Feuille d'exercices n° 7 : Nombres Complexes

MPSI Lycée Camille Jullian

18 novembre 2025

Exercice 1 (*)

Écrire chacun des nombres complexes suivants sous forme algébrique et/ou exponentielle.

Exercice 2 (**)

Pour chacun des problèmes indépendants suivants, on essaiera de faire deux résolutions : l'une par le calcul, l'autre géométrique.

- 1. Déterminer les valeurs de z pour lesquelles $z, \frac{1}{z}$ et 1-z ont même module.
- 2. Déterminer les valeurs de z pour lesquelles z, z^2 et z^4 ont des images alignées dans le plan complexe.
- 3. Trouver tous les nombres complexes z vérifiant |z| = |z 4| et $\arg(z) = \arg(z + 1 + i)$.
- 4. Trouver tous les nombres complexes z pour lequels les images de z, i et iz forment un triangle équilatéral dans le plan complexe.
- 5. Montrer que, $\forall z \in \mathbb{C}, |z-1-i| \leq 1 \Rightarrow \sqrt{10} 1 \leq |z-4| \leq \sqrt{10} + 1$

Exercice 3 (* à ***)

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 - 2z + 5 = 0$$

2.
$$iz^2 + (2-3i)z + 5i - 5 = 0$$

3.
$$2z^2 + iz + 1 - i = 0$$

$$4. \ z^2 = -\overline{z}^2$$

5.
$$z^4 - 2\cos(\theta)z^2 + 1 = 0$$

6.
$$3z^2 - 5|z^2| + 2 = 0$$

7.
$$z^4 = 24i - 7$$

8.
$$\overline{z} = z^n$$

9.
$$4iz^3 + 2(1+3i)z^2 - (5+4i)z + 3(1-7i) = 0$$
 (cette équation admet une racine réelle)

1

10.
$$z^4 - z^3 + z^2 - z + 1 = 0$$

11.
$$\left(\frac{1+iz}{1-iz}\right)^3 = \frac{1+i\tan(\alpha)}{1-i\tan(\alpha)}$$

Exercice 4 (**)

Résoudre les systèmes suivants :

1.
$$\begin{cases} x^3 - 3xy^2 = 1\\ 3x^2y - y^3 = \frac{\sqrt{3}}{3} \end{cases}$$
 avec $(x,y) \in \mathbb{R}^2$.
2.
$$\begin{cases} x + y + z = a\\ x + jy + j^2z = b\\ x + j^2y + jz = c \end{cases}$$

3.
$$\begin{cases} x^2y + xy^2 = 6\\ x^3 + y^3 = 9 \end{cases}$$

Exercice 5 (**)

On considère l'équation $(z+1)^5 = (z-1)^5$.

- 1. Résoudre cette équation de façon bourrine en développant tout.
- 2. Résoudre cette même équation de façon subtile en utilisant les racines cinquièmes de l'unité.
- 3. En comparant les deux résultats obtenus, déterminer une valeur exacte de $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$.

Exercice 6 (**)

Si p et q sont deux entiers naturels distincts, à quoi ressemble $\mathbb{U}_p \cap \mathbb{U}_q$?

Exercice 7 (*)

Linéariser les expressions suivantes : $\cos^6(x)$; $\sin^2(x)\cos^3(x)$; $\cos(x)\sin^5(x)$.

Exprimer $\cos(5x)\sin^2(3x)$ en fonction de puissances de $\cos(x)$; exprimer $\sin(2x) + \sin(4x) + \sin(6x) + \sin(8x)$ en fonction de $\cos(x)$ et $\sin(x)$.

Exercice 8 (**)

Calculer les sommes suivantes :

1.
$$S_n = \sum_{k=0}^n \binom{n}{k} \cos(kx)$$
 et $T_n = \sum_{k=0}^n \binom{n}{k} \sin(kx)$

$$2. \ U_n = \sum_{k=0}^n \frac{\cos(kx)}{\cos^k(x)}.$$

Exercice 9 (**)

Soit z = a + ib un nombre complexe de module 1. On note alors $f(z) = \left| 1 - z + \frac{z^2}{2} \right|$.

