Devoir Maison nº 4

MPSI Lycée Camille Jullian

pour le 20 novembre 2025

Un court DM pour cette fois-ci car vous n'aurez pas énormément de temps pour le faire, et qu'on a déjà deux DS prévus sur le mois de novembre.

Exercice 1

On pose pour cet exercice $S_n = \sum_{k=2}^n \frac{2k+3}{k^3+k^2-2k}$.

- 1. Calculer S_n en fonction de n.
- 2. Redémontrer la formule obtenue par récurrence.

Exercice 2

On s'intéresse dans cet exercice à des équations différentielles de la forme (E):y''+y=f(x), où f est une fonction continue sur \mathbb{R} . Plus précisément, on cherchera les solutions de cette équation vérifiant les conditions $y(0)=y\left(\frac{\pi}{2}\right)=0.$ Pour cela, on associe à toute fonction f continue sur le segment $\left[0,\frac{\pi}{2}\right]$ une nouvelle fonction F=T(f) définie par $F(x)=-\cos(x)\int_0^x f(t)\sin(t)\ dt-\sin(x)\int_x^{\frac{\pi}{2}}f(t)\cos(t)\ dt$ (l'application T est donc une application définie sur l'ensemble des fonctions continues sur $\left[0,\frac{\pi}{2}\right],$ et à valeurs dans ce même ensemble).

- 1. Résoudre l'équation dans le cas où f est la fonction nulle, et préciser les solutions éventuelles vérifiant $y(0) = y\left(\frac{\pi}{2}\right) = 0$.
- 2. Lorsque f(x) = 1 (fonction constante donc), calculer F(x) puis F''(x) + F(x), et déterminer toutes les solutions de (E) vérifiant $y(0) = y\left(\frac{\pi}{2}\right) = 0$.
- 3. Même question lorsque f(x) = x.
- 4. Dans le cas général où f est une fonction continue quelconque, calculer F''(x) + F(x), et déterminer à nouveau les solutions de (E) vérifiant $y(0) = y\left(\frac{\pi}{2}\right) = 0$ (normalement, si vous ne vous êtes pas plantés dans les questions précédentes, vous avez déjà une bonne idée de ce que ça devrait donner).
- 5. L'application $T: f \mapsto F$ est-elle une application injective? Surjective?
- 6. On suppose dans cette dernière question que f est une fonction non nulle vérifiant $T(f) = \lambda f$, avec $\lambda \in \mathbb{R}$ (pour les plus curieux, on est en train de chercher les valeurs propres de l'endomorphisme T, vous comprendrez mieux tout ça dans quelques mois).
 - (a) Montrer que $\lambda \neq 0$, et que f vérifie les conditions suivantes : $f(0) = f\left(\frac{\pi}{2}\right) = 0$ et $\forall x \in \left[0, \frac{\pi}{2}\right]$, $f''(x) + \left(1 \frac{1}{\lambda}\right)f(x) = 0$.
 - (b) Déterminer les fonctions f convenables (s'il y en a!) lorsque $\lambda=1.$
 - (c) Déterminer les fonctions f convenables lorsque $1-\frac{1}{\lambda}=-\omega^2$, avec $\omega>0$ (écriture qui est toujours possible lorsque $0<\lambda<1$).
 - (d) On suppose cette fois-ci $1 \frac{1}{\lambda} = \omega^2$, avec toujours $\omega > 0$ (ce qui suppose désormais que $\lambda > 1$). Montrer que, s'il existe une fonction f non nulle convenable, alors ω est un entier pair non nul, en déduire la forme nécessairement prise par λ .