Feuille d'exercices nº 15 : Polynômes

MPSI Lycée Camille Jullian

8 février 2024

Exercice 1 (*)

Soient P et Q les deux polynômes définis par $P(X) = 2X^3 + 5X - 1$ et $Q(X) = -X^2 + 3X$. Calculer chacun des polynômes suivants : P + Q, PQ, P^2 , $P \circ X^2$, $P \circ Q$, $Q \circ P$, P'Q, $Q^{(2)} \circ P'$, $3PQ - Q^2 \circ P$.

Exercice 2 (*)

Soit $P(X) = X^3 - 2X^2 - 5X + 6$.

- 1. Déterminer une racine évidente du polynôme P.
- 2. Factoriser P sous la forme (X+2)Q(X), où Q est un polynôme de degré 2.
- 3. En déduire le tableau de signe de P sur \mathbb{R} .
- 4. Résoudre les inéquations $(\ln x)^3 2(\ln x)^2 5\ln x + 6 > 0$ et $e^{2x} 2e^x \le 5 6e^{-x}$

Exercice 3 (* à ***)

Factoriser chacun des polynômes suivants dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$:

- 1. $P_1 = X^6 + 1$
- $2. P_2 = X^6 7X^3 8$
- 3. $P_3 = (X^2 4X + 1)^2 + (3X 5)^2$
- 4. $P_4 = X^4 5X^3 + 4X^2 + 3X + 9$ (on trouvera un entier $n \leq 5$ racine double de P)
- 5. $P_5 = X^6 X^5 + X^4 + X^3 14X^2 + 20X 8$ (aucune astuce ici, il faut simplement y croire)
- 6. $P_6 = X^8 + X^4 + 1$
- 7. $P_7 = X^9 + X^6 + X^3 + 1$
- 8. $P_8 = X^6 X^5 + X^4 X^3 + X^2 X + 1$

Exercice 4 (**)

- 1. Déterminer la forme algébrique des racines carrées des nombres complexes $\frac{i+\sqrt{3}}{2}$ et $\frac{i-\sqrt{3}}{2}$.
- 2. Effectuer la division euclidienne de $X^6 i$ par $X^2 + i$. En déduire, à l'aide de la question précédente, la factorisation de $X^6 i$.
- 3. Résoudre l'équation $z^6=i$ en passant par la forme exponentielle. En déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$.

Exercice 5 (**)

Pour chacune des conditions suivantes, déterminer tous les polynômes la vérifiant :

- P est de degré 3, P(0) = P(1) = P'(1) = 0 et P'(0) = 2
- (X+3)P(X) = XP(X+1)
- P est de degré 3, $(X+1)^2$ divise P+1 et $(X-1)^2$ divise P-1
- $(X^2+4)P''=6P$
- $P(X^2) = (X^2 + 1)P(X)$
- P est de degré $3\mathcal{L}$, est divisible par X-1, et admet le même reste lors de ses divisions par X-2, X-3 et X-4

Exercice 6 (**)

Effectuer la division euclidienne de P par Q dans chacun des cas suivants :

1.
$$P = X^3 + X^2 - 2X + 3$$
 et $Q = X^2 + 2X - 1$

2.
$$P = 2X^4 - 3X^3 + 4X^2 - 5X + 6$$
, et $Q = X^2 - 3X + 1$

3.
$$P = X^4 - 2X^2 \cos(2\theta) + 1$$
 et $Q = X^2 - 2X \cos(\theta) + 1$

4.
$$P = X^3 - iX^2 - X$$
, et $Q = X - 1 + i$,

5.
$$P = (X\sin(\theta) + \cos(\theta))^n$$
 et $Q = X^2 + 1$ (on donnera uniquement le reste)

Exercice 7 (**)

Déterminer tous les entiers $n \in \mathbb{N}$ pour lesquels $X^2 + X + 1$ divise $(X^4 + 1)^n - X^n$.

Exercice 8 (*)

Trouver deux constantes a et b telles que $P = X^3 - 2X + 1$ divise $Q = X^5 + X^4 + aX^3 + bX^2 + 5X - 2$.

Exercice 9 (***)

Montrer que, si $P \in \mathbb{C}[X]$ est un polynôme quelconque, $P \circ P - X$ est divisible par P - X.