- 1. Calculer f(z) lorsque z=i, puis lorsque $z=e^{i\frac{\pi}{3}}$.
- 2. Expliquer pourquoi on a nécessairement $0 \le f(z) \le \frac{5}{2}$.
- 3. Rappeler quelle relation relie a et b lorsque z est de module 1. En déduire une expression de Re (z^2) en fonction de a uniquement.

2

- 4. Déterminer un polynôme du second degré P tel que $f(z)^2 = P(a)$ (en notant toujours a la partie réelle de z).
- 5. Étudier la fonction f, et en déduire son maximum et son minimum sur l'intervalle [-1,1].
- 6. En déduire un encadrement de f(z) meilleur que celui de la question 2. Les bornes de ce nouvel encadrement peuvent-elles être atteintes?

Exercice 10 (* à **)

Démontrer les propriétés suivantes (questions indépendantes) :

- 1. Pour tous nombres complexes u et v, $|u+v|^2+|u-v|^2=2(|u|^2+|v|^2)$ (identité du parallélogramme).
- 2. Si |u| = |v| = 1 et $uv \neq -1$, alors $\frac{u+v}{1+uv} \in \mathbb{R}$.
- 3. Si |z|=1, on a soit $|1+z|\geqslant 1$, soit $|1+z^2|\geqslant 1$. Peut-on avoir les deux simultanément?

Exercice 11 (**)

Soient z_1 et z_2 deux nombres complexes.

- 1. Montrer que $|z_1| + |z_2| \le |z_1 + z_2| + |z_1 z_2|$ (on essaiera d'additionner deux inégalités triangulaires bien choisies).
- 2. Interpréter géométriquement cette inégalité (une histoire de parallélogramme).
- 3. Donner une condition nécessaire et suffisante pour que cette inégalité soit une égalité.

Exercice 12 (**)

Soient trois réels x, y et z tels que $e^{ix} + e^{iy} + e^{iz} = 0$. On souhaite montrer que $e^{2ix} + e^{2iy} + e^{2iz} = 0$.

- 1. Première méthode : en posant $a = e^{ix}$, $b = e^{iy}$ et $c = e^{iz}$, calculer $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ et conclure.
- 2. Deuxième méthode : en partant de $|e^{ix}+e^{iy}|=1$, montrer que $y\equiv x+\frac{2\pi}{3}[2\pi]$ et $z\equiv x-\frac{2\pi}{3}[2\pi]$ (quitte à échanger le rôle de y et de z) et conclure.

Exercice 13 (**)

Déterminer $\sup_{|z| \le 1} |z^3 + 2iz|$.

Exercice 14 (* à **)

Donner toutes les formes possibles de l'équation des cercles suivants (forme complexe factorisée |z-a|=r; forme complexe développée $z\overline{z}-\overline{a}z-a\overline{z}+b=0$; forme cartésienne factorisée $(x-a)^2+(y-b)^2=r^2$; et forme cartésienne développée $x^2+y^2+ax+by+c=0$). Préciser si nécessaire le centre et le rayon du cercle.

- cercle de centre A(2-i) et de rayon 3
- cercle de diamètre [AB], avec A(-1+2i) et B(3+4i)
- cercle d'équation complexe développée $z\overline{z} + iz i\overline{z} 3 = 0$
- cercle d'équation cartésienne développée $x^2 + y^2 2x 3y + 9 = 0$
- cercle passant par les points A(1-i), B(-1-i) et C(5i)
- cercle tangent aux axes réel et imaginaire, et passant par le point A(6+7i)

Exercice 15 (**)

On considère les quatre points A(9+3i), B(6+10i), C(-4+14i) et D(-11+11i). Ces points sont-ils cocycliques?

