Devoir Surveillé n°2 : Corrigé

PCSI 2 Lycée Pasteur

Samedi 6 Octobre 2007

Exercice 1

Le but de l'exercice est d'étudier la fonction $f: x \mapsto x^2 \ln \left| 1 + \frac{1}{x} \right|$.

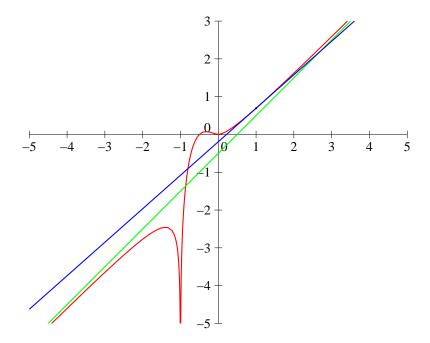
- 1. La fonction f n'est manifestement pas définie quand x=0, mais il faut aussi avoir $\left|1+\frac{1}{x}\right|>0$, c'est-à-dire $1+\frac{1}{x}\neq 0$, soit $x\neq -1$, donc $\mathcal{D}_f=\mathbb{R}\setminus\{-1;0\}$.
- 2. En -1 (que ce soit à gauche ou à droite, le ln tend vers $-\infty$, et le x^2 vers 1, donc $\lim_{x \to -1} f(x) = -\infty$. En $\pm \infty$, on a $f(x) = x \times x \ln\left(1 \pm \frac{1}{x}\right)$, avec $\frac{1}{x}$ qui tend vers 0. D'après le résultat donné dans l'énoncé, on a donc $\lim_{x \to \pm \infty} x \ln\left|1 + \frac{1}{x}\right| = \pm 1$, et donc $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Enfin, quand $x \to 0$, $f(x) = x^2 \ln(x+1) x^2 \ln x$, donc par croissance comparée $\lim_{x \to 0} f(x) = 0$, ce qui permet effectivement de prolonger f par continuité en posant f(0) = 0.
- 3. Sur $\mathbb{R}\setminus\{-1;0\}$, f est dérivable comme produit et composée de fonctions dérivables (la valeur absolue ne s'annule pas sur cet ensemble). En 0, il faut étudier la limite de $\frac{f(x)}{x}$. Or, au voisinage de 0, ce taux d'accroissement vaut $x \ln(x+1) x \ln x$, qui tend cers 0. La fonction f (ou plutôt son prolongement) est donc dérivable en 0, et f'(0) = 0.
- 4. Il faut faire très attention avec les valeurs absolues, et distinguer deux cas : si $x \in]-1;0[$, on a $f(x)=x^2\ln\left(-1-\frac{1}{x}\right),$ donc $f'(x)=2x\ln\left(-1-\frac{1}{x}\right)+\frac{1}{-1-\frac{1}{x}}=x\left(2\ln\left(-1-\frac{1}{x}\right)-\frac{1}{x+1}\right)$. Le signe de la parenthèse, qu'on va appeler $g_1(x)$ n'a rien d'évident, il faut courageusement la dériver à nouveau, on obtient $g'_1(x)=\frac{2}{x^2}\frac{-x}{x+1}+\frac{1}{(x+1)^2}=\frac{-x-2}{x(x+1)^2}$. La fonction g_1 est donc croissante sur]-1;0[. Comme g_1 apour limite $+\infty$ en 0^- et $-\infty$ en -1^+ (par croissance comparée), elle s'annule en une valeur $\alpha\in]-1;0[$. Après mulitplication par x, on constate que f' est positive, donc f croissante, sur $]-1;\alpha[$, et négative, donc f décroissante, sur $[\alpha;0[$.

