics but we consider a
totally different data set. Specifically, we report measurements
of YouTube traffic from Orange IP backbone network in France
which connects residential customers. The customer population
size is thus much bigger than that considered in [4], [5], as
well as the number of downloaded files. In addition, the usage
of YouTube is somewhat different in that a campus usually
clusters a large proportion of students with intensive social
interactions among them, whereas residential customers are
more diverse in their interests and characteristics. Another
possible difference is that the bit rates available to end users
may be much lower than those affordable in campus net-
works, implying customer impatience, quality degradation, file
download interruptions, etc. It follows that the volatility of
video requests may be much higher in the case of residential
customers than that in a campus network.

Beyond the characterization of YouTube traffic in a com-
mercial network, the goal of this paper is to investigate the
efficiency of caching for such a traffic pattern. In this respect,
the volatility of video requests is a critical issue in that the
capacity of the cache has to be large in order to achieve
reasonably high hit ratio, and that rarely requested files may
have an adverse impact on the caching performance by pushing
out of the cache those files viewed a large number of times.



The organization of this paper is as follows: In Section II,
we describe the methodology used to measure YouTube traffic
in the Orange IP backbone network and we provide file
statistics, exhibiting the requests volatility. In Section III, we
develop a mathematical model of a cache with noisy traffic.
In Section IV, we present trace driven simulations of caches.
Some concluding remarks are presented in Section V.

II. YOUTUBE TRAFFIC MEASUREMENTS

A. Data set description

We consider statistics of YouTube traffic in the Orange
IP backbone network. This network connects residential cus-
tomers as well as small-medium size company premises to
the Internet. Various access technologies can be used at the
access (namely FTTH, ADSL, xDSL), and in the backhaul
(ATM, GigaBit Ethernet). To perform measurements, we use
passive probes located on GigaBit Ethernet links connecting
the various DSLAM to the BAS (Broadband Access Server).
These probes are sufficiently high in the network so as to
observe a large number of customers (up to 50 000 per probe).
Equipped with packet processing capabilities, the probes can
monitor traffic flows of individual customers.

The probes were configured to detect YouTube traffic
and to generate a single record line per viewed video. This
record includes an anonymized customer identifier, the server
address, timestamps of the starting and terminating times of
the transmission of a video flow and the associated volume
in packets and bytes. The video is identified by a 64 bits
ID present in YouTube HTTP request which seems to be a
constant and unique identifier for a given video file.

One major difficulty when observing YouTube traffic in an
ISP network is that a video file can be transmitted over several
TCP connections, even in the case of classical progressive
HTTP download [8]. This segmentation of files into pieces (or
chunks) prevents us from identifying to which part of a file a
TCP connection corresponds to1. In fact, such an identification
requires either access to the packet payload or, in case of
HTTP flows, to infer it from the URL. As either solution was
not accessible to us, we could not determine which parts of
a video had been requested by a given client, and therefore
could not study the impact of file download interruption. We
therefore assume in the following that each request requires
the whole video, ignoring the fact that the same video can be
completely viewed by some customers while only partially by
some others.

In order to remedy the problem of file segmentation, some
preliminary treatment has been performed on the traffic traces.
Specifically, we have aggregated those pieces of dowloaded
content with the same YouTube ID and carried by several
TCP connections between the same IP addresses and with
starting times within an interval of 30 seconds. This procedure
allows us to reconstruct information on individual video files.
By taking the maximum observed volume for a given file
ID, we obtain an upper bound for the volume in bytes of a

1A possible work-around would be to consider caching at chunk level. We
cannot guarantee, however, that all users are using the same fixed set of chunks
for a single video file (e.g. due to on the fly re-encoding to different bit rates
or format depending on the user conditions and preferences), and thus making
this possibility uncertain.

video file. This may introduce some bias in the video size
estimation because this maximum download size can be larger
than the actual video size (in case of packet losses, web
page reload, etc.). The size of video files observed in the
Orange commercial network then appears much greater than
that observed in 2007 in [4], which is probably due to both
our preliminary treatment assumptions and the evolution of
YouTube content in the past few years (full movies, increased
resolutions, etc.).