Exercice 16 (* à ***)

On considère dans le plan complexe les points A(-3+i); B(1-2i); C(1+3i) et D(2+2i). Déterminer l'affixe de chacun des objets géométriques suivants :

- 1. milieu du segment [BC]
- 2. vecteur $\overrightarrow{AB} 2\overrightarrow{AC}$
- 3. point d'intersection des droites (AC) et (BD)
- 4. vecteur directeur (normé) de la droite (CD), vecteur normal (normé) à la droite (AB)
- 5. points d'intersection du cercle de diamètre [AD] et de la droite (BC)
- 6. centre de gravité, orthocentre, centres des cercles inscrit et circonscrit du triangle ABD

Exercice 17 (* à **)

Déterminer l'écriture complexe de chacune des transformations géométriques suivantes.

- translation de vecteur $\overrightarrow{u}(3-2i)$
- rotation de centre O et d'angle $\frac{2\pi}{3}$
- rotation de centre A(1-2i) et d'angle $\frac{\pi}{2}$
- ullet symétrie par rapport à la droite d'équation cartésienne y=x
- symétrie par rapport au point B(3i)
- homothétie de rapport $\frac{1}{2}$ et de centre C(-2+i)• composée de ces deux dernières transformations

Inversement, caractériser géométriquement chacune des applications complexes suivantes.

- $f(z) = \overline{z} 3$
- f(z) = (1-i)z + 2i 1
- $f(z) = 2\overline{z}$
- $\bullet \ f(z) = 3z 4i + 2$
- $f(z) = \frac{z + \overline{z}}{2}$

Exercice 18 (**)

On considère l'application du plan complexe dans lui-même $f: z \mapsto z^2 + z + 1$.

- 1. Déterminer les images par f des nombres 1, 2i-5 et $e^{i\frac{\pi}{4}}$.
- 2. Déterminer les antécedents par f de 1+i.
- 3. Déterminer les nombres complexes invariants par f.
- 4. Déterminer l'ensemble des nombres complexes ayant une image réelle par f.
- 5. Déterminer le lieu des points M alignés avec leur image par f et avec 1.

Exercice 19 (**)

On considère l'application $f: z \mapsto \frac{z^2}{z-2i}$.

- 1. Déterminer les antécédents éventuels de 1+i par f.
- 2. Pour un nombre complexe w quelconque, déterminer suivant la valeur de w son nombre d'antécédents par f.
- 3. L'application f est-elle surjective? Est-elle injective sur son ensemble de définition?

4

Exercice 20 (**)

On considère l'application $f: z \mapsto \frac{z+1}{z-2}$, et on note $A = \mathbb{C} \setminus \{2\}$ et $B = \mathbb{C} \setminus \{1\}$.

- 1. Montrer que f réalise une bijection de A vers B. Déterminer une expression simple de sa réciproque f^{-1} .
- 2. Déterminer l'image réciproque de \mathbb{U} (c'est-à-dire l'ensemble des z tels que $f(z) \in \mathbb{U}$) et celle du disque unité $\{z \in \mathbb{C} \mid |z| \leq 1\}$.
- 3. Déterminer les nombres complexes $z \in \mathbb{U}$ tels que $f(z) \in \mathbb{U}$.
- 4. Quel est l'ensemble de définition de l'application $f \circ f$? Est-elle également bijective, et si oui, vers quel ensemble?

Exercice 21 (***)

On considère dans cet exercice l'application définie sur \mathbb{C}^* par $f(z) = \frac{1}{z}$.

