Feuille d'exercices n° 11 : Matrices

MPSI Lycée Camille Jullian

10 janvier 2024

Exercice 1 (*)

On considère la matrice $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- 1. Déterminer toutes les matrices B dans $\mathcal{M}_3(\mathbb{R})$ telles que AB = 0.
- 2. Déterminer toutes les matrices C dans $\mathcal{M}_3(\mathbb{R})$ telles que AC = CA = 0.

Exercice 2 (* à **)

Déterminer toutes les matrices qui commutent avec chacune des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}; B = \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & 2 \\ -2 & 1 & -1 \end{pmatrix}; I_n; C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Déterminer les matrices qui commutent avec toutes les matrices diagonales de $\mathcal{M}_n(\mathbb{R})$. Déterminer les matrices qui commutent avec toutes les matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

Exercice 3 (*)

Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore symétrique (très peu de calculs nécessaires).

Exercice 4 (*)

Montrer que
$$A = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\}$$
 est un sous-anneau commutatif de $\mathcal{M}_3(\mathbb{R})$.

Exercice 5 (**)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant AB - BA = B. Montrer que, $\forall k \in \mathbb{N}$, $AB^k - B^k A = kB^k$, et en déduire la valeur de $\text{Tr}(B^k)$.

Exercice 6 (**)

On fixe A et B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. Résoudre l'équation X + Tr(X)A = B, où X est une matrice inconnue dans $\mathcal{M}_n(\mathbb{R})$.

1

Exercice 7 (***)

On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$.

- 1. Déterminer un polynôme de degré 2 annulant la matrice A.
- 2. En déduire que A est inversible et calculer son inverse (sans faire le pivot de Gauss).
- 3. En utilisant les racines du polynôme trouvé à la question 1, déterminer le reste de la division euclidienne de X^n par ce polynôme, pour un entier $n \ge 2$.
- 4. En déduire la valeur de A^n .

Exercice 8 (***)

On considère dans $\mathcal{M}_n(\mathbb{R})$ la matrice J dont tous les coefficients sont égaux à 1. Calculer J^2 puis déterminer les puissances de matrice J. En déduire, à l'aide de la formule du binôme de Newton, les

puissances de la matrice
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
.

Exercice 9 (**)

Déterminer les puissances de la matrice $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$ (au moins deux méthodes possibles).

Exercice 10 (***)

Soit
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 6 & -2 & -4 \\ -4 & 1 & 3 \end{pmatrix}$$
.

- 1. Montrer que $A^3 = 6A A^2$.
- 2. Montrer qu'il existe deux suites a_k et b_k telles que $A^k = a_k A^2 + b_k A$ (pour $k \ge 2$).
- 3. Trouver des relations de récurrence pour a_k et b_k et en déduire leurs valeurs.
- 4. En déduire l'expression de A^k . Reste-t-elle valable pour k=0 et pour k=1?

Exercice 11 (*)

 $\text{Inverser (lorsque c'est possible) les matrices suivantes}: A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}; B = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix};$

$$C = \left(\begin{array}{ccc} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 5 \end{array} \right); D = \left(\begin{array}{cccc} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 4 \end{array} \right); E = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{array} \right); F = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{array} \right).$$

Exercice 12 (**)

On considère les matrices $A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$. Montrer que P est

inversible et déterminer son inverse. Calculer $P^{-1}AP$ et en déduire les puissances de la matrice A.

Exercice 13 (**)

Soit A une matrice nilpotente. Montrer que I-A est inversible et que son inverse s'écrit sous la forme $I+A+A^2+\cdots+A^k$. En déduire l'inverse de la matrice $A=\begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et celui de la

matrice
$$B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
.

Exercice 14 (**)

Déterminer l'inverse de la matrice suivante (matrice carrée à n lignes et n colonnes) :

$$\begin{pmatrix}
1 & 1 & 0 & & \dots & & 0 \\
0 & 1 & 1 & 0 & & \dots & 0 \\
\vdots & & \ddots & \ddots & & & \vdots \\
\vdots & & & \ddots & \ddots & & \vdots \\
0 & & \dots & & 0 & 1 & 1 \\
0 & & \dots & & 0 & 1
\end{pmatrix}$$

Exercice 15 (**)

Déterminer l'inverse de la matrice suivante (on peut perdre énormément de temps à appliquer un pivot bête et (très) méchant, on peut aussi chercher des astuces diaboliques à bases de racines sixièmes de l'unité) :

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 1 & 2 & 3 & 4 & 5 \\
5 & 6 & 1 & 2 & 3 & 4 \\
4 & 5 & 6 & 1 & 2 & 3 \\
3 & 4 & 5 & 6 & 1 & 2 \\
2 & 3 & 4 & 5 & 6 & 1
\end{pmatrix}$$

Exercice 16 (**)

Pour tout réel a, on note $M_a = \begin{pmatrix} 1 & a & a \\ a & 1 + \frac{a^2}{2} & \frac{a^2}{2} \\ -a & -\frac{a^2}{2} & 1 - \frac{a^2}{2} \end{pmatrix}$, et $G = \{M_a \mid a \in \mathbb{R}\}$.