In the following, we show video file statistics of YouTube
traffic observed in three towns in France: Bordeaux, Lyon and
Paris. The two former are equivalent in terms of connected cus-
tomers; in Paris, data are aggregated from two probes. Finally,
we have also computed statistics by using data collected by
all probes installed in the IP backbone network (12 probes in
total, covering 25 % of the whole customer footprint). Traffic
measurements were performed from April 1st to April 15th

2012.

B. File statistics

In a first step, we report statistics for files viewed by
end users as observed by the probes located in Bordeaux,
Lyon and Paris. To discriminate files, we introduce a threshold
(arbitrarily set to 3) for the number of times that a file is
viewed in order to decide whether a file is relevant for caching
or not. As shown in the following, the chosen threshold first
allows us to classify files and to exhibit some salient features
of the file population downloaded by end users, notably the
huge number of files which are seen only once or twice and
which can consequently be considered as noise with regard to
caching.

In Table I, we report file statistics in Bordeaux (the
results in Lyon and Paris are similar). Within one day (the
7th day of the measurement period in Table I), the number
of files downloaded more than twice is only 24 % of the
total number of downloads. When the observation window
is enlarged, the proportion of files viewed more than twice
increases and reaches 55 %. This simple observation shows
that the occurrence of files that we consider worth caching
may be dispersed in time. It is also worth noting that the
total volume of those files downloaded more than twice rapidly
increases (more than 4.7 TB in two weeks). This indicates that
the potential gain of caching is significant, but that storage
capacities in the cache need also to be substantial.

For the sake of completeness, Table II reports file statistics
by using data collected by all probes installed in the Orange

TABLE I. DOWNLOAD STATISTICS IN BORDEAUX.

Number Number of downloads Total
of distinct files file volume

Day 7
Files 21 354 29 604 2 278.1 GB
More than twice 1 237 7 197 (24.3 %) 638.1 GB
Only once 17 825 (60.2 %) 1 182.0 GB
First week
Files 93 649 159 486 5 782 GB
More than twice 9 369 63 379 (39.7 %) 2 598.9 GB
Only once 72 451 (45.4 %) 2 249.7 GB
Two weeks
Files 202 672 453 345 9 442.2 GB
More than twice 25 981 249 243 (54.9 %) 4 730.7 GB
Only once 149 280 (32.9 %) 3 315.5 GB



TABLE II. DOWNLOAD STATISTICS IN MONITORED ADSL AREAS.

Number Number of downloads Volume
Day 7
Files 104 548 223 422 6 493.9 GB
More than twice 9 420 115 516 (51.7 %) 2 757.9 GB
Only once 82 350 (36.8 %) 2 634.6 GB
First week
Files 340 702 836 236 12 484.6 GB
More than twice 43 480 492 482 (58.9 %) 6 124.7 GB
Only once 250 690 (29.9 %) 4 463.6 GB
Two weeks
Files 865 681 2 838 514 22 632.5 GB
More than twice 145 724 1 992 348 (70.2 %) 11 916.9 GB
Only once 593 721 (20.9 %) 7 483.1 GB

IP backbone network. We qualitatively observe the same
phenomena as those mentioned above in Bordeaux regarding
file and volume statistics. Note that volumes generated within
two weeks by those files viewed more than twice become huge
(recall that only 25 % of all ADSL areas are supervised by
probes).

C. File popularity

In order to better characterize file requests distribution,
we now compute file popularity curves. We have computed
on a day-by-day basis the popularity of files viewed in Bor-
deaux during the first observation week. Specifically, we have
recorded the (YouTube) ID of files viewed within one day
in Bordeaux and their associated number of occurrences. We
have then classified files in decreasing occurrence order and
computed their popularity index defined as the ratio of the
number of times the file is viewed to the total number of
downloads. This procedure yields the popularity curve of files
viewed in Bordeaux, which is depicted in Figure 1(a). We
have displayed the popularity of those files which are seen a
sufficiently large number of times. There is a long tail of files
which are rarely viewed, which yields an erratic popularity
curve; this point will be further discussed below.

