Devoir Surveillé nº 3

MPSI Lycée Camille Jullian

8 novembre 2025

Exercice 1

On considère dans cet exercice l'équation différentielle $(E): y'' - 2y' + 2y = xe^x$.

- 1. Résoudre complètement l'équation (E).
- 2. Déterminer l'unique solution de l'équation (E) vérifiant y(0) = 1 et y'(0) = -1.
- 3. Existe-t-il une solution de (E) vérifiant $y(0) = y(\pi) = 1$? Si oui, cette solution est-elle unique?
- 4. Résoudre l'équation différentielle (E_1) : $t^2z''(t) tz'(t) + 2z(t) = t \ln(t)$ sur l'intervalle $]0, +\infty[$ en effectuant le changement de variable $x = \ln(t)$ (si vous ne voyez aucun rapport avec ce qui précède, ce n'est pas normal).

Exercice 2

On considère dans cet exercice la relation \mathcal{R} définie sur \mathbb{R}^2 par : $(x,y)\mathcal{R}(x',y')$ si x+y < x'+y' ou (x+y=x'+y') et $y \leq y'$. On pourra faire des dessins pour illustrer les résultats de certaines questions.

- 1. Montrer rigoureusement que \mathcal{R} est une relation d'ordre sur \mathbb{R}^2 . S'agit-il d'un ordre total?
- 2. Comment sont ordonnés les éléments de l'axe des abscisses par la relation \mathcal{R} ? Et ceux de l'axe des ordonnées? Et ceux de la droite d'équation y = -x?
- 3. L'ensemble $A = \{(x, y) \in \mathbb{R}^2 \mid x \geqslant 0 \text{ et } y \geqslant 0\}$ est-il minoré pour \mathbb{R} ? Majoré? Admet-il un minimum, un maximum, une borne inférieure, une borne supérieure?
- 4. Mêmes questions pour l'ensemble $B = \{(x,y) \in \mathbb{R}^2 \mid x \in]0,1[$ et $y \in]0,1[\}$.
- 5. Représenter graphiquement l'ensemble de tous les minorants du couple (1,1) pour la relation \mathcal{R} (en justifiant, bien entendu).
- 6. Le cercle trigonométrique d'équation $x^2 + y^2 = 1$ est-il minoré, majoré pour la relation \mathcal{R} ? Admet-il un maximum et un minimum?

Exercice 3

Une équation différentielle de Bernoulli est une équation de la forme $y' + a(x)y = b(x)y^m$, avec $m \in \mathbb{R} \setminus \{0, 1\}$. Quand on cherche à résoudre une telle équation, on n'en recherche que les solutions strictement positives.

- 1. Pourquoi ne peut-on pas résoudre une équation de ce genre par les méthodes vues en cours?
- 2. En posant $z(x) = y(x)^{1-m}$, montrer que la fonction y est solution de l'équation $y' + a(x)y = b(x)y^m$ si et seulement si z est solution d'une équation linéaire d'ordre 1 à préciser.
- 3. Utiliser le changement de fonction inconnue précédent pour résoudre l'équation de Bernoulli $y'-\frac{1}{r}y=-\frac{1}{r^2}y^2 \text{ sur l'intervalle }]0,+\infty[.$
- 4. Une équation de Ricatti est une équation de la forme $(E): y' = p(x)y^2 + q(x)y + r(x)$, où p, q et r sont trois fonctions continues.

- (a) Montrer que, si y_0 est une solution particulière de (E), en posant $z = y y_0$, y est solution de (E) si et seulement si z est solution d'une équation de Bernoulli.
- (b) Déterminer une solution particulière évidente de l'équation $(1-x^3)y' + x^2y + y^2 2x = 0$ (si on n'est pas inspiré, on cherchera une fonction polynômiale de degré 2).
- (c) Résoudre complètement l'équation de la question précédente en effectuant le changement d'inconnue suggéré en question a.

Problème

On s'intéresse dans cet exercice à la fonction $f: x \mapsto \frac{\sin(x)}{\sqrt{5-4\cos(x)}}$, ainsi qu'à la fonction $g: x \mapsto \arccos\left(\frac{4-5\cos(x)}{5-4\cos(x)}\right)$. Cette dernière sera définie uniquement sur l'intervalle $I=[0,\pi]$.

- 1. Étude de la fonction f.
 - (a) Préciser le domaine de définition de f, et justifier que l'intervalle I est un intervalle d'étude intelligent pour cette fonction.
 - (b) Étudier le signe de $f(x) \sin(x)$ sur l'intervalle I.
 - (c) Montrer que, $\forall x \in]0, \pi], \sin(x) < x$.
 - (d) En déduire les solutions de l'équation f(x) = x.
 - (e) Étudier les variations sur I de la fonction f, puis tracer une allure de sa courbe représentative (on indiquera notamment sur la courbe les tangentes à la courbe en ses points d'abscisses 0 et π).
- 2. Étude de la fonction g.
 - (a) Étudier les variations de la fonction $\varphi: t \mapsto \frac{4-5t}{5-4t}$ sur l'intervalle [-1,1].
 - (b) En déduire que g est définie sur I, calculer sa dérivée là où c'est possible (domaine de dérivabilité à préciser avant de faire le calcul).
 - (c) Dresser le tableau de variations de g, et tracer une allure rapide de sa courbe.
 - (d) Le calcul de g' était-il nécessaire à l'obtention des variations de la fonction g?
- 3. Lien entre les fonctions f et g.
 - (a) Soit $y \in \left[0, \frac{1}{2}\right[$, justifier que y admet deux antécédents par f dans l'intervalle I, l'un appartenant à l'intervalle $\left[0, \frac{\pi}{3}\right[$ (on le notera x_1) et l'autre à $\left[\frac{\pi}{3}, \pi\right]$ (on le notera x_2).
 - (b) Simplifier l'expresion de $\cos(g(x))$ et de $\sin(g(x))$ lorsque $x \in I$, puis calculer f(g(x)).
 - (c) En déduire que $x_2 = g(x_1)$.
- 4. Calcul de la réciproque de f.
 - (a) Justifier que la restriction de f à l'intervalle $\left[0, \frac{\pi}{3}\right]$ est bijective. On notera h la réciproque de cette restriction. Donner le tableau de variations de la fonction h.
 - (b) En reprenant les notations (et le résultat final, même si on n'a pas réussi à le démontrer) de la question 3), exprimer $\cos(x_1 + x_2)$ et $\cos(x_1 x_2)$ comme des fractions ne faisant intervenir que $\cos(x_1)$.
 - (c) Étudier les variations des fonctions $t \mapsto t + g(t)$ et $t \mapsto t g(t)$ sur l'intervalle $\left[0, \frac{\pi}{3}\right]$.
 - (d) En déduire les signes de $\cos\left(\frac{x_1+x_2}{2}\right)$ et $\cos\left(\frac{x_1-x_2}{2}\right)$.
 - (e) Exprimer ces deux cosinus en fonction de $f(x_1)$ (les élever au carré pourrait être une bonne idée).
 - (f) À l'aide des questions précédentes, déterminer une expression explicite (la plus simple possible) de la fonction h.