- 1. Montrer que f est bijective de \mathbb{C}^* dans lui-même, et déterminer son application réciproque f^{-1} .
- 2. Déterminer les nombres complexes z pour lesquels Re (f(z)) > 0. Interpréter géométriquement le résultat obtenu.
- 3. Montrer sur un exemple que l'application f ne conserve pas les milieux (autrement dit que l'image par f du milieu d'un segment [AB] n'est pas toujours le milieu du segment [f(A)f(B)]).
- 4. Déterminer l'image par f de l'axe réel et de l'axe imaginaire.
- 5. Montrer plus généralement que l'image par f d'une droite passant par l'origine est toujours une droite passant par l'origine (mais privée du point O).
- 6. On considère désormais la droite passant par les points A(1) et B(i). Montrer que l'image de tout point de cette droite appartient à un cercle de centre $C\left(\frac{1-i}{2}\right)$. Réciproquement, déterminer les points de ce cercle ayant un antécédent par f sur la droite (AB).
- 7. Généraliser en déterminant l'image d'une droite quelconque du plan complexe (ne passant pas par l'origine).
- 8. Quelle est l'image par f d'un cercle passant par l'origine?
- 9. Déterminer l'image par f du cercle trigonométrique, puis plus généralement celle du cercle de centre O et de rayon r.
- 10. Déterminer enfin l'image d'un cercle ne passant pas par l'origine et n'étant pas centré en O.

Exercice 22 (****)

On souhaite colorier tout le plan complexe à l'aide de trois couleurs, par exemple le bleu, le rouge et le vert (qui revient en fait à définir une fonction ayant pour ensemble de départ \mathbb{C} et pour ensemble d'arrivée l'ensemble à trois éléments {bleu; rouge; vert}). Peut-on effectuer ce coloriage de façon à ce que deux points du plan complexe situés à distance 1 l'un de l'autre soient toujours de couleur différente?

Exercice 23 (***)

On définit dans cet exercice une application $f: \mathbb{C}^* \to \mathbb{C}$ par $f(z) = z + \frac{1}{z}$.

1. Calculer l'image par f des nombres suivants : $z=-i,\ z=1+i,\ z=e^{i\frac{2\pi}{3}}$ (on donnera à chaque fois le résultat sous forme algébrique).

- 2. Déterminer les antécédents éventuels du nombre i par l'application f.
- 3. L'application f est-elle injective? Surjective?
- 4. En posant z = a + ib déterminer en fonction de a et de b les parties réelle et imaginaire du nombre f(z).
- 5. Déterminer les nombres complexes z pour lesquels $f(z) \in \mathbb{R}$, et ceux pour lesquels $f(z) \in \mathbb{R}$ (on fera à chaque fois une interprétation géométrique du résultat).
- 6. On définit désormais une suite de fonctions g_n (sur \mathbb{C}) par récurrence de la façon suivante : $g_0(z) = 2, g_1(z) = z$ et $\forall n \in \mathbb{N}, g_{n+2}(z) = z \times g_{n+1}(z) g_n(z)$.
 - (a) Calculer une expression explicite de $g_2(z)$, de $g_3(z)$, puis de $g_4(z)$.
 - (b) Résoudre dans \mathbb{C} les équations $g_2(z) = 0$, $g_3(z) = 0$ puis $g_4(z) = 0$.
 - (c) Montrer que, $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}^*, g_n(f(z)) = f(z^n).$
 - (d) Résoudre l'équation $f(z^n) = 0$, et en déduire les solutions de l'équation $g_n(z) = 0$, en précisant le nombre de solutions de cette équation.
 - (e) Calculer la valeur de $g_n\left(\frac{5}{2}\right)$ (qu'on notera u_n pour les calculs) en utilisant la définition par récurrence des fonctions g_n , puis vérifier que le résultat obtenu est cohérent avec la formule prouvée à la question c.

Exercice 24 (***)

Le but de cet exercice est de calculer la somme $C_n = \sum_{k=0}^{n-1} (-1)^k \left(\cos\left(\frac{k\pi}{n}\right)\right)^n$, pour un entier

 $n \ge 2$. On utilisera pour cela les sommes $S_n = \sum_{k=0}^{n-1} \left(1 + e^{\frac{2ik\pi}{n}}\right)^n$, et $T_{n,p} = \sum_{k=0}^{n-1} e^{\frac{2ikp\pi}{n}}$, avec p un entier compris entre 0 et n.