It is remarkable that the popularity curves are similar from
one day to another, even if the files are not the same2. We
have applied the same procedure for data collected during the
first day of three consecutive weeks (Figure 1(b)) and during
the two weeks by aggregating the data for the first week, the
second week and both weeks (Figure 1(c)). It clearly appears
from these figures that the popularity curves are similar to
those computed within one day and can be approximated by
the same function.

The same procedure has been applied to data collected in
Lyon, in Paris and by all probes and we have observed the
same phenomena, namely that popularity curves are similar
from day to day and over larger aggregation periods (week by
week and for the two weeks of observation).

In Figure 1, we approximated the popularity curves by
means of a truncated Pareto (or Zipf) curve of the form

qr = 1{rmin≤r≤rmax}
A

rα
, (1)

where index r denotes the file popularity rank. The value of
parameters A and α as well as the range [rmin, rmax] may

2This point related to the behavior of users when browsing YouTube requires
further investigations, but this aspect is out of the scope of the present paper.

(a) One week.

(b) The first days of three consecutive weeks.

(c) Aggregation over the first and second weeks and over the two weeks.

Fig. 1. Popularity of YouTube video files in Bordeaux.



obviously change, depending on the duration of measurement
windows and the location where measurements are performed.
When α < 1, the range [rmin, rmax] is necessarily finite. By
using the Marquardt-Levenberg nonlinear least-squares regres-
sion algorithm (implemented in Gnuplot), we found that the
file popularity curve can be well approximated by a truncated
Pareto function in the range [10, 1000] and with coefficients

A = 0.006217, α = 0.68198.

The same approximation holds also for the file popularity
distribution observed in Lyon, in Paris and by all probes.

We now emphasize the fact that the Pareto approximation
holds only for a small proportion of the file population. In
Figure 2, we have displayed the complete popularity curve for
files viewed in Bordeaux during the two weeks. There were
453 345 downloads; the latter can be decomposed into the three
following segments:

• Heavy hitters: Files with rank less than rmin, which
are massively viewed by end-users. Their popularity
is higher than that estimated by the Pareto approxima-
tion. Their number is small but they represent a huge
amount of transferred data (the 10 most popular files
give rise to 32.6 TB of traffic, 23.3 % of global traffic
in Bordeaux). This unbalanced contribution of files has
been already observed in [11] and corresponds more
or less to the well-known Pareto rule (20 % of a pop-
ulation owns 80 % of the resources) but for YouTube
files, this rule is much sharper (a tiny proportion of
files contributes to the majority of volume);

• Pareto class: Beyond heavy hitters, there is a sub-
population of files which are viewed a significant
number of times and for which a Pareto approximation
(in the sense of Equation (1)) holds. The need for this
approximation may appear artificial at first glance but,
as we shall see in next section, such an approximation
can be used to estimate cache performance;

• Noise: As shown in Table I, 33 % of files are viewed
only once, thus showing a high volatility of YouTube
requests in a commercial environment. When consid-
ering the problem of caching, these files may appear
as a noise; in fact, they enter a cache if no filtering is
performed and a standard LRU management policy is
implemented for replacing content in the cache3.

III. MATHEMATICAL MODEL

In view of the empirical observations made in the previous
section, we develop in the following a mathematical model
to estimate the file and byte hit ratios of a cache fed with a
file arrival process with two components, namely regular files
with a Zipf popularity distribution and noise files irrelevant for
caching.

3It is proved in [12] that filtering requests improves the hit ratio by allowing
files to enter the cache only after a fixed number of requests, but degrades the
byte hit ratio since heavy hitters can enter the cache only after a fixed number
of times. This observation incites us not to filter out requests since the byte
hit ratio is actually the most relevant metric to estimate the gain in terms of
bandwidth savings.

tail =  
noise 

very popular files 
 (heavy hitters) 

validity of the Pareto  
approximation 

Fig. 2. Complete file popularity curve of YouTube video files in Bordeaux.

A. Model description

Consider a cache server whose replacement policy is
LRU [13], [14]. The objects contained in that cache may come
from either:

• a ”persistent” class P: Requests addressed to objects
within P build up a stationary Poisson process in time
with rate Λ (requests/sec.). The request rate for object
numbered r in class P is therefore Λqr, where qr
is the stationary popularity of object r ∈ P (objects
are ranked in decreasing order of popularity), with∑
r∈P qr = 1;

• a ”non-persistent” class N considered as a noise: All
requests addressed to objects within N form a Poisson
process with rate ΛN ; any object n ∈ N is assumed
to be requested just once within time interval [0,+∞[.