- 1. En posant $U=\begin{pmatrix}0&1&1\\1&0&0\\-1&0&0\end{pmatrix}$, montrer que les matrices appartenant à G sont combinaisons linéaires des matrices I_3 , U et U^2 .
- 2. Montrer que l'application $f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & G \\ a & \mapsto & M_a \end{array} \right.$ est bijective.
- 3. Calculer M_aM_b . Que constate-t-on? Les matrices M_a sont-elles toujours inversibles (si oui, donner leur inverse)?

3

- 4. En déduire que G est un sous-groupe multiplicatif de $GL_3(\mathbb{R})$.
- 5. Calculer M_a^n pour tout entier relatif n.

Exercice 17 (**)

On définit dans cet exercice
$$A = \begin{pmatrix} 4 & -3 & -1 \\ 4 & -4 & -2 \\ -2 & 3 & 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$

- 1. Calculer l'inverse de la matrice P (méthode au choix).
- 2. Calculer le produit $P^{-1}AP$ (on doit obtenir une matrice diagonale). On notera pour la suite $D=P^{-1}AP$.
- 3. Montrer que, $\forall n \in \mathbb{N}, A^n = PD^nP^{-A}$. En déduire l'expression explicite de A^n .
- 4. Résoudre le système linéaire $\begin{cases} 5x & -3y & -z = 5 \\ 4x & -3y & -2z = -2 \\ -2x & +3y & +4z = 16 \end{cases} .$

Que peut-on en déduire concernant la matrice A + I?

- 5. Calculer A^2 et A^3 et déterminer une relation entre les matrices A^2 , A et I_3 (la matrice A^3 ne sert pas pour cette partie de la question).
- 6. Déduire du résultat de la question précédente si la matrice A est inversible, et si oui, donner explicitement son inverse.
- 7. Montrer que, $\forall n \in \mathbb{N}$, il existe deux réels a_n et b_n tels que $A^n = a_n A + b_n I$.
- 8. Calculer a_n et b_n , et retrouver la valeur de A^n obtenue à la question 3 (il est bien sûr interdit d'utiliser cette même question 3 pour répondre à celle-ci).
- 9. La formule obtenue pour A^n reste-t-elle valable lorsque n=-1?
- 10. La formule obtenue pour A^n reste-t-elle valable lorsque n=-2?
- 11. On souhaite désormais calculer le **commutant** de la matrice A, c'est-à-dire l'ensemble de toutes les matrices M vérifiant AM = MA.
 - (a) Déterminer les matrices qui commutent avec la matrice D obtenue à la question 2.
 - (b) Montrer que, en posant $N = P^{-1}MP$, M commute avec A si et seulement si N commute avec D.
 - (c) En déduire les matrices commutant avec A (on essaiera de les exprimer comme combinaisons linéaires de certaines matrices fixées, quelque chose du genre $M = aM_1 + bM_2 + \dots$, avec (a, b, \dots) variant dans \mathbb{R}).

Exercice 18 (***)

On cherche dans cet exercice à déterminer toutes les matrices carrées $M \in \mathcal{M}_n(\mathbb{R})$ telles que $MM^{\top}M = I_n$ (on notera (E) cette équation).

- 1. Justifier que, $\forall A \in \mathcal{M}_n(\mathbb{R}), A^{\top}A$ est une matrice symétrique.
- 2. Montrer que, si A est une matrice symétrique et inversible, A^{-1} est également symétrique.
- 3. Exprimer $\text{Tr}(A^{\top}A)$ en fonction des coefficients de la matrice A. En déduire que, si A est symétrique, $\text{Tr}(A^2) \ge 0$, avec égalité si et seulement si A = 0.
- 4. Soit A une matrice carrée telle qu'il existe deux matrices B et C de même taille telles que $AB = CA = I_n$ (autrement dit, A admet un inverse à gauche et un inverse à droite). En calculant A(B-C)A, montrer que A est inversible.

- 5. Montrer que toute solution M de l'équation (E) est une matrice inversible, puis symétrique, et en déduire la valeur de M^3 .
- 6. En notant a = Tr(M) et $b = \text{Tr}(M^2)$, exprimer en fonction de a et de b les valeurs de $\text{Tr}((M-I_n)^2)$, de $\text{Tr}((M^2-I_n)^2)$ et enfin de $\text{Tr}((M-M^2)^2)$ (en supposant toujours M solution de (E)).
- 7. En déduire que la seule solution de l'équation (E) est $M = I_n$.

Exercice 19 (**)

On considère dans tout cet exercice les matrices $A = \begin{pmatrix} -3 & -1 & -3 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix}$.