- 1. Calculer la valeur de C_n pour n = 2, n = 3, n = 4 et n = 6.
- 2. Que vaut $T_{n,p}$ lorsque p = 0? Et lorsque p = n?
- 3. Rappeler la valeur de $T_{n,1}$ (normalement c'est du cours).
- 4. Démontrer par un calcul similaire que $T_{n,p} = 0$ pour tout entier p vérifiant $1 \le p \le n-1$.
- 5. (a) À l'aide de la formule du binôme de Newton, montrer que $S_n = \sum_{p=0}^n \binom{n}{p} T_{n,p}$.
 - (b) En déduire que $S_n = 2n$.
- 6. Justifier que $1 + e^{\frac{2ik\pi}{n}} = 2\cos\left(\frac{k\pi}{n}\right)e^{i\frac{k\pi}{n}}$.
- 7. Exploiter les résultats précédents pour démontrer que $C_n = \frac{n}{2^{n-1}}$.

Problème 1 : étude d'une application complexe (**)

On considère dans cet exercice l'application $f: \mathbb{C} \to \mathbb{C}$ définie par f(z) = 2z(1-z). On identifiera cette application à une application du plan muni d'un repère orthonormé dans lui-même, en notant, si M est l'image du nombre complexe z dans le plan, f(M) l'image du nombre complexe 2z(1-z)

- 1. (a) Déterminer les points invariants par f, c'est-à-dire les points M vérifiant f(M) = M.
 - (b) Déterminer les antécédents par f de -4, puis ceux de 2 + 2i.
- 2. Soient z_1 et z_2 deux nombres complexes distincts. Déterminer une condition nécessaire et suffisante sur z_1 et z_2 pour que $f(z_1) = f(z_2)$. Interpréter cette condition géométriquement. L'application f est-elle injective?

- 3. Déterminer l'ensemble des points du plan ayant un antécédent par f, puis ceux ayant un unique antécédent par f. L'application est-elle surjective?
- 4. On note D l'axe des abscisses dans le plan.
 - (a) Déterminer l'image par f de la droite D.
 - (b) Déterminer une condition nécessaire et suffisante simple sur z pour que f(z) soit un nombre réel. En déduire l'image réciproque de D par f.
- 5. Soit \mathcal{C} le cercle trigonométrique dans le plan.
 - (a) En notant $z = e^{i\theta}$ un nombre complexe dont l'image est sur \mathcal{C} , déterminer le module et un argument de f(z) en fonction de θ .
 - (b) Représenter dans le plan les images f(z) lorsque $\theta \in \left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi\right\}$ (on effectuera évidemment les calculs nécessaires sur la copie). En déduire une allure de l'image du demicercle trigonométrique supérieur par f (on admettra que les tangentes à cette image sont verticales aux points correspondant à $\theta = 0$ et $\theta = \pi$).
 - (c) Comment peut-on déduire très simplement de la courbe précédente l'image du demi-cercle trigonométrique inférieur par f?
 - (d) Tracer l'allure de l'image complète par f de C.

Problème 2 : résolution d'équations du troisième degré (***)

Le but de cet exercice est de présenter une méthode de résolution (faisant intervenir les nombres complexes) des équations du troisième degré.

I. Un cas particulier

On s'intéresse pour l'instant à l'équation $z^3 - 6z^2 + 9z - 1 = 0$.

- 1. On pose Z=z-2, déterminer une équation du troisième degré vérifiée par Z.
- 2. On décide désormais d'écrire Z = u+v, développer l'équation obtenue à la question précédente et prouver que $u^3 + v^3 + 3(uv 1)(u + v) + 1 = 0$.
- 3. En imposant la condition uv = 1, montrer que u^3 et v^3 sont solutions de l'équation du second degré $x^2 + x + 1 = 0$.
- 4. Résoudre cette équation, et en déduire les valeurs possibles de u et de v.
- 5. Déterminer les solutions de l'équation initiale.