Following the discussion of section II-C, the number of heavy
hitters is small enough as to consider it as negligible with
respect to the cache capacity. Their hit ratio is close to 1 (see
section IV) and their impact on the hit ratio of objects in class
P is neglected.

First assume that the cache capacity C is measured as a
number of objects (or files). We then denote by Mr the proba-
bility (”conditional object miss probability”) that a request for
object r ∈ P is not satisfied; we also write

MP =
∑
r∈P

qrMr (2)

for the average conditional object miss probability, when
averaged over all objects of class P . Recall that by definition
any request for an object n ∈ N is not satisfied and has
therefore miss probability equal to 1.

The popularity distribution attached to P will be assumed
to be Zipf with exponent parameter α ∈ ]0, 1[, that is,

qr =
AN
rα

, 1 ≤ r ≤ N, (3)

where N is the total number of objects (”catalog size”) in class
P and AN is the associated normalizing constant.



We now evaluate the impact of the noisy class N , charac-
terized by parameter ΛN , on the performance of the persistent
class P . As detailed below, such an evaluation mainly relies
on the so-called ”Che approximation” [15], [16] for deriving
estimates of miss probabilities for large cache capacity C.

B. Object miss probabilities

Let Q(t) denote the number of distinct objects requested
within time interval [0, t[; if Ar(t) (resp. Bn(t)) is the number
of requests for object r ∈ P (resp. object n ∈ N ), we
consequently have

Q(t) =
∑
r≥1

1{Ar(t)≥1} +
∑
n≥1

1{Bn(t)≥1},

where 1A is the indicator function of the set A; by definition of
Poisson processes introduced above and the fact that all objects
in class N are distinct, the mean q(t) = E(Q(t)) equals

q(t) =
∑
r≥1

(1− e−Λqrt) + ΛN t. (4)

Define the critical time T as the time necessary to totally
renew the cache population, so that a miss event occurs for an
object with class r if the time interval between two consecutive
requests for that object is larger than T . Following the Che
approximation, T is assumed to be a constant (depending on
C) which verifies equation

q(T ) = C. (5)

Note, in particular, that the critical time T increases with the
capacity C. As requests for object r ∈ P form a Poisson
process whose inter-arrivals are exponentially distributed with
parameter Λqr, the conditional object miss probabilities Mr,
r ∈ P is then evaluated by

Mr ∼ e−ΛqrT (6)

for large capacity C.

Within time interval [0, t[, the mean number of objects
requested from the cache for object r ∈ P (resp. for any
object n ∈ N ) is Λqrt (resp. ΛN t), while the mean number
of unsatisfied requests for object r ∈ P (resp. for any object
n ∈ N ) is ΛqrMrt (resp. ΛN t as well); the law of large
numbers for t ↑ +∞ then entails that the average miss
probability m can be expressed as

m =

∑
r≥1

ΛqrMr + ΛN∑
r≥1

Λqr + ΛN
=
MP +

ΛN
Λ

1 +
ΛN
Λ

. (7)

We now address the evaluation of miss probabilities for the
popularity distribution (3) of class P . We further assume that
C and N both scale as

C = δN (8)

for some positive constant δ < 1. Recall [17] that the
incomplete Gamma function is defined by

Γ(s;x) =

∫ +∞

x

e−uus−1du (9)

for x ∈ R, s > 0, and that it can be extended to non integer
negative values of s through the recursion

Γ(s− 1;x) =
Γ(s;x)− xs−1e−x

s− 1

for all x ∈ R.

Proposition III.1: For 0 < α < 1 and large C so that scal-
ing condition (8) is fulfilled, the conditional miss probability
Mr is estimated by

Mr ∼ exp

(
−qr
δ

Θ

1− α
C

)
(10)

for given r ∈ P , where Θ is the unique positive solution to
equation

Θ
1
α

α
Γ

(
− 1

α
; Θ

)
= 1− δ +

ΛN
Λ

Θ

1− α
. (11)

The average miss probability MP is estimated by

MP ∼
1− α
α

Γ

(
1− 1

α
; Θ

)
Θ

1
α−1 (12)

in identical asymptotic conditions.

