Devoir Surveillé n°2

PCSI 2 Lycée Pasteur

Samedi 6 Octobre 2007

Durée: 4 heures

Les calculatrices sont INTERDITES. Les questions ne sont pas nécessairement à traiter dans l'ordre, mais il doit être clair que le résultat d'une question non traitée est admis s'il est utilisé dans la suite de la copie. Pensez à soigner votre rédaction. Bon courage.

Exercice 1

Le but de l'exercice est d'étudier la fonction $f: x \mapsto x^2 \ln \left| 1 + \frac{1}{x} \right|$.

- 1. Déterminer le domaine de définition de f.
- 2. Étudier les limites de f aux bornes de ce domaine et montrer qu'on peut prolonger f en une fonction continue en 0 (no notera toujours f ce prolongement).
- 3. Étudier la dérivabilité de f sur son ensemble de définition (y compris en 0).
- 4. Calculer la dérivée de f, ainsi que ses limites, et en déduire le tableau de variations de f.
- 5. Calculer la limite quand x tend vers $+\infty$ de $\frac{f(x)}{x}$. On note désormais a cette limite.
- 6. On admet pour cette question que, quand x est proche de 0, $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x)$, où ε est une fonction de limite nulle en 0. Étudier les branches infinies de f.
- 7. Déterminer l'équation de la tangente à la courbe représentative de f en son point d'abscisse 1.
- 8. Tracer une courbe représentative soignée de C_f .

Exercice 2

Pour tout entier $n \in \mathbb{N}^*$, on définit la fonction f_n sur \mathbb{R}_+^* par $x \mapsto \sqrt{x}(\ln x)^n$ et on note \mathcal{C}_n sa courbe représentative.

- 1. Étudier les fonctions f_n (limites, branches paraboliques, variations).
- 2. Étudier le signe de $f_{n+1} f_n$ et de $f_{n+2} f_n$ et en déduire les points d'intersection et les positions relatives de C_n , C_{n+1} et C_{n+2} .
- 3. Tracer sommairement dans un même repère les courbes C_1 , C_2 et C_3 .
- 4. Montrer que, $\forall n \in \mathbb{N}^*$, l'équation $f_n(x) = 1$ a une unique solution supérieure ou égale à 1, que l'on notera α_n , et que cette solution appartient à]1; e[.
- 5. Montrer que la suite (α_n) est croissante et déterminer sa limite quand n tend vers $+\infty$.

Problème

Quelques résultats sur les fonctions hyperboliques.

Cette partie est constituée essentiellement de questions de cours, qui doivent être redémontrées complètement.

- 1. Rappeler la définition et l'allure des courbes représentatives des fonctions sh et ch.
- 2. Démontrer que $\forall x \in \mathbb{R}$, $\operatorname{ch}^2 x \operatorname{sh}^2 x = 1$, et $e^{-x} = \operatorname{ch} x \operatorname{sh} x$.
- 3. Démontrer les formules ch (x+y)+sh (x+y)= (ch x+shx)(ch y+sh y) et ch (x+y)-sh (x+y)= (ch x-sh x)(ch y-sh y). En déduire des formules pour ch (x+y) et sh (x+y).
- 4. Rappeler la définition de la fonction th, l'allure de sa courbe, calculer sa dérivée et en déduire qu'elle est bijective vers un intervalle I à préciser.
- 5. Montrer que, $\forall (x,y) \in \mathbb{R}^2$, th $(x+y) = \frac{\text{th } x + \text{th } y}{1 + \text{th } x \text{ th } y}$.
- 6. Démontrer que la réciproque Argth de la fonction the est impaire, et calculer sa dérivée.

Quelques propriétés supplémentaires de la fonction Argth.

Les différentes questions de cette partie sont essentiellement indépendantes.

- 1. Soit $x \in I$ et y = Argth x. Montrer que $e^{2y} = \frac{1+x}{1-x}$.
- 2. En déduire une expression de Argth à l'aide de la fonction ln, et retrouver sa dérivée à l'aide de cette nouvelle expression.
- 3. On considère désormais la fonction $f: x \mapsto \operatorname{Argth}\left(\sqrt{\frac{\operatorname{ch}\ x-1}{\operatorname{ch}\ x+1}}\right)$.
- 4. (a) Déterminer le domaine de définition de f.
 - (b) On pose $y = \operatorname{ch} x$. Montrer que $t(x) = \frac{1}{2} \ln(y + \sqrt{y^2 1})$.
 - (c) En déduire que $t(x) = \frac{|x|}{2}$.
- 5. Montrer que, si $(x,y) \in I^2$, alors $\frac{x+y}{1+xy} \in I$, et en déduire que Argth x+ Argth y= Argth $\frac{x+y}{1+xy}$.
- 6. (a) Montrer que $\forall k \in \mathbb{N}$, $\operatorname{Argth} \frac{1}{k^2 + 3k + 1} = \operatorname{Argth} \frac{1}{k + 1} \operatorname{Argth} \frac{1}{k + 2}$.
 - (b) On note $S_n = \sum_{k=1}^n \operatorname{Argth} \frac{1}{k^2 + 3k + 1}$. Obtenir une formule simple pour S_n .
 - (c) En déduire la limite de S_n quand n tend vers $+\infty$.

Exercice 3

On s'intéresse à la fonction f définie sur \mathbb{R}^* par $f(x) = \sin(\pi x E(\frac{1}{x}))$, où E(x) est la fonction partie entière (E(x)) est le plus grand entier relatif inférieur ou égal à x).

Étudier le plus complètement possible la fonction f, en particulier ses limites, sa continuité, son caractère borné, et essayer d'en tracer une allure.

2