II. Généralisation

On considère désormais une équation du troisième degré quelconque $z^3 + az^2 + bz + c = 0$.

- 1. Montrer, qu'en faisant un changement de variable du type Z=z+k, on peut se ramener à une équation de la forme $Z^3+pZ+q=0$.
- 2. En posant Z = u + v et $uv = -\frac{p}{3}$, montrer que l'équation se ramène à $u^3 + v^3 + q = 0$.
- 3. On pose $U = u^3$ et $V = v^3$, déterminer les valeurs de U + V et de UV.
- 4. En déduire les valeurs de U et V, et expliquer comment terminer la résolution de l'équation du troisième degré initiale.
- 5. Résoudre à l'aide de cette méthode l'équation $z^3 3z^2 + (9 6i)z + (-5 + 12i)$.

Problème 3 : homographies du plan complexe (***)

Une homographie est une application du plan complexe dans lui-même définie par une équation de la forme $f(z) = \frac{az+b}{cz+d}$, où a, b, c et d sont quatre nombres complexes vérifiant $ad-bc \neq 0$.

I. Un cas particulier

On étudie dans cette première partie l'application $f: z \mapsto \frac{iz-1}{z+1}$.

- 1. Déterminer le domaine de définition de f, et montrer que f est bijective de \mathcal{D}_f vers un ensemble à déterminer, en déterminant une expression de sa réciproque.
- 2. Déterminer les images par f de 2 et de 1+i (sous forme algébrique), ainsi que leurs antécédents.
- 3. Déterminer les nombres complexes invariants par f.
- 4. Déterminer les nombres complexes z ayant une image réelle par f, puis ceux ayant une image imaginaire pure.
- 5. Déterminer les nombres complexes z pour lequels $f(z) \in \mathbb{U}$.
- 6. Montrer que l'image du demi-plan constitué de tous les nombres complexes ayant une partie imaginaire strictement positive est délimitée par une droite dont on donnera une équation cartésienne.

II. Une étude plus générale

- 1. Soit $\theta \in \mathbb{R}$ et f l'homographie définie par $f(z) = \frac{e^{i\theta}}{z}$. Montrer que $\forall z \in \mathbb{U}, \ f(z) \in \mathbb{U}$.
- 2. On considère maintenant une homographie de la forme $f(z) = e^{i\theta} \frac{z+a}{\overline{a}z+1}$, où a est un nombre complexe n'appartenant pas à \mathbb{U} . Montrer que, $\forall z \in \mathbb{U}$, f(z) est bien défini, et $f(z) \in \mathbb{U}$.
- 3. On cherche à prouver que seules les deux types d'homographies précédentes conservent le cercle trigonométrique. Soit donc une homographie $f: z \mapsto \frac{az+b}{cz+d}$ telle que $\forall z \in \mathbb{U}, f(z) \in \mathbb{U}$.
 - (a) Montrer que, si α et β sont deux nombres complexes quelconques, $|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 + 2\text{Re }(\overline{\alpha}\beta)$.
 - (b) Établir que $\forall \theta \in \mathbb{R}$, $|a|^2 + |b|^2 + 2\text{Re}(\overline{a}be^{-i\theta}) = |c|^2 + |d|^2 + 2\text{Re}(\overline{c}de^{-i\theta})$.
 - (c) Montrer que la condition $\forall \theta \in \mathbb{R}, \ \alpha + 2\text{Re}\ (\beta e^{-i\theta}) = 0$ implique $\alpha = \beta = 0$. En déduire que $|a|^2 + |b|^2 = |c|^2 + |d|^2$ et $\overline{a}b = \overline{c}d$.
 - (d) Montrer que, si a=0, f est du type étudié à la première question de cette deuxième partie.
 - (e) Montrer que, si $a \neq 0$, |a| = |c| ou |a| = |d|.
 - (f) Montrer que le premier cas est impossible, et prouver que f est alors du type étudié dans la deuxième question de cette partie.