The proof of Proposition III.1 is detailed in Appendix B.
Solution Θ depends on ratio ΛN /Λ through implicit equation
(11); as expected, the latter coincides with that derived in [18,
Theorem 2] in the case when the noise traffic is absent, that
is, ΛN = 0 and parameter k in [18] fixed to 1. We note, in
particular, that miss probability Mr given by (10) increases
when ΛN increases.

C. Byte miss probability

Measuring the cache capacity as a number of objects
implicitly assumes that all objects have identical size in bytes.
If the cache capacity is rather measured in bytes, say C̃,
the definitions of Section III-A for miss probabilities can be
adapted accordingly.

Let Vr be the size (or volume) in bytes of object r ∈ P;
let similarly VN be the mean size in bytes of objects n ∈ N .
If M̃r then denotes the probability (”conditional object miss
probability”) that a request for object r ∈ P is not satisfied,
we write

M̃P =
∑
r∈P

qrM̃r (13)

for the unconditional object miss probability, when averaged
over all objects of class P .

Let Q̃(t) denote the number of bytes generated by distinct
objects requested within time interval [0, t[; if Ar(t) (resp.
Bn(t)) is the number of requests for object r ∈ P (resp. object
n ∈ N ) to the cache, we have

Q̃(t) =
∑
r≥1

Vr1{Ar(t)≥1} +
∑
n≥1

VN1{Bn(t)≥1};

by arguments similar to that invoked in III-B, we deduce that
the mean q̃(t) = E(Q̃(t)) equals

q̃(t) =
∑
r≥1

Vr(1− e−Λqrt) + VNΛN t. (14)



Define the ”critical time” T̃ (depending on C̃) as the time
necessary to totally renew the cache population when counted
in bytes. Following the Che approximation, T̃ verifies the
equation

q̃(T̃ ) = C̃. (15)

For large capacity C̃, the conditional object miss probabilities
M̃r, r ∈ P is then evaluated by

M̃r ∼ e−ΛqrT̃ . (16)

Within interval [0, t[, the mean number of bytes requested
from the cache for object r ∈ P (resp. for any object n ∈ N )
is ΛqrVrt (resp. ΛNVN t), while the mean number of bytes
satisfied for requests from object r ∈ P (resp. for requests
from object n ∈ N ) is ΛqrVrM̃rt (resp. ΛNVN t as well); it
then follows that the average byte miss probability m̃ can be
expressed as

m̃ =

∑
r≥1

ΛqrVrM̃r + ΛNVN∑
r≥1

ΛqrVr + ΛNVN
. (17)

Let us further assume that Vr = V does not depend on
r and that the cache size C̃ and the total volume of the
persistent class P scales similarly. Define δ̃ = C̃/(NV ); let
also V (resp. VN ) denote the total downloaded volume of
class P (resp. of class N ). Note that the ratio VN /V is equal
to (ΛNVN ) / (ΛV ). The conditional miss probability M̃r can
then be computed using the following proposition:

Proposition III.2: For 0 < α < 1 and large C̃, the
conditional miss probability M̃r is estimated under the above
assumptions by

M̃r ∼ exp

(
−qr
δ̃

Θ̃

1− α
C̃

)
(18)

for given r ∈ P , where Θ̃ is the positive solution to equation

Θ̃
1
α

α
Γ

(
− 1

α
; Θ̃

)
= 1− δ̃ +

VN
V

Θ̃

1− α
. (19)

The average miss probability M̃P for the Pareto class is
estimated by

M̃P ∼
1− α
α

Γ

(
1− 1

α
; Θ̃

)
Θ̃

1
α−1. (20)

Proof: Invoking the Che approximation and equating all
file sizes Vr to their joint value V , relations (14) and (15)
together yield∑

r≥1

(1− e−ΛqrT̃ ) +
VN
V

ΛN T̃ =
C̃

V
.

The calculation of miss rates in case of variable file sizes is
therefore similar to the application of Proposition III.1 when
changing ΛN /Λ and C to VN /V and C̃/V , respectively (see
Equation (25) in Appendix B).