Sur les intervalles restants, $f(x) = x^2 \ln \left(1 + \frac{1}{x}\right)$. On obtient similairement $f'(x) = xg_2(x)$, avec $g_2(x) = 2 \ln \left(1 + \frac{1}{x}\right) - \frac{1}{x+1}$. Cette fonction g_2 a la même dérivée que g_1 , qui s'annule en -2. Comme g_2 a pour limite 0 en $\pm \infty$, et $+\infty$ en -1^- , elle s'annule une fois entre -2 et -1, en un réel qu'on notera β . On en déduit que f' est strictement croissante sur $]0; +\infty[$ et sur $]-\infty;\beta[$, et décroissante sur $[\beta;-1[$. On en déduit le tableau de variations suivant :

1

x	$-\infty$ β		-1			α		0		$+\infty$
f'(x)	-1 +	0 –	$-\infty$	$-\infty$ +	0	_	0	+	1	
f(x)	$-\infty$	f(eta)	∞ $-\infty$	$-\infty$	/	$f(\alpha)_{\sim}$				$r+\infty$

- 5. On a $\frac{f(x)}{x} = x \ln \left| 1 + \frac{1}{x} \right| = \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}}$ quand x > 0. Quand $x \to +\infty$, $\frac{1}{x}$ tend vers 0, done cette limite vaut 1.
- 6. Pour savoir s'il y a une asymptote oblique en $+\infty$, il faut calculer la limite de f(x)-x. D'après l'indication donnée, on a quand x est proche de $+\infty$, $f(x)=x^2\left(\frac{1}{x}-\frac{1}{2x^2}+\frac{1}{3x^3}+\frac{1}{x^3}\varepsilon\left(\frac{1}{x^3}\right)\right)$, donc $f(x)-x=-\frac{1}{2}+z$, avec z ayant pour limite 0. Il y a donc une asymptote oblique d'équation $y=x-\frac{1}{2}$ en $+\infty$. De même, on prouve (les calculs sont les mêmes), qu'en $-\infty$, $\frac{f(x)}{x}$ tend vers 1, et f(x)-x vers $-\frac{1}{2}$, donc l'asymptote est également valable en $-\infty$.
- 7. On a $f(1) = \ln 2$ et $f'(1) = 2 \ln 2 \frac{1}{2}$, donc la tangente à la courbe au point d'abscisse 1 a pour équation $y = (2 \ln 2 \frac{1}{2})(x 1) + \ln 2 = (2 \ln 2 \frac{1}{2})x + \frac{1}{2} \ln 2$.
- 8. En voilà une jolie, avec l'asymptote oblique en vert, et la tangente en 1 en bleu :



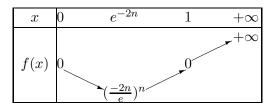
Exercice 2

Pour tout entier $n \in \mathbb{N}^*$, on définit la fonction f_n sur \mathbb{R}_+^* par $x \mapsto \sqrt{x}(\ln x)^n$ et on note \mathcal{C}_n sa courbe représentative.

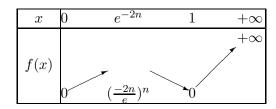
1. Les fonctions f_n sont continues et dérivables sur \mathbb{R}_+^* comme produits de fonctions continues et dérivables. Par croissance comparée, $\lim_{x\to 0^+} f_n(x) = 0$, on peut donc prolonger les fonctions f_n par continuité sur \mathbb{R}_+ en posant $f_n(0) = 0$. On a par ailleurs $\lim_{x\to +\infty} f_n(x) = +\infty$. De plus,

en $+\infty$, on a $\lim_{x\to+\infty} \frac{f_n(x)}{x} = 0$, donc les courbes \mathcal{C}_n admettent une branche parabolique de direction (0x). Le prolongement de f_n à \mathbb{R}_+ n'est pas dérivable en 0, car on a $\lim_{x\to 0^+} \frac{f(x)}{x} = \pm \infty$ (le signe dépend de la parité de n). La courbe y admet donc une demi-tangente verticale.