Exercice 10 (***)

Déterminer les valeurs de $\lambda \in \mathbb{C}$ pour les quelles le polynôme $P = X^4 - 4X^3 + \lambda X^2 - 12X + 3$ admet deux racines dont le produit est égal à 1 (ainsi que deux autres sur les quelles on ne suppose rien du tout!), et factoriser P dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ si cette condition est vérifiée.

Exercice 11 (**)

- 1. Déterminer les valeurs réelles de a et b pour lesquels le polynôme $P=X^4+aX^3+bX^2+12X+9$ est le carré d'un polynôme $Q\in\mathbb{R}[X]$.
- 2. Dans ce cas, factoriser P et P-1 dans $\mathbb{R}[X]$.

Exercice 12 (***)

On définit la suite de polynômes (P_n) par $P_0=2, P_1=X$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$.

- 1. Calculer P_2 , P_3 et P_4 .
- 2. Déterminer le degré et le coefficient dominant de P_n .
- 3. Montrer que, $\forall z \in \mathbb{C}^*$, $P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$.
- 4. En déduire une expression simple de $P_n(2\cos(\theta))$.
- 5. Déterminer les racines de P, et sa factorisation dans $\mathbb{C}[X]$.

Exercice 13 (**)

On note a, b et c les trois racines complexes (éventuellement confondues) du polynôme $P = X^3 + X + 1$. Calculer la valeur des expression suivantes : $A = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$, $B = \frac{bc}{a} + \frac{ac}{b} + \frac{ab}{c}$, $C = \frac{a^2}{b+c} + \frac{b^2}{a+c} + \frac{c^2}{a+b}$ (on ne cherchera surtout pas à calculer explicitement a, b et c).

2

Exercice 14 (**)

Déterminer les valeurs de $\alpha \in \mathbb{C}$ telles que le polynôme $P = X^3 + X^2 + \alpha X + 6$ admet deux racines a et b vérifiant a + b = ab. Déterminer alors toutes les racines du polynôme.

Exercice 15 (**)

On note $P = X^3 + 3X - 2i$, et x, y et z les trois racines complexes de ce polynôme (qu'on ne cherchera pas à calculer). Pour tout entier naturel n, on pose $S_n = x^n + y^n + z^n$.

- 1. Donner les valeurs de S_0 , S_1 et S_2 .
- 2. Pour tout entier naturel n, exprimer S_{n+3} en fonction de S_{n+1} et de S_n .
- 3. En déduire la valeur de S_7 .

Exercice 16 (***)

Résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} x + y + z = 1 \\ x^2 + y^2 + z^2 = 1 \\ x^3 + y^3 + z^3 = -5 \end{cases}$$

Pour cela, on cherchera un polynôme unitaire de degré 3 ayant pour racines x, y, et z, et on calculera chacun de ses coefficients en utilisant les conditions données.

Résoudre par le même type de méthode le système

$$\begin{cases} x + y + z = 1\\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\\ x^2 + y^2 + z^2 = 9 \end{cases}$$

Exercice 17 (**)

On pose $P = X^3 - 11X + 12$.

- 1. Montrer que P admet trois racines réelles, appartenant aux intervalles]-4,-3[,]1,2[et]2,3[.
- 2. En notant a, b et c ces trois racines, calculer $\arctan(a) + \arctan(b) + \arctan(c)$ (on ne cherchera bien sûr pas de valeur exacte de a, b et c).

Exercice 18 (***)

Pour tout entier $n \in \mathbb{N}$, on définit n+1 polynômes de degré n en posant $\forall k \in \{0,\ldots,n\},\ B_{n,k} = \binom{n}{k} X^k (1-X)^{n-k}$.

