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Exercice 1

Dans cet exercice, on note r et s les deux applications définies sur C par r(z) = iz et s(z) = z.
On utilisera systématiquement dans cet exercice la notation f2 pour désigner la composée f ◦ f , et
la notation f3 pour f ◦ f ◦ f .

1. Rappeler à quelle transformation géométrique du plan complexe correspond l’application s.
Préciser de même les transformations géométriques correspondant aux applications r, r2 et
r3, ainsi que celles correspondant aux trois composées s◦r, s◦r2 et s◦r3 (pas de justification
demandée pour cette question).

2. Justifier que toutes les applications évoquées à la question 1 sont bijectives de C dans C, et
préciser la réciproque de chacune. En déduire que l’ensemble G = {id, r, r2, r3, s, s◦r, s◦r2, s◦
r3} est stable par passage à la réciproque.

3. Que vaut r4 = r3 ◦ r ? Calculer également r ◦ s, r2 ◦ s et r3 ◦ s (en montrant en particulier que
ces trois composées sont des élèments de G), puis en déduire en faisant le moins de calculs
possible que G est un ensemble stable par composition.

4. Déduire des questions précédentes que (G, ◦) est un groupe. S’agit-il d’un groupe abélien ?

5. Donner la liste de tous les sous-groupes de G ne contenant que deux éléments.

6. Montrer que H1 = {id, r, r2, r3} est un sous-groupe de G, et donner la table de Cayley du
groupe H1 (sans justification).

7. Montrer que H2 = {id, r2, s, s ◦ r2} est également un sous-groupe de G, et donner sa table de
Cayley.

8. Montrer qu’il ne peut pas exister d’isomorphisme entre les groupes H1 et H2 (en essayant
bien sûr d’être le plus rigoureux possible).

9. On considère l’application φ : G 7→ {−1, 1} qui associe à tout élément f ∈ G la valeur 1 si f
est une isométrie directe, et la valeur −1 si f est une isométrie indirecte. Vérifier que φ est
un morphisme de groupes de (G, ◦) vers ({−1, 1},×).

10. Quel est le noyau de l’application φ ? Le morphisme φ est-il un isomorphisme ?
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Exercice 2

On note (E) l’équation du second degré z2 − 2az + b = 0, dont les coefficients 2a et b sont des
nombres complexes non nuls. On notera z1 et z2 les deux solutions (éventuellement confondues) de
l’équation (E) et M1, M2 les points du plan complexe d’affixes z1 et z2.

1. Rappeler les valeurs de z1 + z2 et de z1z2 en fonction de a et b.

2. Étude d’un cas particulier : dans toute cette question, on suppose que b = −6 + 8i.

(a) Résoudre l’équation (E) dans le cas où a = 1 + 4i.
(b) Donner une condition nécessaire et suffisante sur a pour que M1 et M2 soient symétriques

par rapport à l’axe imaginaire dans le plan complexe.
(c) Les points M1 et M2 peuvent-ils être symétriques par rapport à l’axe réel avec la valeur

imposée pour b ?
(d) On note A le point du plan complexe d’affixe 2a. Montrer que le triangle AM1M2 est

isocèle rectangle en A si et seulement si z1 = a(1 + i) ou z1 = a(1− i).
(e) Montrer que, dans ces deux cas, b = 2a2, et en déduire les valeurs de a pour lesquelles le

triangle AM1M2 est effectivement rectangle isocèle en A.

3. On revient désormais au cas général, avec b ∈ C∗ quelconque. On note z1 = r1e
iα et z2 = r2e

iβ

les formes exponentielles des deux solutions de (E), en supposant que les arguments α et β
sont les arguments principaux de ces solutions.

(a) Montrer que z2 = z1 si et seulement si a et b sont réels et a2 ⩽ b.
(b) On souhaite déterminer une condition nécessaire et suffisante pour que r1 = r2. Calculer

les formes exponentielles de a et de b lorsque r1 = r2, en déduire que dans ce cas
a2

b
est

un nombre réel, et qu’il appartient à l’intervalle ]0, 1].

(c) Montrer réciproquement que, si
a2

b
∈]0, 1], alors r1 = r2.

(d) On souhaite maintenant déterminer à quelle condition sur a et b on aura α = β. Montrer

que, si les deux arguments sont égaux, alors
a2

b
est un nombre réel, mais qu’il est cette

fois-ci supérieur ou égal à 1.

(e) Montrer réciproquement que, si
a2

b
∈ [1,+∞[, alors α = β.

(f) Que se passe-t-il dans le cas où
a2

b
= 1 ?
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Exercice 3

Les trois parties de cet exercice étant largement indépendantes, il est tout à fait possible de
commencer par la partie B (dont les premières questions sont peut-être plus abordbales que celles
de la partie A).

A. Démonstration du théorème de Cesàro dans le cas monotone.

Soit (un) une suite croissante convergeant vers une limite l ∈ R. On pose, ∀n ∈ N,

vn =
1

n+ 1

n∑
k=0

uk (autrement dit, vn est la moyenne des n+ 1 premiers termes de la suite (un)).

1. Montrer que la suite (vn) est majorée par l.

2. Montrer que (vn) est croissante, en déduire qu’elle converge vers une limite l′ vérifiant l′ ⩽ l.

3. Montrer que, ∀n ∈ N, 2v2n+1 − vn ⩾ un.

4. En déduire que l′ = l. Qu’a-t-on démontré dans cette partie ?

B. Une application du théorème de Cesàro.

On étudie dans cette partie une suite (an) définie par a0 > 0 et ∀n ∈ N, an+1 =
an√
1 + an

.

1. Montrer que la suite (an) est bien définie, et à valeurs strictement positives.

2. Montrer que (an) est convergente, et déterminer sa limite.

3. Montrer que la fonction f définie par f(x) =

√
x+ 1− 1

x
est décroissante sur ]0,+∞[.

4. On définit une suite auxiliaire (bn) par bn =
1

an+1
− 1

an
.

(a) Vérifier que bn = f(an), en déduire la monotonie de la suite (bn).
(b) Montrer que (bn) converge, et préciser la valeur de sa limite.

5. On pose enfin cn =
1

n

n−1∑
k=0

bk (pour tout entier n ⩾ 1).

(a) Exprimer cn en fonction de n, de an et de a0.
(b) En exploitant le théorème démontré dans la partie A (qu’on peut bien sûr utiliser même

si on n’a pas réussi à traiter entièrement cette partie), montrer que lim
n→+∞

nan = 2.

C. Une conséquence de l’application.

On définit dans cette dernière partie une suite (un) par u0 > 0 et ∀n ∈ N, un+1 = un +
√
un.

1. Montrer que (un) est bien définie et à valeurs strictement positves.

2. Montrer que lim
n→+∞

un = +∞.

3. En exploitant le résultat de la partie B, calculer lim
n→+∞

un
n2

.
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