To conclude this section, let us note that cache capacities
C and C̃ can be related by setting the latter to equal the mean
cache occupancy expressed in bytes, that is,

C̃ =
∑
r≥1

Vr(1−Mr) + VNΛNT ; (21)

in fact, object r ∈ P is present in cache with probability 1−Mr

while any object n ∈ N has an expected sojourn time in cache
T and the total occupancy of class N in cache is ΛNVN × T
by Little’s law. Conversely, C can be expressed in terms of
the byte capacity C̃ as

C =
∑
r≥1

(1− M̃r) + ΛN T̃ (22)

by means of similar arguments.

IV. TRACE DRIVEN SIMULATION

In this section, we compare the theoretical results obtained
above against trace driven simulation results, and derive simple
cache dimensioning rules.

A. Experimental results

To perform trace driven simulation, we specifically con-
sider a 1 TB cache running a standard LRU replacement policy;
we use the YouTube traffic traces and replay the sequence of
file requests. Each file is associated with its maximal size, i.e.,
the maximum observed volume for a given YouTube ID. This
is clearly an upper bound for the volume really transmitted
(see the discussion in section II).

By using the data for Bordeaux, Lyon and Paris during
the two observation weeks, we have computed the various
file and byte hit ratios for the above LRU cache, as shown
in Table III. While the global file hit ratio is rather small,
notably because of “noise” files which are very numerous but
completely irrelevant for caching, the byte hit ratio is quite
high because the heavy hitter files are very large. Moreover,
the volume of content delivered by the cache is large, even
if the cache capacity is rather small. For instance, the total
downloaded volume in Bordeaux is 140.9 TB and the cache
is able to deliver more than 105 TB.

TABLE III. REQUEST AND BYTE HIT RATIO FOR A 1 TB CACHE IN
BORDEAUX, LYON, AND PARIS.

Location Hit ratio Byte hit ratio Downloaded volume
Bordeaux 33.5 % 74.65 % 140.9 TB

Lyon 34.2 % 74.61 % 161.3 TB
Paris 34.6 % 77.97 % 240.4 TB

TABLE IV. HIT RATIO OF HEAVY HITTERS IN BORDEAUX.

hit ratio # served by cache # requests volume
0.999916 11943 11944 1.2 GB
0.999812 10651 10653 400 MB
0.999717 3534 3535 400 MB
0.995773 2356 2366 1.9 GB
0.999493 1971 1972 700 MB
0.999389 1635 1636 1.4 GB
0.997503 1598 1602 500 MB
0.999289 1405 1406 1.4 GB
0.992137 1388 1399 700 MB
0.998285 1164 1166 600 MB



Fig. 3. Hit ratio of the 100 most popular file in Bordeaux with a LRU cache
of 1 TB.

Table IV reports the hit ratios, the numbers of times a file
has been downloaded from the cache, the numbers of requests
together with the volumes of the 10 most popular files (heavy
hitters) in Bordeaux. The volume of data generated by these
files amounts to 32.6 TB (i.e., about 23.3 % of global traffic)
but their cumulative volume is 9.2 GB, which is much less
than the cache capacity equal to 1 TB. As in Section III, we
can ignore the heavy hitters and just consider the files in the
Pareto class.

In Figure 3, we have plotted the hit ratio for the 100 top
files ordered in decreasing order of popularity. We clearly
observe that the hit ratio of those most popular files is high,
indicating that the cache, even with a rather limited storage
capacity, is able to store heavy hitters. We also note that the
hit ratio rapidly decreases with the popularity.

B. Comparison with theoretical results

In order to apply the results of Section III, we first compute
the probability density function of the file sizes viewed in
Bordeaux (see Figure 4). We can observe that the densities
depend on the popularity; in particular, the mean file size
is 22.2 MB for files viewed once, 51 MB for those viewed
twice and 182 MB for those viewed more than twice. The
mean file size for the N = 53 424 files for which the Pareto
approximation roughly holds is equal to V = 114.2 MB; the
mean file size for the other files (noisy class) equals VN = 22.2
MB. We nevertheless shall apply the results of Section III-C
to compare the approximation obtained in that section against
experimental results.