Restent enfin à étudier les variations de ces fonctions. On a $f'_n(x) = \frac{(\ln x)^n}{2\sqrt{x}} + \frac{n}{x}\sqrt{x}(\ln x)^{n-1} = \frac{(\ln x)^{n-1}}{2\sqrt{x}}(2n+\ln x)$. La dérivée s'annule donc en 1 (sauf pour n=1), et f(1)=0 et en e^{-2n} (et $f(e^{-2n})=e^{-n}(-2n)^n=(\frac{-2n}{e})^n$), et son signe dépend de la parité de n: si n est impair, la dérivée ne change pas de signe en 1, mais si n est pair, si. On a donc pour n impair:



Si n est pair, on obtient :

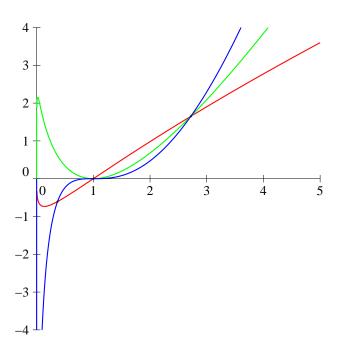


2. Encore un calcul peu subtil : $f_{n+1}(x) - f_n(x) = \sqrt{x}(\ln x)^n(\ln x - 1)$. Encore une fois, le signe dépend de la parité de n. Si n est impair, cette quantité est négative pour $1 \le x \le e$ (on a alors \mathcal{C}_{n+1} en-dessous de \mathcal{C}_n), et positive sinon (on a alors \mathcal{C}_{n+1} en-dessous de \mathcal{C}_n). Si n est pair, \mathcal{C}_{n+1} est en-dessous de \mathcal{C}_n si $x \le e$, et au-dessus ensuite.

De même, $f_{n+2}(x) - f_n(x) = \sqrt{x}(\ln x)^n(\ln^2 x - 1)$. Cette fois-ci il y a annulation en 1, e et $\frac{1}{e}$. Si n est impair, C_{n+2} est en-dessous de C_n si $x \leq \frac{1}{e}$ ou si $1 \leq x \leq e$, et au-dessus sinon; si n est pair, C_{n+2} est en-dessous de C_n si $1 \leq x \leq e$, au-dessus sinon.

Dans tous les cas, les courbes se coupent en deux points (1,0) et (e,\sqrt{e}) .

3. Un peu de couleur pour aider : \mathcal{C}_1 en rouge, \mathcal{C}_2 en vert et \mathcal{C}_3 en bleu.

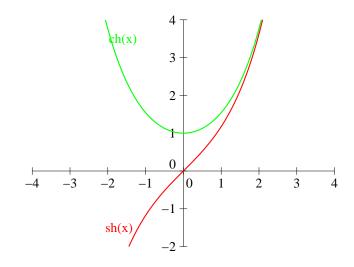


- 4. La fonction f_n est strictement croissante et continue sur $[1; +\infty[$, elle y est donc bijective vers son intervalle image $[0; +\infty[$. En particulier, elle y atteint exactement une fois la valeur 1. Notons α_n l'unique antécédent de 1 par f_n . Comme f(1) < 1 < f(e), on a $1 < \alpha_n < e$ (f étant croissante, la réciproque de sa restriction à $[1: +\infty[$ l'est aussi).
- 5. On a vu plus haut que sur]1; e[, C_n est toujours au-dessus de C_{n+1} , donc $f_{n+1}(\alpha_n) < f_n(\alpha_n) = 1$. On a donc $f_{n+1}(\alpha_n) < f_{n+1}(\alpha_{n+1})$, et on déduit (comme à la question précédente) que (α_n) est croissante. Soit x < e, on a alors $\ln x < 1$, donc $\lim_{n \to +\infty} (\ln x)^n = 0$, et il existe un entier n_0 pour lequel $\sqrt{x}(\ln x)^{n_0} < 1$ (puisque \sqrt{x} est une constante), c'est-à-dire $f_{n_0}(x) < 1$. On a alors $x < \alpha_{n_0}$, et donc $\forall n \geq n_0, x < \alpha_n < e$. Comme ceci est vrai quelque soit x < e, on peut donc rendre α_n aussi proche de e qu'on le souhaite quitte à rendre n assez grand. La suite α_n a donc pour limite e.