- 1. Que valent les polynômes $B_{3,k}$ pour les différentes valeurs de k pour lesquelles ils sont définis?
- 2. Étudier rapidement les polynômes $B_{3,k}$ sur l'intervalle [0,1], et tracer une allure de leurs courbes représentatives sur ce même intervalle.
- 3. Que vaut $\sum_{k=0}^{k=3} B_{3,k}$? Généraliser ce résultat, et en déduire que $\forall x \in [0,1], B_{n,k}(x) \in [0,1]$ (quelles que soient les valeurs de n et de k).
- 4. Exprimer le polynôme dérivé $B'_{n,k}$ en fonction de $B_{n-1,k-1}$ et de $B_{n-1,k}$.
- 5. On pose f(x) = x, et on note f_n la fonction définie sur [0,1] par $\forall n \in \mathbb{N}$, $f_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{n,k}(x)$. Montrer que, $\forall x \in [0,1]$, $\lim_{n \to +\infty} f_n(x) = f(x)$.
- 6. Effectuer la même démonstration qu'à la question précédente en prenant cette fois-ci $f(x) = x^2$.

Exercice 19 (***)

Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \ge 0$.

- 1. Montrer que P a nécessairement un degré pair, et un coefficient dominant positif.
- 2. Montrer que si $d^{\circ}(P)=2$, on peut trouver deux polynômes Q et R à coefficients réels tels que $P=Q^2+R^2$.
- 3. Vérifier que, si Q, R, S et T sont quatre polynômes quelconques, alors $(Q^2 + R^2)(S^2 + T^2) = (QS + RT)^2 + (QT RS)^2$.
- 4. Montrer que la propriété démontrée à la question 2 est vraie quel que soit le degré de P.

Problème (***)

Ce problème présente une méthode pour calculer la valeur de $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{k^2}$, qui fait intervenir des polynômes (et un petit peu de trigonométrie). Si vous êtes sages, nous verrons d'autres méthodes pour calculer cette même « somme infinie » (on parlera de séries d'ici la fin de l'année) dans certains chapitres ultérieurs.

- 1. On définit la fonction cotangente (en abrégé cotan) par la formule $\operatorname{cotan}(x) = \frac{\cos(x)}{\sin(x)}$. Donner le domaine de définition, la périodicité, les variations sur une période, et une allure de courbe représentative de cette fonction. On montrera en particulier que cotan est bijective de $]0, \pi[]$ dans \mathbb{R} .
- 2. On définit, pour tout entier naturel $n \ge 1$, le polynôme $Q_n(X) = (X+1)^n (X-1)^n$.
 - (a) Donner le degré et le coefficient dominant de Q_n .
 - (b) Déterminer les racines du polynôme Q_n (on doit trouver n-1 nombres imaginaires purs).
 - (c) Vérifier que ces racines sont simples, et en déduire la factorisation de Q_n dans $\mathbb{C}[X]$.
- 3. On définit, toujours pour $n \ge 1$, un nouveau polynôme $P_n(X) = \sum_{k=0}^n \binom{2n+1}{2k} X^k$.
 - (a) Donner les expressions explicites des polynômes P_1 , P_2 et P_3 .
 - (b) Montrer que $2P_n(X^2) = Q_{2n+1}(X)$.
 - (c) En déduire les racines de P_n , et vérifier qu'elles sont simples.
 - (d) Que vaut la somme des racines de P_n ?

 En déduire que $\sum_{k=1}^n \left(\cot \left(\frac{k\pi}{2n+1}\right)\right)^2 = \frac{n(2n-1)}{3}$.
- 4. (a) Montrer que, $\forall x \in \left]0, \frac{\pi}{2}\right[, \sin(x) \leqslant x \leqslant \tan(x).$
 - (b) En déduire que, sur le même intervalle, $\cot^2(x) \le \frac{1}{x^2} \le 1 + \cot^2(x)$.
 - (c) Appliquer l'encadrement précédent à $x = \frac{k\pi}{2n+1}$, en déduire un encadrement de $\frac{1}{k^2}$, puis la valeur de la limite recherchée dans cet exercice.
- 5. En complément, on peut obtenir presque sans effort supplémentaire la valeur de $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{k^4}$:
 - (a) Montrer par récurrence que, si $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$, alors $\left(\sum_{k=1}^n z_k\right)^2 = \sum_{k=1}^n z_k^2 + 2\sum_{1\leqslant i < j \leqslant n} z_i z_j$.
 - (b) En déduire la valeur de $\sum_{k=1}^{n} \left(\cot \left(\frac{k\pi}{2n+1} \right) \right)^4$ (on pensera aux relations coefficients-racines dans le polynôme P_n).

4

(c) Conclure.