Devoir Maison nº 2

MPSI Lycée Camille Jullian

pour le 2 octobre 2025

Exercice 1 : une équation fonctionnelle.

On cherche dans cet exercice à déterminer toutes les applications $f: \mathbb{N} \to \mathbb{N}$ vérifiant l'équation suivante : $\forall n \in \mathbb{N}, f(n) + f \circ f(n) = 2n$.

- 1. Trouver une solution évidente au problème.
- 2. Soit f une solution quelconque du problème.
 - (a) Montrer que, $\forall n \in \mathbb{N}, f(n) \in \{0, 1, \dots, 2n\}.$
 - (b) Déterminer la valeur de f(0).
 - (c) Déterminer la valeur de f(1).
 - (d) Montrer que f est nécessairement injective.
 - (e) Montrer par récurrence forte que $\forall n \in \mathbb{N}$, f(n) = n (autrement dit, en supposant que le relation f(k) = k est vraie pour tous les entiers k inférieurs ou égaux à n, montrer que f(n+1) = n+1).
 - (f) Conclure.
- 3. Si vous avez du temps à perdre (considérez cette question comme une question bonus), demandez-vous s'il existe d'autres possibilités si on conserve la même équation fonctionnelle mais qu'on s'intéresse à des fonctions $f: \mathbb{Z} \to \mathbb{Z}$.

Exercice 2 : des inégalités classiques.

En anticipant un peu des choses qu'on verra en cours bientôt, mais peut-être après que vous ayez commencé à rédiger ce DM, on notera pour tout **réel** a et tout x>0 le nombre $e^{a\ln(x)}$ sous la forme x^a . Autrement dit, on définit les puissances à exposant quelconque en utilisant les fonctions exponentielle et ln. Cette définition généralise toutes les puissances que vous connaissez déjà (par exemple, on a bien $\sqrt{x}=x^{\frac{1}{2}}=e^{\frac{1}{2}\ln(x)}$ pour tout x>0) et surtout vérifie toutes les propriétés classiques du calcul sur les puissances. Par exemple, la régle de calcul $x^a\times x^b=x^{a+b}$ reste vraie pour des réels a et b quelconques.

- 1. Démontrer que, $\forall (x,y) \in \mathbb{R}^2$, $2xy \leqslant x^2 + y^2$.
- 2. En déduire que, si a et b sont positifs, alors $\sqrt{ab} \leqslant \frac{a+b}{2}$ (inégalité arithmético-géométrique).
- 3. Soient p et q deux réels strictement positifs vérifiant $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Justifier que p > 1.
 - (b) Dresser le tableau de variations de la fonction $f: x \mapsto \frac{1}{p}x^p + \frac{1}{q} x$. En déduire que, $\forall x > 0, x \leqslant \frac{1}{p}x^p + \frac{1}{q}$.

1

- (c) En appliquant l'inégalité précédente à un réel x soigneusement choisi, montrer l'inégalité de Young : si a et b sont strictement positifs, alors $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$. Faire le lien avec l'inégalité démontrée à la première question.
- (d) Démontrer que l'inégalité de Young n'est vraie que si $\frac{1}{p} + \frac{1}{q} = 1$ (question difficile).
- 4. On pose pour cette question $g(x) = e^{x-1}$.
 - (a) Déterminer l'équation de la tangente à la courbe représentative de g en son point d'abscisse 1.
 - (b) En déduire que $\forall x \in \mathbb{R}, x \leq e^{x-1}$ (si vous ne le connaissez pas déjà, renseignez-vous sur le lien entre convexité et position d'une courbe par rapport à ses tangentes).
 - (c) Si x_1, \ldots, x_n sont n réels strictement positifs, on note $m = \frac{x_1 + \cdots + x_n}{n}$. Montrer que $\frac{x_1}{m} \times \frac{x_2}{m} \times \cdots \times \frac{x_n}{m} \leqslant e^{\frac{x_1}{m} 1} e^{\frac{x_2}{m} 1} \ldots e^{\frac{x_n}{m} 1}$.
 - (d) En déduire que $(x_1x_2...x_n)^{\frac{1}{n}} \leq m$. Faire le lien avec l'inégalité démontrée à la deuxième question.
- 5. On note enfin P_n la propriété suivante, qui concerne des réels $x_1, \ldots, x_n, y_1, \ldots, y_n$ quel-conques : « $\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} + \ldots \sqrt{x_n^2 + y_n^2} \geqslant \sqrt{(x_1 + \cdots + x_n)^2 + (y_1 + \cdots + y_n)^2}$ ».
 - (a) Que pensez-vous de la propriété P_1 ?
 - (b) Montrer que, si a, b, c et d sont des réels quelconques, $(ab+cd)^2 \leq (a^2+c^2)(b^2+d^2)$.
 - (c) En déduire que la propriété P_2 est vraie.
 - (d) Démontrer par récurrence la propriété P_n pour tout entier $n \in \mathbb{N}^*$ (pour l'hérédité, réutiliser le cas particulier n = 2 est une bonne idée).
 - (e) Si a_1, \ldots, a_n sont des réels quelconques, on note $S = a_1 + \cdots + a_n$. Montrer que $\sqrt{a_1^2 + (1 a_2)^2} + \sqrt{a_2^2 + (1 a_3)^2} + \cdots + \sqrt{a_n^2 + (1 a_1)^2} \geqslant \sqrt{S^2 + (n S)^2}$.
 - (f) Montrer enfin que $\sqrt{a_1^2 + (1 a_2)^2} + \sqrt{a_2^2 + (1 a_3)^2} + \dots + \sqrt{a_n^2 + (1 a_1)^2} \geqslant \frac{n\sqrt{2}}{2}$.