Problème

Quelques résultats sur les fonctions hyperboliques.

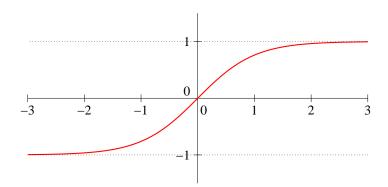
1. On a ch $x = \frac{e^x + e^{-x}}{2}$ et sh $x = \frac{e^x - e^{-x}}{2}$, les courbes sont les suivantes :



- 2. C'est un simple calcul: $\operatorname{ch}^2 x \operatorname{sh}^2 x = \frac{1}{4}((e^x + e^{-x})^2 + (e^x + e^{-x})^2) = \frac{1}{4}(e^{2x} + e^{-2x} + 2 e^{2x} e^{-2x} + 2) = 1$; et ch $x \operatorname{sh} x = \frac{e^x + e^{-x} e^x + e^{-x}}{2} = e^{-x}$.
- 3. D'après ce qui précède, $\operatorname{ch}(x+y) \operatorname{sh}(x+y) = e^{-(x+y)}$, et $(\operatorname{sh} x \operatorname{ch} x)(\operatorname{sh} x \operatorname{ch} y) = e^{-x}e^{-y} = e^{-x-y}$, donx les deux quantités sont bien égales. Mais on a de même, pour tout réel x, $\operatorname{ch} x + \operatorname{sh} x = e^x$, la deuxième formule en découle.

Reste à faire la demi-somme et la demi-différence des deux pour obtenir $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x + \operatorname{sh} y$ et $\operatorname{sh}(x+y) = \operatorname{ch} x \operatorname{sh} y + \operatorname{sh} x + \operatorname{ch} x \operatorname{sh} y$.

4. On a th $x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Sa courbe est la suivante :



Sa dérivée vaut $\frac{(e^x + e^{-x})^2 + (e^x - e^{-x})^2}{(e^x + e^{-x})^2} = 1 - \text{th}^2 x$. La fonction the est donc strictement croissante sur \mathbb{R} , elle est bijective vers son intervalle image]-1;1[.

- 5. En effet, en utilisant les formules démontrées plus haut pour sh et ch, $\operatorname{th}(x+y) = \frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x+y)} = \frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x+y) + \operatorname{sh}(x+y)} = \frac{\frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x+y)}}{1 + \frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x+y)}} = \frac{\operatorname{th}(x+t)}{1 + \operatorname{th}(x+t)}.$
- 6. La fonction th étant impaire, sa réciproque l'est aussi, et $Argth'(y) = \frac{1}{th'(Argth(y))} = \frac{1}{(1+th^2)(Argth(y))} = \frac{1}{1-y^2}$.

Quelques propriétés supplémentaires de la fonction Argth.

- 1. On a donc $x = \text{th } y = \frac{e^y e^{-y}}{e^y + e^{-y}}$, d'où $xe^y + xe^{-y} = e^y e^{-y}$, soit $e^{-y}(x+1) = e^y(1-x)$, donc $e^{2y} = \frac{1+x}{1-x}$.
- 2. Comme tout est positif dans l'égalité précédente, on peut prendre le $\ln : 2y = \ln \frac{1+x}{1-x}$, donc Argth $x = \frac{1}{2} \ln \frac{1+x}{1-x}$. Ceci se dérive facilement : $\operatorname{Argth}'(x) = \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) = \frac{1}{2} \frac{1-x+1+x}{1-x^2} = \frac{1}{1-x^2}.$
- 3. (a) Pour que f soit définie, il faut avoir $0 \le \frac{\operatorname{ch} x 1}{\operatorname{ch} x + 1} < 1$ (positif à cause de la racine, plus petit que 1 à cause de l'Argth). Or, $\forall x \in \mathbb{R}$, ch $x \ge 1$, donc le quotient est toujours positif, et inférieur à 1 (le numérateur est plus petit que le dénominateur), donc $\mathcal{D}_f = \mathbb{R}$.