- 1. Calculer explicitement les matrices A^2 et A^3 .
- 2. Déterminer trois entiers a, b et c tels que $A^3 = aA^2 + bA + cI_3$ (on écrira explicitement la résolution du système nécessaire au calcul de ces coefficients).
- 3. Déterminer à l'aide de la question précédente si la matrice A est inversible, et le cas échéant, donner son inverse A^{-1} .
- 4. En notant Q le polynôme annulateur de A (donc $Q = X^3 aX^2 bX c$), déterminer les racines du polynôme Q.
- 5. Calculer l'inverse P^{-1} de la matrice P.
- 6. Calculer $P^{-1}AP$, matrice que l'on notera D par la suite (D doit être une matrice diagonale). Quel lien peut-on faire avec le polynôme Q de la question 4?
- 7. Donner l'expression de D^n , puis montrer que, $\forall n \in \mathbb{N}$, $A^n = PD^nP^{-1}$ (on ne demande pas de calculer explicitement A^n).
- 8. On définit trois suites (u_n) , (v_n) et (w_n) par les conditions suivantes : $u_0 = v_0 = 1$, $w_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -3u_n v_n 3w_n$, $v_{n+1} = 2u_n + 3v_n$ et $w_{n+1} = 2u_n + v_n + 2w_n$. On notera de plus $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.
 - (a) Établir une relation entre X_{n+1} et X_n faisant intervenir la matrice A.
 - (b) En déduire une relation entre X_n et X_0 qu'on démontrera rigoureusement.
 - (c) Calculer explicitement u_n , v_n et w_n en fonction de n.

Problème (***)

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite **stochastique** si tous ses coefficients sont positifs et si, $\forall i \in \{1; \ldots; n\}, \sum_{j=1}^n a_{ij} = 1$. On considèrera dans ce problème qu'une suite de matrice $(A_p)_{p \in \mathbb{N}}$ **converge** vers la matrice A si chacun des coefficients $(A_p)_{i,j}$ a pour limite $A_{i,j}$ quand n tend vers $+\infty$.

I. Étude d'un exemple dans $\mathcal{M}_2(\mathbb{R})$.

On considère dans cette première partie la matrice $A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

- 1. Déterminer deux réels a et b tels que $A^2 = aA + bI_2$.
- 2. Prouver que, $\forall n \in \mathbb{N}, \exists (a_n, b_n) \in \mathbb{R}^2, A^n = a_n A + b_n I$.
- 3. Déterminer des relations de récurrence sur les suites (a_n) et (b_n) , et en déduire les valeurs de a_n et b_n , puis la matrice A^n .
- 4. Montrer que la suite de matrices (A^n) converge, et que sa limite est une matrice stochastique.

II. Étude d'un exemple dans $\mathcal{M}_3(\mathbb{R})$.

Dans cette deuxième partie, on pose
$$B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$
, et $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Déterminer les puissances de la matrice J.
- 2. Écrire B comme combinaison des matrices I_3 et J, et en déduire les puissances de la matrice B à l'aide de la formule du binôme de Newton.
- 3. Montrer que la suite (B^n) converge, et que sa limite est une matrice stochastique.

III. Étude générale des matrices stochastiques de $\mathcal{M}_2(\mathbb{R})$.

On considère désormais une matrice stochastique $A = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$, avec $(a,b) \in [0,1]^2$.

- 1. Calculer A^p dans le cas où a=b=1, et a=b=0. On exclut ces deux cas particuliers pour les questions suivantes.
- 2. On considère le polynôme P = (X 1)(X a b + 1), calculer P(A).
- 3. Déterminer le reste de la division euclidienne de X^n par P.
- 4. En déduire les puissances de la matrice A.
- 5. Montrer que la suite (A^p) converge vers une limite à préciser.

IV. Une étude plus générale.

On considère désormais une matrice stochastique (à n lignes et n colonnes) dont tous les coefficients sont strictement positifs. On note m le plus petit coefficient de A; $\alpha_j^{(p)}$ le plus petit coefficient de la colonne numéro j de la matrice A^p , et $\beta_j^{(p)}$ le plus grand coefficient de cette même colonne. Enfin, on note $\delta_j^{(p)} = \beta_j^{(p)} - \alpha_j^{(p)}$.

- 1. Montrer que si la suite (A^p) converge, sa limite B est une matrice stochastique, et vérifie $B^2 = B$ et BA = AB.
- 2. Montrer que, $\forall p \in \mathbb{N}, \forall j \in \{1; \ldots; n\}, \alpha_j^{(p)} \leqslant \alpha_j^{(p+1)} \leqslant \beta_j^{(p+1)} \leqslant \beta_j^{(p)}, \text{ et } \delta_j^{(p+1)} \leqslant (1-2m)\delta_j^{(p)}$.
- 3. En déduire que la suite (A^p) converge. Que peut-on dire des lignes de la matrice limite B?
- 4. Déterminer la limite de la suite (A^p) lorsque $A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \end{pmatrix}$ (on pourra exploiter le fait que A est une matrice symétrique).