From Tables I and III, we measure

VN = 3.3TB� V = 105TB.

(Note that V is the total volume of downloads equal to 140.9
TB minus the sum of the volumes of noise and heavy hitter
downloads equal to 32.6 TB.) The number of Pareto class files
is N = 53 382.

Fig. 4. Probability density functions of file sizes viewed once, twice and
more than twice.

Following Proposition III.2, the miss rate M̃r for the rth
most popular file is consequently given by

M̃r ∼ exp

(
−qr
δ̃

Θ̃

1− α
C̃

V

)
∼ exp

(
−
(
N

r

)α
Θ̃

)
for large N with δ̃ = C̃/(NV ) = O(1), where Θ̃ is the
solution to equation

Θ̃
1
α

α
Γ

(
− 1

α
; Θ̃

)
= 1− δ̃ +

VN
V

Θ̃

1− α
.

In the case presently considered (VN = 3.3 TB and
V = 105 TB), the value of Θ̃ solving Equation (19) is equal
to 0.0725. By using that value of Θ̃, we obtain an average
miss rate for the Pareto class equal to 57.3 %. On the other
hand, trace driven simulations give 114 026 hits among 266 386
requests for the Pareto class, that is, an average miss rate equal
to 57.2 %.

The fact that these numerical estimates are so close hides
two model limitations which balance each other. More specif-
ically, the model does not take into account the variation of
file sizes with the popularity, which leads to an overestimation
of the hit ratio, as argued in Appendix A. On the other hand,
some files are viewed in bursts for a limited period of time and
then disappear; they thus have a hit ratio close to 1, whereas
the model assumes that requests are randomly spread over the
observation period, and therefore predicts a lower hit ratio than
the actual one for these files.

Figure 5 displays the hit ratios of files ordered by their
popularity, and illustrates the two above-mentioned effects. It
clearly appears that these hit rates greatly vary, up to a ratio
close to 1 for those non-popular files which are requested in
bursts. We finally observe that a significant proportion of the
measured hit ratios lies below the approximation curve. This
may again be explained by the above-mentioned effect of the
file size variation. Estimate (18), nevertheless, provides the
global behavior for the file hit ratios and allows us to evaluate
the average hit ratio of Youtube files.



Fig. 5. Experimental hit ratios of files in Bordeaux ordered in decreasing
order of popularity and analytical approximation.

V. CONCLUSION

By using data from the Orange IP backbone network in
France, we have reported statistics for YouTube traffic in
a commercial environment. While YouTube traffic is highly
volatile with a large number of files viewed only once, there is
a subset of files which are massively viewed by end users and
consequently worth caching in the network. By caching those
files, significant resource savings can be achieved; in fact, a
cache located at the Bordeaux Point of Presence (PoP) of the
operator with a limited storage capacity of 1 TB achieves a
byte hit ratio of about 75 %.

On the basis of the above observations, we have developed
an analytical model which extends the ones considered so far
in the literature in the sense that a “noisy” traffic component
has been here included. Besides the noisy component, the
popularity curve of files can be approximated by a truncated
Pareto function with shape parameter α < 1; this enables us
to obtain estimates for file hit ratios.

Our model gives a good estimate for the average hit
ratios, although it has some inherent limitations. On the one
hand, it does not account for the correlation between file
size and file popularity. On the other hand, it ignores the
correlated dynamics of file requests. These two aspects, which
compensate each other, will be investigated in forthcoming
studies.

APPENDIX

A. Impact of file size variation on the hit ratio

Denote by X (resp. X̃) the (random) number of files
present in a cache with capacity C files (resp. with capacity
C̃ bytes). In our model, we assume that all files (except noise
files, which we ignore for simplicity in this discussion) have
an identical size V in bytes; the associated average hit ratio m
thus corresponds to that of a cache with capacity C = C̃/V
files, and we have X = C = C̃/V .