(b) D'après ce qu'on a vu plus haut,
$$f(y) = \frac{1}{2} \ln \frac{1 + \sqrt{\frac{y-1}{y+1}}}{1 - \sqrt{\frac{y-1}{y+1}}} = \frac{1}{2} \ln \frac{\sqrt{y+1} + \sqrt{y-1}}{\sqrt{y+1} - \sqrt{y-1}} = \frac{1}{2} \ln \frac{y+1+y-1+2\sqrt{y^2-1}}{y+1-y+1} = \frac{1}{2} \ln(y+\sqrt{y^2-1}).$$

- (c) On a donc $f(x) = \frac{1}{2}\ln(\operatorname{ch} x + \sqrt{\operatorname{ch}^2 x 1})$. Or, $\sqrt{\operatorname{ch}^2 x + 1} = |\operatorname{sh} x| = \operatorname{sh}(|x|)$ (puisque sh est impaire). Mais ch étant paire, on a $\forall x \in \mathbb{R}$, ch $x = \operatorname{ch}(|x|)$. Finalement, $f(x) = \frac{1}{2}\ln(\operatorname{ch}|x| + \operatorname{sh}|x|) = \frac{1}{2}\ln(e^{|x|}) = \frac{|x|}{2}$.
- 4. Si $(x,y) \in I^2$, on a x = th a, et y = th b, pour deux réels a et b. Mais alors, d'après la première partie du problème, $\text{th}(a+b) = \frac{x+y}{1+xy}$, donc $\frac{x+y}{1+xy} \in I$ (la fonction th prend ses valeurs dans I), et par ailleurs, Argth $x + \text{Argth } y = a + b = \text{Argth} \frac{x+y}{1+xy}$.
- 5. (a) Pour tout entier k, $\frac{1}{k+1}$ et $\frac{1}{k+2}$ appartiennent à I, et Argth étant impaire, $-\operatorname{Argth} \frac{1}{k+2} = \operatorname{Argth} \frac{-1}{k+2}$. On peut donc appliquer la formule précédente : $\operatorname{Argth} \frac{1}{k+1} \operatorname{Argth} \frac{1}{k+2} = \operatorname{Argth} \frac{\frac{1}{k+1} \frac{1}{k+2}}{1 \frac{1}{(k+1)k+2)}} = \operatorname{Argth} \frac{k+2-k-1}{k^2+3k+2-1} = \operatorname{Argth} \frac{1}{k^2+3k+2}$.
 - (b) La somme S_n est télescopique, on obtient sans difficulté $S_n = \operatorname{Argth} \frac{1}{2} \operatorname{Argth} \frac{1}{n+2}$.
 - (c) Quand $n \to +\infty$, $\frac{1}{n+2} \to 0$. La fonction Argth étant continue et valant 0 en 0, $\operatorname{Argth} \frac{1}{n+2}$ tend vers 0 et $\lim_{n \to +\infty} S_n = \operatorname{Argth} \frac{1}{2} = \frac{\ln 3}{2}$.

Exercice 3

On s'intéresse à la fonction f définie sur \mathbb{R}^* par $f(x) = \sin(\pi x E(\frac{1}{x}))$, où E(x) est la fonction partie entière (E(x)) est le plus grand entier relatif inférieur ou égal à x).

Étudier le plus complètement possible la fonction f, en particulier ses limites, sa continuité, son caractère borné, et essayer d'en tracer une allure.