On the other hand, the simulation uses actual traces, where
file r has a specific size Vr. Denoting by Ṽ the (random)
mean size of a file stored in the cache, we have by definition
Ṽ = C̃/X̃ , hence E[X̃] = C̃E[1/Ṽ ] ≈ C̃/E[Ṽ ], where the
expectation is taken w.r.t. the cache population. But, if the
most popular files are in average larger in size than the other
files, we have E[Ṽ ] > V and consequently E[X̃] < X . This
amounts to claim that the hit ratio estimated by our model
can be considered as an upper bound of the actual hit ratio
measured by the simulation.

B. Proof of Proposition III.1

We here detail the proof of Proposition III.1. We first solve
equation (5) for T , that is, q(T ) = C with large C. Estimating
the finite sum in (4) by an integral, we obtain

q(T ) =
∑
r≥1

(1− e−ΛqrT ) + ΛNT

∼
∫ N

1

[
1− exp

(
−ΛANT

xα

)]
dx+ ΛNT

=
(ΛANT )

1
α

α

∫ ΛANT

ΛANT

Nα

(1− e−u)
du

u1+ 1
α

+ ΛNT. (23)

As

1

AN
=

N∑
r=1

r−α ∼ N1−α

1− α

tends to infinity for increasing N , the lower and upper bounds
in the latter integral are evaluated as

ΛANT

Nα
∼ (1− α)

ΛT

N
, ΛANT ∼ (1− α)

ΛT

N1−α .

Define Θ = (1− α)ΛT/N ; estimate (23) for q(T ) then reads

q(T ) ∼ Θ
1
α
N

α

∫ ΘNα

Θ

(1− e−u)
du

u1+ 1
α

+ ΛNT

∼ Θ
1
α

αδ
C

∫ +∞

Θ

(1− e−u)
du

u1+ 1
α

+ ΛNT (24)

where C = δN on account of scaling condition (8).

It follows that (5) is verified when T = O(N) = O(C),
so that Θ = O(1) and q(T ) = O(C) by (24);the last integral
in (24) further reduces to∫ +∞

Θ

(1− e−u)
du

u1+ 1
α

= α

[
1

Θ
1
α

− 1

α
Γ

(
− 1

α
; Θ

)]
.

From the above evaluation, equation (5) then reduces to

C · Θ
1
α

αδ

[
α

Θ
1
α

− Γ

(
− 1

α
; Θ

)]
+

ΛN
Λ(1− α)

C

δ
Θ = C (25)

that is, equation (11).



We now show that equation (11) has actually a unique
positive solution Θ. Let r = 1/α for short and define

fr(θ) = rθrΓ(−r, θ)

for θ > 0 so that equation (11) reads

fr(Θ) = 1− δ + pΘ (26)

with p = ΛN /Λ(1−α). It is easily verified that function fr is
continuous and decreasing from fr(0) = 1 to fr(+∞) = 0
(in fact, dfr(θ)/dθ = −rθr−1Γ(1 − r, θ) < 0 for any
θ > 0). In the (O, θ, ξ) positive quadrant, the curve ξ = fr(θ)
therefore meets the line ξ = 1− δ + pθ exactly once at some
positive abscissa θ = Θ > 0, given 0 < δ < 1 and p > 0.
Equation (26), or equivalently (11), has therefore a unique
positive solution Θ. By general asymptotic (6), estimate (10)
for Mr then follows.

Besides, definition (2) for MP and the latter estimate for
Mr give

MP =
∑
r≥1

qrMr ∼
N∑
r=1

AN
rα

e−Jα/r
α

∼ AN
∫ N

1

e−Jα/x
α dx

xα

where we have approximated the Riemann sum by the associ-
ated integral and with

Jα = ΛANT =
ΘC

δ(1− α)
AN ∼

ΘCα

δα
.

The variable change u = Jα/x
α in the latter integral and the

fact that Jα ↑ +∞ when C ↑ +∞ provide final estimate (12)
for miss probability MP �

We depict in Fig.6 the variations of function f1/α and the
corresponding abscissas Θ and η (the latter corresponding to
ΛN = 0); the graph also suggests that these abscissas are
decreasing functions of parameter α < 1.

Fig. 6. Graph of function f1/α for Zipf parameters α = 0.5 (blue) and
α = 0.9 (red). For α = 0.9, intersections with horizontal line ξ = 1 − δ
(case ΛN = 0) and ξ = 1− δ + pθ (case ΛN 6= 0) are indicated.
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